用户名: 密码: 验证码:
医学微气泡的约束振动理论及分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学微气泡在超声造影、定点送药、冲击波碎石等超声医学治疗技术中,已经得了到广泛应用,但气泡振动及破裂过程中容易引起病人的肾组织和心血管系统受损,造成严重的医疗事故。因此,开展医用气泡的约束振动研究,具有非常重要的理论意义和临床应用价值。本文运用流固耦合振动原理,借助流体力学计算方法,研究了医用气泡的非球对称振动特征,分析了微血管的动态响应机理。获得的主要创造性新成果有:
     (1)提出了超声造影剂的双层结构理论及其分析方法。为了使得造影剂既有优良的散射特征,又具有足够的可靠性,我们提出了双层壳型超声造影剂结构,并建立了双层壳的散射率-频率关系。利用所得到的散射率函数,计算并分析了外层壳的厚度、材料参数、粘性阻尼等对双层壳散射特征的影响。结果表明,恰当形式的软外层壳,能够极大地改善结构的散射特征。
     (2)根据体外实验所观察到的现象,提出了气泡的旋转椭球面假设,据此建立了约束气泡的非球对称振动模型。开展了约束气泡振动分析。计算发现,气泡的演化规律与流体的出入口边界条件和固体管壁的约束条件密切相关。管壁的约束会引起气泡振动时出现强烈的非对称效应,并导致内壁压力峰值显著增加,而这些在用Rayleigh-Plesset方程计算时被明显忽略和低估了。
     (3)建立了真实血管约束下的气泡-血液-管壁三相耦联动力学模型。考虑了管壁的惯性效应和柔性影响。计算结果表明,管壁越薄、环向刚度越大、初始血压越高,则气泡的非对称效应越强,管壁内的应力波动幅度也越大。因此老人、儿童和某些疾病病人(心血管病人、糖尿病人等)在超声波辅助治疗时危险性更高。
     (4)研究了血液粘性对约束气泡振动的影响,证明了气泡的非对称振动模态是造成管壁损伤的主要原因,并且发现沿环向撕裂是其主要破坏形式。
     (5)提出了双层微血管约束下的气泡动力学模型,并据此分析了气泡的非对称振动特征和壳壁应力的变化规律。计算发现,在气泡-血管耦合振动过程中,当内层壳的刚度增加时,尽管气泡的非对称振动效应以及流体对管壁的冲击幅度都变化不大,但是内膜层的环向应力却急剧增加。这一结果说明,血管硬化病人,在超声波碎石等治疗中,比正常人存在更大的风险。
     本文系统地建立了伪弹性微管约束下的气-液-固耦联动力学模型,深入研究了气泡的非对称振动特征、血液的粘性效应、管壁材料的性质以及尺寸等对管壁应力和变形的影响规律,证明了气泡的非对称振动模态是造成管壁损伤的主要原因,发现了沿环向撕裂是其主要的破坏形式。这些对于设计有效的预防措施,安全使用超声碎石技术和定点送药技术等具有非常重要的理论意义和应用价值。
Medical bubbles have been widely applied in ultrasonic imaging (UI), targeted drug delivery (TDD) and shock wave lithotripsy (SWL). But for subgroup patients in these treatments, the injuries of renal tissue and vascular system are caused by bubbles oscillating and rupturing. Therefore, it has theoretical and clinical importance to explore the constraint oscillation mechanicsm of medical microbubbles. In this dissertation, by using the principle of liquid-solid coupled vibration and the method of computational fluid dynamics, the non-spherical oscillation characteristics of a medical microbubble and the corresponding dynamic responses of a micro blood vessel are investigated. Specific innovative contents are as follows:
     (1) Double-layered structural theory of the ultrasound contrast agent (UCA) and its analysis method are introduced. To obtain excellent scattering ratio and sufficient reliability in UCA, we propose a new double-layered spherical shell structure and obtain the relationship between reflectivity and frequency. We also calculate and analyze the effects of thickness, material coefficients and viscoelastic damping of outer shell on the scattering characteristics of the structure. The results show scattering features of the double-layered shell are remarkably improved by an appropriate soft outer shell in UI.
     (2) We present an ellipsoidal evolving model of constrained bubble according to the experimental observation in vivo, and construct an asysmmetric oscillation theory to analyze a non-spherical bubble. Computational results show that oscillating bubble profile depends on the liquid and solid boundary conditions, and indicate that the asymmetric effects of bubble oscillation due to the vessel constraint lead to a larger pressure exerted on the vessel, which is obviously underestimated or ignored by the Rayleigh–Plesset equation.
     (3) We propose a three-phase dynamic model of a bubble-blood-vessel coupled oscillation system with a real constraint blood vessel. Inertial effect and compliance effect of the microvessel are taken into account. Calculated results show that a vessel wall with the thinner vessel or larger circumferential stiffness or higher pre-existing blood pressure correspond to the stronger bubble asymmetric measure and larger vessel stress amplitude. Thus elders, children and some special subjects such as cardiovascular and diabete patients, are higher risk in assisted therapy involving shock waves.
     (4) The blood viscosity effects in course of constrained bubble oscillating are investigated. It has been proved that asymmetrical oscillation mode is a primary factor for vascular injury and circumferentially tearing is the dominant rupture mode.
     (5) A new dynamic model about a bubble confined inside a double-layer micovessel is proposed, and then the asymmetric oscillation characterists of the microbubble and the regarding stress changes of the vessel are analyzed. It exhibits inconspicuous fluctuation with the asymmetrical scale of bubble oscillation and the liquid pressure exerted on the vessel wall, however, the corresponding dynamic circumferential stress of inner intima layer is increasing acutely. These conclusions indicate that the atherosclerotic patients have a higher risk in SWL.
     We systematically propose and develop a bubble-liquid-vessel dynamic coupled model about constrained microbubble oscillation inside a micro pseudoelastic blood vessel, and investigate various effects on stresses and deformation of a vessel wall including asymmetric bubble oscillation, blood viscocity and vessel material and geometric papameters. We also prove that asymmetrical oscillation is a primary factor for vascular injury and circumferentially tearing is the dominant rupture mode. These conclusions have significant theory and application importances in safety of TDD and SWL.
引文
[1] Allen J S, Kruse D E, Ferrara K W. Shell waves and acoustic scattering from ultrasound contrast agents. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2001, 48(2): 409-418.
    [2] De Jong N, Ten Cate F J, Lancee C T, et al. Principles and recent developments in ultrasound contrast agents. Ultrasonics. 1991, 29(4): 324-330.
    [3] Ye Z. On sound scattering and attenuation of albunex(r) bubbles. Journal of the Acoustical Society of America. 1996, 100(4): 2011-2028.
    [4] Bloch S H, Short R E, Ferrara K W, et al. The effect of size on the acoustic response of polymer-shelled contrast agents. Ultrasound in Medicine and Biology. 2005, 31(3): 439-444.
    [5] Morgan K E, Allen J S, Dayton P A, et al. Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2000, 47(6): 1494-1509.
    [6] Chang P H, Shung K K, Levene H B. Quantitative measurements of second harmonic doppler using ultrasound contrast agents. Ultrasound in Medicine and Biology. 1996, 22(9): 1205-1214.
    [7] Ferrara K W, Algazi V R, Liu J X. The effect of frequency-dependent scattering and attenuation on the estimation of blood velocity using ultrasound. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1992, 39(6): 754-767.
    [8] Wells P N T. Ultrasound imaging. Physics in Medicine and Biology. 2006, 51: R83-R98.
    [9] Chaussy C, Schuller J, Schmiedt E, et al. Extracorporeal shock-wave lithotripsy (ESWL) for treatment of urolithiasis. Urology. 1984, 23(5): 59-66.
    [10] Schmiedt E, Chaussy C. Extracorporeal shock-wave lithotripsy of kidney and ureteric stones. Urologia Internationalis. 1984, 39(4): 193-198.
    [11] Putman S S, Hamilton B D, Johnson D B. The use of shock wave lithotripsy for renal calculi. Current Opinion in Urology. 2004, 14(2): 117-121.
    [12] Chaussy C G, Fuchs G J. Current state and future-developments of noninvasive treatment of human urinary stones with extracorporeal shock-wave lithotripsy. Journal of Urology. 1989, 141(3): 782-789.
    [13] Renner C, Rassweiler J. Treatment of renal stones by extracorporeal shock wave lithotripsy. Nephron. 1999, 81: 71-81.
    [14] Rapoport N Y, Herron J N, Pitt W G, et al. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to hl-60 cells: Effect of micelle structure and ultrasound on the intracellular drug uptake. Journal of Controlled Release. 1999, 58(2): 153-162.
    [15] Marin A, Muniruzzaman M, Rapoport N. Mechanism of the ultrasonic activation of micellar drug delivery. Journal of Controlled Release. 2001, 75(1-2): 69-81.
    [16] Rapoport N. Stabilization and activation of pluronic micelles for tumor-targeted drug delivery. Colloids and Surfaces B-Biointerfaces. 1999, 16(1-4): 93-111.
    [17] Munshi N, Rapoport N, Pitt W G. Ultrasonic activated drug delivery from pluronic p-105 micelles. Cancer Letters. 1997, 118(1): 13-19.
    [18] Skyba D M, Price R J, Linka A Z, et al. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation. 1998, 98(4): 290-293.
    [19] Klibanov A L. Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investigative Radiology. 2006, 41(3): 354-362.
    [20] Church C C. A theoretical-study of cavitation generated by an extracorporeal shock-wave lithotripter. Journal of the Acoustical Society of America. 1989, 86(1):215-227.
    [21] Zhao S K, Ferrara K W, Dayton P A. Asymmetric oscillation of adherent targeted ultrasound contrast agents. Applied Physics Letters. 2005, 87(13): 3.
    [22] Chappell J C, Price R J. Targeted therapeutic applications of acoustically active microspheres in the microcirculation. Microcirculation. 2001, 2006: 57-70.
    [23] Mitri F G. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field. Ultrasonics. 2005, 43(8): 681-691.
    [24] Hansen R, Angelsen B A J, Johansen T F. Reduction of nonlinear contrast agent scattering due to nonlinear wave propagation. in Proceedings of the IEEE Ultrasonics Symposium, 2001. 1725-1728.
    [25] Weber C, Moran M E, Braun E J, et al. Injury of rat renal vessels following extracorporeal shock wave treatment. Journal of Urology. 1992, 147(2): 476-481.
    [26] Gilbert B R, Riehle R A, Vaughan Jr E D. Extracorporeal shock wave lithotripsy and its effect on renal function. Journal of Urology. 1988, 139(3): 482-485.
    [27] Pienkny A J, Streem S B. Simultaneous versus staged bilateral extracorporeal shock wave lithotripsy:: Long-term effect on renal function. Journal of Urology. 1999, 162(5): 1591.
    [28] Bataille P, Cardon G, Bouzernidj M, et al. Renal and hypertensive complications of extracorporeal shock wave lithotripsy: Who is at risk? Urologia Internationalis. 1999, 62(4): 195-200.
    [29] Maker V, Layke J. Gastrointestinal injury secondary to extracorporeal shock wave lithotripsy: A review of the literature since its inception. Journal of the American College of Surgeons. 2004, 198(1): 128-135.
    [30] Hu Y T, Qin S P, Jiang Q. Characteristics of acoustic scattering front a double-layered micro shell for encapsulated drug delivery. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(7): 809-821.
    [31] Shortencarier M J, Dayton P A, Bloch S H, et al. A method for radiation-forcelocalized drug delivery using gas-filled lipospheres. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(7): 822-831.
    [32] Bekeredjian R, Grayburn P A, Shohet R V. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. Journal of the American College of Cardiology. 2005, 45(3): 329-335.
    [33] Zhong P, Zhou Y F, Zhu S L. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound in Medicine and Biology. 2001, 27(1): 119-134.
    [34] Hu Y T, Qin S P, Hu T, et al. Asymmetric oscillation of cavitation bubbles in a microvessel and its implications upon mechanisms of clinical vessel injury in shock-wave lithotripsy. International Journal of Non-Linear Mechanics. 2005, 40(2-3): 341-350.
    [35] Bouakaz A, Versluis M, De Jong N. High-speed optical observations of contrast agent destruction. Ultrasound in Medicine and Biology. 2005, 31(3): 391-399.
    [36] Qin S P, Hu Y T, Jiang Q. Oscillatory interaction between bubbles and confining microvessels and its implications on clinical vascular injuries of shock-wave lithotripsy. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2006, 53(7): 1322-1329.
    [37] Qin S P, Ferrara K W. Acoustic response of compliable microvessels containing ultrasound contrast agents. Physics in Medicine and Biology. 2006, 51(20): 5065-5088.
    [38] Gao F R, Hu Y T, Hu H P. Asymmetrical oscillation of a bubble confined inside a micro pseudoelastic blood vessel and the corresponding vessel wall stresses. International Journal of Solids and Structures. 2007, In Press.
    [39] Nishi R Y. Scattering and absorption of sound-waves by a gas bubble in a viscous-liquid. Acustica. 1975, 33(2): 65-74.
    [40] Uberall H, George J, Farhan A R, et al. Dynamics of acoustic-resonance scatteringfrom spherical targets - application to gas-bubbles in fluids. Journal of the Acoustical Society of America. 1979, 66(4): 1161-1172.
    [41] Gaunaurd G C, Kalnins A. Resonances in the sonar cross-sections of coated spherical-shells. International Journal of Solids and Structures. 1982, 18(12): 1083-1102.
    [42]莫尔斯,英格特.理论声学(上册).北京:科学出版社, 1984.
    [43] Strifors H C, Gaunaurd G C. Differences in the acoustic echoes from submerged elastic shells containing different fluids. Ultrasonics. 1992, 30(2): 107-112.
    [44] Church C C. The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles. Journal of the Acoustical Society of America. 1995, 97(3): 1510-1521.
    [45] Frinking P J A, De Jong N. Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound in Medicine and Biology. 1998, 24(4): 523-533.
    [46] Moraga F J, Taleyarkhan R P, Lahey R T, et al. Role of very-high-frequency excitation in single-bubble sonoluminescence. Physical Review E. 2000, 62(2): 2233-2237.
    [47] Augsdorfer U H, Evans A K, Oxley D P. Thermal noise and the stability of single sonoluminescing bubbles. Physical Review E. 2000, 61(5): 5278-5286.
    [48] Dayton P A, Morgan K E, Klibanov A L, et al. Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1999, 46(1): 220-232.
    [49] Fyrillas M M, Szeri A J. Control of ultra-and subharmonic resonances. Journal of Nonlinear Science. 1998, 8(2): 131-159.
    [50] Harkin A, Nadim A, Kaper T J. On acoustic cavitation of slightly subcritical bubbles. Physics of Fluids. 1999, 11(2): 274-287.
    [51] Hoff L, Sontum P C, Hovem J M. Oscillations of polymeric microbubbles: Effect of the encapsulating shell. Journal of the Acoustical Society of America. 2000, 107(4): 2272-2280.
    [52] Nigmatulin R I, Akhatov I S, Vakhitova N K, et al. On the forced oscillations of a small gas bubble in a spherical liquid-filled flask. Journal of Fluid Mechanics. 2000, 414: 47-73.
    [53] Abe Y, Kawaji M, Watanabe T. Study on the bubble motion control by ultrasonic wave. Experimental Thermal and Fluid Science. 2002, 26(6-7): 817-826.
    [54] Ruuth S J, Putterman S, Merriman B. Molecular dynamics simulation of the response of a gas to a spherical piston: Implications for sonoluminescence. Physical Review E. 2002, 66(3): 14.
    [55] Phillips D, Chen X C, Baggs R, et al. Acoustic backscatter properties of the particle/bubble ultrasound contrast agent. Ultrasonics. 1998, 36(8): 883-892.
    [56] Singhal A K, Athavale M M, Li H Y, et al. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering-Transactions of the ASME. 2002, 124(3): 617-624.
    [57] Farrell K J. Eulerian/lagrangian analysis for the prediction of cavitation inception. Journal of Fluids Engineering-Transactions of the ASME. 2003, 125(1): 46-52.
    [58] Ferrara K W, Zager B G, Sokil-Melgar J B, et al. Estimation of blood velocity with high frequency ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1996, 43(1): 149-157.
    [59] Chomas J E, Dayton P, Allen J, et al. Mechanisms of contrast agent destruction. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2001, 48(1): 232-248.
    [60] Patel D, Dayton P, Gut J, et al. Optical and acoustical interrogation of submicron contrast agents. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2002, 49(12): 1641-1651.
    [61] May D J, Allen J S, Ferrara K W. Dynamics and fragmentation of thick-shelled microbubbles. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2002, 49(10): 1400-1410.
    [62] Plesset M S, Prosperetti A. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics. 1977, 9(1): 145-185.
    [63] Blake J R, Gibson D C. Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics. 1987, 19(1): 99-123.
    [64] Chahine G L. Bubble dynamics and cavitation inception in non-uniform flow fields. in 20th Symposium on Naval Hydrodynamics. Santa Barbara: National Academy Press, 1996. 290–311.
    [65] Kuhn De Chizelle Y, Ceccio S L, Brennen C E. Observations and scaling of travelling bubble cavitation. Journal of Fluid Mechanics. 1995, 293: 99-126.
    [66] Longuethiggins M S. Monopole emission of sound by asymmetric bubble oscillations .1. Normal-modes. Journal of Fluid Mechanics. 1989, 201: 525-541.
    [67] Oguz H N, Prosperetti A. Bubble oscillations in the vicinity of a nearly plane free-surface. Journal of the Acoustical Society of America. 1990, 87(5): 2085-2092.
    [68] Oguz H N, Prosperetti A. Bubble entrainment by the impact of drops on liquid surfaces. Journal of Fluid Mechanics. 1990, 219: 143-179.
    [69] Oguz H N, Prosperetti A. Numerical calculation of the underwater noise of rain. Journal of Fluid Mechanics. 1991, 228: 417-442.
    [70] Mei C C, Zhou X C. Parametric resonance of a spherical bubble. Journal of Fluid Mechanics. 1991, 229: 29-50.
    [71] Benjamin T B, Ellis A T. Self-propulsion of asymmetrically vibrating bubbles. Journal of Fluid Mechanics. 1990, 212: 65-80.
    [72] Feng Z C, Leal L G. Translational instability of a bubble undergoing shape oscillations. Physics of Fluids. 1995, 7(6): 1325-1336.
    [73] Prosperetti A, Crum L A, Commander K W. Nonlinear bubble dynamics. Journal of the Acoustical Society of America. 1988, 83(2): 502-514.
    [74] Prosperetti A. The thermal behaviour of oscillating gas bubbles. Journal of Fluid Mechanics. 1991, 222: 687-615.
    [75] Vokurka K. Amplitudes of free bubble oscillations in liquids. Journal of Sound and Vibration. 1990, 141(2): 259-275.
    [76] Leighton T G, Wilkinson M, Walton A J. Studies of non-linear bubble oscillations in a simulated acoustic field. European Journal of Physics. 1990, 11(6): 352-358.
    [77] Holt R G, Crum L A. Acoustically forced-oscillations of air bubbles in water - experimental results. Journal of the Acoustical Society of America. 1992, 91(4): 1924-1932.
    [78] Vokurka K. Experiments with oscillations of non-spherical gas bubbles oscillating in a liquid-shock-tube. Acustica. 1993, 78(5): 280-287.
    [79] Gaitan D F, Crum L A, Church C C, et al. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America. 1992, 91(6): 3166-3183.
    [80] Lofstedt R, Barber B P, Putterman S J. Toward a hydrodynamic theory of sonoluminescence. Physics of Fluids A-Fluid Dynamics. 1993, 5(11): 2911-2928.
    [81] Yang S M, Feng Z C, Leal L G. Nonlinear effects in the dynamics of shape and volume oscillations for a gas bubble in an external flow. Journal of Fluid Mechanics. 1993, 247: 417-454.
    [82] Asaki T J, Marston P L. Acoustic radiation force on a bubble driven above resonance. Journal of the Acoustical Society of America. 1994, 96(5): 3096-3099.
    [83] Asaki T J, Marston P L. Equilibrium shape of an acoustically levitated bubble driven above resonance. Journal of the Acoustical Society of America. 1995, 97(4): 2138-2143.
    [84] Ryskin G, Leal L G. Numerical-solution of free-boundary problems in fluid-mechanics .1. The finite-difference technique. Journal of Fluid Mechanics. 1984, 148(NOV): 1-17.
    [85] Kang I S, Leal L G. Numerical-solution of axisymmetric, unsteady free-boundary problems at finite reynolds-number .2. Deformation of a bubble in a biaxialstraining flow. Physics of Fluids A-Fluid Dynamics. 1989, 1(4): 644-660.
    [86] Boulton-Stone J M. A two-dimensional bubble near a free surface. Journal of Engineering Mathematics. 1993, 27(1): 73-87.
    [87] Boulton-Stone J M. A comparison of boundary integral methods for studying the motion of a two-dimensional bubble in an infinite fluid. Computer Methods in Applied Mechanics and Engineering. 1993, 102(2): 213-234.
    [88] Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock-waves. Lancet. 1980, 2(8207): 1265-1268.
    [89] Delius M, Enders G, Xuan Z R, et al. Biological effects of shock-waves - kidney damage by shock-waves in dogs - dose dependence. Ultrasound in Medicine and Biology. 1988, 14(2): 117-122.
    [90] Weber C, Moran M E, Braun E J, et al. Injury of rat renal vessels following extracorporeal shock-wave treatment. Journal of Urology. 1992, 147(2): 476-481.
    [91] Knapp R, Frauscher F, Helweg G, et al. Blood pressure changes after extracorporeal shock wave nephrolithotripsy: Prediction by intrarenal resistive index. European Radiology. 1996, 6(5): 665-669.
    [92] Lifshitz D A, Lingeman J E, Zafar F S, et al. Alterations in predicted growth rates of pediatric kidneys treated with extracorporeal shockwave lithotripsy. Journal of Endourology. 1998, 12(5): 469-475.
    [93] Knapp P M, Kulb T B, Lingeman J E, et al. Extracorporeal shock-wave lithotripsy-induced perirenal hematomas. Journal of Urology. 1988, 139(4): 700-703.
    [94] Karlsen S J, Smevik B, Hovig T. Acute morphological-changes in canine kidneys after exposure to extracorporeal shock-waves - a light and electron-microscopic study. Urological Research. 1991, 19(2): 105-115.
    [95] Evan A, Mcateer J A. Q-effects of shock wave lithotripsy. F L Coe, M J Favus, P C. Y. C., et al., Editors. Kidney stones: Medical and surgical management.Lippincott-Raven Press: Philadelphia. 1996. 549–570.
    [96] Evan A P, Willis L R, Lingeman J E, et al. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron. 1998, 78(1): 1-8.
    [97] Coleman A J, Saunders J E. A survey of the acoustic output of commercial extracorporeal shock-wave lithotripters. Ultrasound in Medicine and Biology. 1989, 15(3): 213-227.
    [98] Zhong P, Lin H F, Xi X F, et al. Shock wave-inertial microbubble interaction: Methodology, physical characterization, and bioeffect study. Journal of the Acoustical Society of America. 1999, 105(3): 1997-2009.
    [99] Coleman A J, Saunders J E, Crum L A, et al. Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound in Medicine and Biology. 1987, 13(2): 69-76.
    [100] Zhong P, Chuong C J, Preminger G M. Propagation of shock-waves in elastic solids caused by cavitation microjet impact .2. Application in extracorporeal shock-wave lithotripsy. Journal of the Acoustical Society of America. 1993, 94(1): 29-36.
    [101] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics. 1998, 361: 75-116.
    [102] Xi X F, Zhong P. Improvement of stone fragmentation during shock-wave lithotripsy using a combined eh/peaa shock-wave generator - in vitro experiments. Ultrasound in Medicine and Biology. 2000, 26(3): 457-467.
    [103] Howard D, Sturtevant B. In vitro study of the mechanical effects of shock-wave lithotripsy. Ultrasound in Medicine and Biology. 1997, 23(7): 1107-1122.
    [104] Zhong P, Cioanta I, Cocks F H, et al. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. Journal of the Acoustical Society of America. 1997, 101(5): 2940-2950.
    [105] Zhong P, Cioanta I, Zhu S L, et al. Effects of tissue constraint on shock wave-induced bubble expansion in vivo. Journal of the Acoustical Society ofAmerica. 1998, 104(5): 3126-3129.
    [106] Zhong P, Xi X F, Zhu S L, et al. Recent developments in SWL physics research. Journal of Endourology. 1999, 13(9): 611-617.
    [107] Evan A P, Willis L R, Connors B A, et al. Can SWL-induced cavitation and renal injury be separated from SWL-induced impairment of renal hemodynamics? Journal of the Acoustical Society of America. 1998, 103: 3037.
    [108] Coleman A J, Choi M J, Saunders J E. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound in Medicine and Biology. 1996, 22(8): 1079-1087.
    [109] Philipp A, Delius M, Scheffczyk C, et al. Interaction of lithotripter-generated shock-waves with air bubbles. Journal of the Acoustical Society of America. 1993, 93(5): 2496-2509.
    [110] Jochle K, Debus J, Lorenz W J, et al. A new method of quantitative cavitation assessment in the field of a lithotripter. Ultrasound in Medicine and Biology. 1996, 22(3): 329-338.
    [111]刁颖敏.生物力学的原理与应用.上海:同济大学出版社, 1991.
    [112] Rhodin J A G. Architecture of the vessel wall. Handbook of Physiology. 1980, 2: 1–31.
    [113] Zeller P J, Skalak T C. Contribution of individual structural components in determining the zero-stress state in small arteries. Journal of Vascular Research. 1998, 35(1): 8-17.
    [114] Fung Y C. What are the residual-stresses doing in our blood-vessels. Annals of Biomedical Engineering. 1991, 19(3): 237-249.
    [115] Greenwald S E, Moore J E, Rachev A, et al. Experimental investigation of the distribution of residual strains in the artery wall. Journal of Biomechanical Engineering-Transactions of the ASME. 1997, 119(4): 438-444.
    [116] Demiray H, Vito R P. On large periodic motions of arteries. Journal ofBiomechanics. 1983, 16(8): 643-648.
    [117] Chuong C J, Fung Y C. Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering. 1983, 105(3): 268-274.
    [118] Rachev A, Hayashi K. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Annals of Biomedical Engineering. 1999, 27(4): 459-468.
    [119] Hokanson J, Yazdani S. A constitutive model of the artery with damage. Mechanics Research Communications. 1997, 24(2): 151-159.
    [120] Fung Y C, Liu S Q. Determination of the mechanical-properties of the different layers of blood-vessels in-vivo. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92(6): 2169-2173.
    [121] Veress A I, Anderson P M, Cornhill J F, et al. Mechanical response of an artery using a standard nonlinear solid. Biomed Sci Instrum. 1997, 34: 212-217.
    [122] Humphrey J D. An evaluation of pseudoelastic descriptors used in arterial mechanics. Journal of Biomechanical Engineering-Transactions of the ASME. 1999, 121(2): 259-262.
    [123] Gaballa M A, Raya T E, Simon B R, et al. Arterial mechanics in spontaneously hypertensive rats - mechanical-properties, hydraulic conductivity, and 2-phase (solid fluid) finite-element models. Circulation Research. 1992, 71(1): 145-158.
    [124] Delfino A, Stergiopulos N, Moore J E, et al. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. Journal of Biomechanics. 1997, 30(8): 777-786.
    [125] Humphrey J D, Na S. Elastodynamics and arterial wall stress. Annals of Biomedical Engineering. 2002, 30(4): 509-523.
    [126] Humphrey J D. Mechanics of the arterial wall: Review and directions. Critical Reviews in Biomedical Engineering. 1995, 23(1-2): 1-162.
    [127] Vonmaltzahn W W, Warriyar R G, Keitzer W F. Experimental measurements ofelastic properties of media and adventitia of bovine carotid arteries. Journal of Biomechanics. 1984, 17(11): 839-847.
    [128] Dobrin P B. Mechanical factors associated with the development of intimal and medial thickening in vein grafts subjected to arterial-pressure - a model of arteries exposed to hypertension. Hypertension. 1995, 26(1): 38-43.
    [129] Gupta B S, Kasyanov V A. Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts. Journal of Biomedical Materials Research. 1997, 34(3): 341-349.
    [130] Chester A H, Buttery L D K, Borland J A A, et al. Structural, biochemical and functional effects of distending pressure in the human saphenous vein: Implications for bypass grafting. Coronary Artery Disease. 1998, 9(2-3): 143-151.
    [131] Zarins C K, Weisenberg E, Kolettis G, et al. Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. Journal of Vascular Surgery. 1988, 7(3): 386-394.
    [132] Topoleski L D T, Salunke N V, Humphrey J D, et al. Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque. Journal of Biomedical Materials Research. 1997, 35(1): 117-127.
    [133] Loree H M, Grodzinsky A J, Park S Y, et al. Static circumferential tangential modulus of human atherosclerotic tissue. Journal of Biomechanics. 1994, 27(2): 195-204.
    [134] Goodman R R, Stern R. Reflection and transmission of sound by elastic spherical shells. Journal of the Acoustical Society of America. 1962, 34: 338.
    [135]钟伟芳,聂国华.弹性波的散射理论.武汉:华中理工大学出版社, 1997.
    [136] Gaunaurd G C, Werby M F. Sound scattering by resonantly excited, fluid-loaded, elastic spherical-shells. Journal of the Acoustical Society of America. 1991, 90(5): 2536-2550.
    [137]黄玉盈.结构振动分析基础.武汉:华中工学院出版社.
    [138]胡洪平,高发荣,胡元太.微球壳轴对称流固耦联振动分析.华中科技大学学报(自然科学版). 2004, 32(6): 98-101.
    [139]高发荣,胡洪平,胡元太.外层壳及其阻尼对水中双层球壳声散射的影响.华中科技大学学报(自然科学版). 2004, 32(6): 102-104.
    [140] Zhu S, Cocks F H, Preminger G M, et al. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound in Medicine and Biology. 2002, 28(5): 661-671.
    [141] Leighton T G. The acoustical bubble. London: Academic Press, 1994.
    [142] Shima A, Sato Y. The behavior of a bubble between narrow parallel plates. Journal of Applied Mathematics and Physics (ZAMP). 1980, 31: 691-704.
    [143] Tomita Y, Kodama T. Interaction of laser-induced cavitation bubbles with composite surfaces. Journal of Applied Physics. 2003, 94: 2809-2816.
    [144]陶祖莱.生物力学导论.天津:天津科技翻译出版公司, 2000.
    [145] Chuong C J, Fung Y C. On residual stresses in arteries. Journal of Biomechanical Engineering. 1986, 108(2): 189-192.
    [146] Humphrey J D. Stress, strain, and mechanotransduction in cells. Journal of Biomechanical Engineering. 2001, 123(6): 638-641.
    [147] Zhu S, Zhong P. Shock wave-inertial microbubble interaction: A theoretical study based on the gilmore formulation for bubble dynamics. Journal of the Acoustical Society of America. 1999, 106(5): 3024-3033.
    [148] Ferziger J H, Peric M. Computational methods for fluid dynamics. 3 ed. New York: Springer Verlag, 2001.
    [149] Nichols W W, O'rourke M F. Mcdonald's blood flow in arteries: Theoretical, experimental and clinical principles. 5 ed. London: Hodder Arnold, 2005.
    [150] Nichols W W. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. American Journal of Hypertension. 2005, 18(1S): 3-10.
    [151] Suresh S. Fatigue of materials. 2 ed. London: Cambridge University Press, 1998.
    [152]朗道等著,彭旭麟译.连续介质力学(第一册).北京:高等教育出版社, 1958.
    [153] Letcher R L, Chien S, Pickering T G, et al. Elevated blood viscosity in patients with borderline essential hypertension. Hypertension. 1983, 5(5): 757-762.
    [154] Letcher R L, Chien S, Pickering T G, et al. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration. American Journal of Medicine. 1981, 70(6): 1195-1202.
    [155] Hu Y T, Gao F R, Hu H P. Interaction inside a coupled oscillation system of bubble-viscous liquid-vessel and the induced stresses and strains within the vessel wall. Journal of Mechanics. 2007, In Press.
    [156] Belardinelli E, Cavalcanti S. Theoretical analysis of pressure pulse propagation in arterial vessels. Journal of Biomechanics. 1992, 25(11): 1337-1349.
    [157] Weizsacker H W, Lambert H, Pascale K. Analysis of the passive mechanical properties of rat carotid arteries. Journal of Biomechanics. 1983, 16(9): 703-715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700