用户名: 密码: 验证码:
基于性能抗震设计的钢筋混凝土柱试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震设计对于结构构件的能力需求不仅仅局限在极限承载力和弹性变形能力上,同时对结构构件延性变形、滞回耗能等抗震性能也有了明确的需求。根据性能设计要求进行结构构件设计,需要建立构件基本参数与抗震性能之间的数值关系。
     本文从国内外规范、试验研究、数值分析多个方面对钢筋混凝土柱截面延性、位移延性和塑性铰长度等抗震性能参数的影响因素、计算方法和统计概率分布等进行了分析与研究,其主要内容如下:
     1.配箍率作为影响钢筋混凝土柱延性的一个主要参数,已经受到国内外学者和结构设计规范的关注。本文介绍了国内外主要规范对于钢筋混凝土柱最小配箍率的相关规定。计算对比了各国规范中最小配箍率对截面延性的影响。讨论了我国规范按照最小配箍率所能获得的柱截面延性,并对最小配箍率的设置提出了建议。
     2.本文设计了4根钢筋混凝土悬臂柱,并对其进行了低周反复荷载试验。试验中主要测试内容是柱顶位移、箍筋应变。试验获得了在压弯作用下箍筋应变分布和变化情况,为柱截面混凝土所承受的约束应力计算提供了试验数据支持。同时通过变化轴压比、加载方式,讨论了这两个因素对柱抗震性能的影响。试验结果表明轴压比和加载方式对于柱破坏形态、箍筋应变分布影响显著。总结了箍筋应变在柱截面内沿环向分布规律和沿柱高度方向的变化规律。
     3.对试验获得的箍筋应变数据进行整理分析,导入钢筋应力-应变全曲线,通过分析得到了柱试验过程箍筋应力分布和变化数据。从而得到箍筋约束的柱截面混凝土受到的约束力分布情况。根据Mander的约束理论,计算出有效约束系数,可以得到箍筋间弱约束截面的约束应力分布情况。通过引入混凝土膨胀参数,对约束应力进行计算,从而改进计算柱截面延性的纤维模型。利用改进的纤维模型,对影响截面曲率延性的各个参数进行了分析,并通过回归分析建立了截面曲率延性与配箍特征值、轴压比、纵向配筋率和核心混凝土面积比之间的关系。与其他基于性能的截面延性设计方法计算结果相比,本文建议的方法准确度相对较高,能较好反映曲率延性系数的变化规律。
     4.位移延性作为最基本的构件抗震性能指标,有众多的影响参数。按照Priestly的计算方法,可以采用两个主要参数来计算柱位移延性,分别是截面延性和塑性铰长度。本文从美国太平洋地震研究中心提供的柱试验数据中选取了143个滞回曲线完整且破坏形态为弯曲破坏的柱试验数据,通过计算分析得到柱等效塑性铰长度。再通过回归分析,获得了等效塑性铰长度的计算公式。经试验结果的验证,本文建议的公式具有较高的计算精度。本文收集了国内45个混凝土柱的抗震试验结果对本文建议的方法进行检验,结果表明采用本文建议的方法计算得到的位移延性均值与试验结果的均值基本一致,其误差基本能保证在20%以内,相对误差呈正态分布。
     5.基于性能的抗震设防理念必然和不同地震作用下结构抗震性能指标相联系。而位移是最为直观的指标之一。通过对直接基于位移的抗震设计方法和基于性能的多目标抗震思想的研究,本文提出了基于位移的多水准抗震设计方法。这一设计方法首先根据业主的要求确定不同烈度地震作用下对结构位移性能的预期与需求。通过位移需求构造需求曲线,而结构的抗震性能将按照这一曲线,采用改进的直接基于位移的能力谱方法进行设计。采用一个单自由度桥墩的设计过程介绍了基于位移的多水准设计方法的设计流程。
Performance-based seismic design is demanded in ultimate bearing capacity and elasticdeformation capacity of structural components, as well as other seismic performances, such asductility deformation and hysteretic energy dissipation. The design of structural componentbased on performance requirements require to establish value relations between the basicparameters of components and seismic performance.
     In this dissertation, the seismic performance parameters, including the ductility ofreinforced concrete columns section, displacement ductility and length of plastic hinge,calculation method and statistical probability distribution are researched from the domesticand international norms, experimental study, numerical analysis and other related perspectives,and the main contents are as follows:
     1. Stirrup ratio, as a main parameter affecting the ductility of reinforced concrete column,is focused on by scholars at home and abroad and the structure design code. This paperintroduces relevant provisions of minimum stirrup ratio of specification for reinforcedconcrete column defined in main domestic and foreign regulations. The influence of minimumstirrup ratio defined in many countries’ regulations on the ductility of sections is comparedand calculated. The ductility of the column section obtained from the minimum stirrup ratioaccording to China’s norms is discussed, and the recommendations are put forward for settingof minimum stirrup ratio.
     2. This paper designs4reinforced concrete cantilever columns which experience the lowcyclic loading test. The main test contents are top displacement and stirrup strain. The testobtains stirrup strain distribution and variation under the action of bending, providing datasupport for computational constraints under column section stress of concrete. Throughchanging the axial compression ratio and loading mode, the influence of the two factors onthe seismic behavior of columns is discussed. The test results show that the axial compressionratio and the loading pattern have significant effect on column failure mode and stirrup straindistribution. The distribution of stirrup strains along circumferential direction in columnsection and its change along the column height are summarized.
     3. Data of stirrup strain obtained in tests are analyzed, steel stress-strain curve isintroduced, and the analysis leads to data about stirrup stress distribution and variation incolumn test process; followed by binding distribution results of concrete on column sectionconfined by the stirrup. According to Mander’s theory of constraints, the effective restriction factors are calculated, and the stress distribution between weak constraint sections confinedby stirrups can be obtained. The introduced concrete expansion parameters can help tocalculate the constraint stress, thus improving fiber model to calculate the column sectionductility. The improved fiber model facilitates analysis of various parameters affecting thesection curvature ductility whose relations with vegin value, axial compression ratio,longitudinal reinforcement ratio and core concrete area ratio are worked out. Compared withother performance-based section ductility design method and calculation results, the methodproposed in this study, with its high accuracy, can better reflect the change of the curvatureductility coefficient.
     4. Many parameters can affect displacement ductility which is the most basic seismicperformance index. According to the calculation method of Priestly, two main parameters, thesection ductility and plastic hinge length, can be adopted to calculate the column ductility. Inthis study,143column test data with complete hysteretic curve and flexural failure from theUnited States Pacific Earthquake Engineering Research Center are selected, and accordingly,the equivalent plastic hinge length of column is calculated. Through regression analysis,formula for calculating the equivalent length of plastic hinge is obtained. It has been verifiedby the test results, the calculation accuracy of the proposed formula is higher. Then45seismicexperiment results of concrete columns are adopted to test the proposed method, the resultsshow that displacement ductility mean calculated by the proposed method are basically thesame as mean experiment results, the error can be controlled within20%and the relative errordisplays normal distribution.
     5. Performance-based seismic fortification concept must be associated with indexes ofstructural seismic resistance for different earthquakes, while displacement is one of the mostintuitionistic indexes. Based on research of direct displacement-based seismic design andperformance-based multi-objective anti-seismic thought, this paper puts forward themult-standard displacement-based seismic design method which firstly determines theexpectations and demands on the performance of structure displacement under differentearthquake intensities according to the requirements of owners. The displacement demand ishelpful for establishment of demand curve according to which the seismic performance of thestructure is designed with the method of improved displacement-based capacity spectral.Finally the design process of a bridge pier with single degree of freedom is introduced toexplain displacement-based multi-level design method.
引文
[1]胡聿贤.地震工程学导论.北京:地震出版社,1988:1-10.
    [2]范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001:1-6.
    [3]沈聚敏,周锡元,高小旺等.抗震工程学.北京:中国建筑工业出版社,2000,1-10.
    [4]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报,2002,30(12):1429-1434.
    [5]张静怡,李春祥.抗震性能设计的发展.自然灾害学报,2004,13(5):128-135.
    [6]戴国莹.建筑结构基于性能要求的抗震措施初探.建筑结构,2000,30(10):60-62.
    [7]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望.地震工程与工程振动,2001,21(4):73-79.
    [8] SEAOC VISION2000Committee Performance-Based Seismic Engineering,Report prepared by Structure Engineering Association of California Sacram ento,California, U.S.1995,10-18.
    [9] Building Seismic Safety Council. NEHRP Guide-lines for the SeismicRe-habilitation of Buildings. FEMA273, Federal Emergency ManagementAgency. Washington, D.C.1997,1-8.
    [10] FEMA. NEHRP Commentary on the guidelines for the seismic rehabilitation ofbuildings. FEMA-274. Washington, D.C: Federal Emergency ManagementAgency,1997
    [11] Applied Technology Council(ATC). Seismic evaluation and retrofit of ConcreteBuildings. Rep. No. ATC-40, Redwood City,Calif,1996,78-90.
    [12]王亚勇.我国2000年抗震设计模式规范基本问题研究综述.建筑结构学报,2000,21(1):2-4.
    [13]周云,安宇,梁兴文.基于形态的抗震设计理论和方法的研究与发展.世界地震工程,2001,17(2):1-7.
    [14]谢晓健,姜永生,梁书亭等.基于结构功能设计原理的发展综述.东南大学学报,2000,30(4):9-15.
    [15]戴金华,韩小雷,林生逸.基于性能的钢筋混凝土建筑结构抗震设计方法.土木工程学报,2011,44(5)38-42
    [16]程斌,薛伟辰.基于性能的框架结构抗震设计研究.地震工程与工程振动,2003,23(4):50-55
    [17]聂建国,田淑明.高层钢筋混凝土框架-核心筒结构抗震安全评价.建筑结构学报,2012,31(12)48-55
    [18]杨学林,李晓良,茆诚,冯永伟,周平槐.复杂超限高层建筑结构性能化设计研究与应用.建筑结构学报2010-05-15.
    [19]黄志华,吕西林,周颖.钢筋混凝土剪力墙的变形能力及基于性能的抗震设计.地震工程与工程振动,2009,29(5):95-103
    [20] Bertero R D, Bertero V. Performance-based seismic engineering: the need for areliable conceptual comprehensive approach. Earthquake Engineering andStructural Dynamics,2002,31:627-652
    [21] Kowalsky M, Priestley M J N, MarRae G A. Displacement-based design of RCbridge columns in seismic regions. Earthquake Engineering and StructuralDynamics,1995,24:1623-1643
    [22] Building Seismic Safety Council. NEHRP recommended provisions for seismicregulations for new buildings and other structures. FEMA303, FederalEmergency Management Agency. Washington, D.C.1998,37-76.
    [23] FEMA. Prestandard and commentary for the seismic rehabilitation of buildings.Report No. FEMA-356, Federal Emergency Management Agency. Washington,D.C,2000,1-518
    [24] CEN. European Prestandard Eurocode8: Design provisions for earthquakeresistance of structures. Brussels,1994
    [25] Australian/New Zealand Standard. Structural design actions. AS/NZS1170.0,2002
    [26] Watson, S., Zahn, F.A. and Park, R. Confining Reinforcement for ConcreteColumns. Journal of Structural Engineering, ASCE,1994,120(6):1798-1824.
    [27] Standards Association of New Zealand. New Zealand Standard Code of Practicefor the Design of Concrete Structures, NZS3101, Wellington, New Zealand,2006,1-256
    [28]罗文斌,钱嫁茹.钢筋混凝土结构基于位移的抗震设计.土木工程学报,2003,36(5):22-29.
    [29]马千里.钢筋混凝土框架结构基于能量抗震设计方法研究:[清华大学博士学位论文].北京:清华大学,2009,5-23
    [30]中国工程建筑标准化协会标准.建筑工程抗震性态设计通则(CECS160:2004).北京:中国计划出版社,2004.
    [31]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010).北京:中国建筑工业出版社,2010
    [32]中华人民共和国行业标准.高层建筑混凝土结构技术规程(JGJ3-2010).北京:中国建筑工业出版社,2010
    [33]鲍雷T,普里斯特利M J N.钢筋混凝土和砌体结构的抗震设计.戴瑞同,陈世鸣,林宗凡等译.第1版.北京:中国建筑工业出版社,1999,1-58
    [34] Gulkan P, Sozen M. Inelastic response of reinforced concrete structures toearthquake motions. ACI Journal,1974,71(22):604-610
    [35] Freeman S A, Nicoletti J P, Tyrrell J V. Evaluation of existing buildings forseismic risk-A case study of Puget Sound Naval Shipyard. In: Proc. of the1stU.S. National Conference on Earthquake Engineering. Bremerton,1975,113-122
    [36] Fajfar P, Fischinger M. N2-a Method for Nonlinear Seismic Analysis of RegularStructures. Proceedings of9thWorld Conference of Earthquake Engineering.Tokyo-Kyoto, Japan,1988,111-116.
    [37] Xue Q. A direct displacement-based seismic design procedure of inelasticstructures. Engineering Structures,2001,23:1453-1460
    [38]吴波,熊焱.一种直接基于位移的结构抗震设计方法.地震工程与工程振动,2005,25(2):62-67
    [39]直接基于位移的预应力混凝土框架结构抗震设计方法简斌;翁健;金云飞工程力学
    [40]高性能混凝土剪力墙直接基于位移的抗震设计方法研究辛力西安建筑科技大学博士
    [41]张毅刚,杨大彬,吴金志.基于性能的空间结构抗震设计研究现状与关键问题.建筑结构学报2010,31(6):17-22.
    [42]郭磊,李建中,范立础.直接基于位移的结构抗震设计理论研究进展.世界地震工程,2005,21(4):157-164.
    [43] Chopra A K, Goel R K, Chintanapakdee C. Statistics of Single–Degree-of-Freedom Estimate of Displacement for Pushover Analysis ofBuildings.Struct.Engrg., ASCE,2003,129(4):459-469.
    [44]田颖,钱稼茹,刘凤阁.在用RC框架结构基于位移的抗震性能评估.建筑结构,2001,31(7):53-56
    [45]杨溥.基于位移的结构地震反应分析方法研究:[重庆建筑大学博士学位论文].重庆:重庆建筑大学,1999,53-77
    [46]吴波,李艺华.直接基于位移可靠度的抗震设计方法中目标位移代表值的确定.地震工程与工程振动,2002,12(6):44-51
    [47] Wehbe, N.I., Saiidi, M.S. and Sanders, D.H. Effects of Confinement and Flareson the Seismic Performance of Reinforced Concrete Bridge Columns. Report No.CCEER-97-2, Engineering Research and Development Center, University ofNevada, Reno, Sep.,1997:1-399
    [48] Sheikh, S.A. and Khoury, S.S. Performance-Based Approach for the Design ofConfining Steel in Tied Columns. ACI Structural Journal,1997,94(4):421-431.
    [49] O Bayrak, Sheikh, S.A. High-Strength Concrete Columns under SimulatedEarthquake Loading. ACI Structural Journal,1997,94(6):708-722.
    [50] O Bayrak, Sheikh, S.A. Confinement Reinforcement Design Considerations forDuctile HSC Columns. Journal of Structural Engineering, ASCE,1998,124(9):999-1010.
    [51] Saatcioglu, M. and Razvi, S.R. Strength and Ductility of Confined Concrete.Journal of Structural Engineering, ASCE,1992,118(6):1590-1607.
    [52] Saatcioglu, M. and Razvi, S.R. Displacement-Based Design of ReinforcedConcrete Columns for Confinement. ACI Structural Journal,2002,99(1):3-11.
    [53] Marios Panagiotou, José I. Restrepo. Displacement-Based Method of Analysisfor Regular Reinforced-Concrete Wall Buildings: Application to a Full-Scale7-Story Building Slice Tested at UC–San Diego Journal of StructuralEngineering, ASCE,2011,137(6):677-690
    [54] M.J.N.Priestley. Displacement-based seismic Design of Bridges. Proceedings,ACI Special seminar on Seismic Design of Bridges, San Diego,2003
    [55] T.Paulay, M.J.N.Priestley. Seismic Design of Reinforced Concrete and MasonryBuildings. John Wiley and Sons, New York,1992:1-108
    [56] Chan, W. W. L. The Ultimate Strength and Deformation of Hinges in ReinforcedConcrete Frameworks. Magazine of Concrete Research,1955,7(21):121-132
    [57] D.C.Kent, R.Park, Flexural Members with Confined Concrete. Journal of theStructural Division, ASCE,1971,97(7):1969~1990
    [58] Park,R., Priestley,M.J.N. and Gill,W.D. Ductility of square confined concretecolumns[J]. J.Struct.Div.,ASCE,108(4),1982,pp.929~950
    [59] Sheikh, S.A. Uzumeri, S.M. Strength and Ductility of Tied C oncrete ColumnsJournal of the Structural Division, ASCE.1980,106(5):1079-1102
    [60] Sheikh, S.A. Uzumeri, S.M. Analytical Model for Concrete Confinement in TiedColumns. Journal of the Structural Division, ASCE,1982,108(12):2703-2722
    [61] J B Mander, J N Priestley, R Park. Theoretical Stress-Strain Model for ConfinedConcrete, ASCE,1988,114(8):1804-1826
    [62] J B Mander, J N Priestley, R Park. Observed Stress-Strain Behavior of ConfinedConcrete. ASCE,1988,114(8):1827-1849
    [63] Popovics S. Analytical approach to complete stress strain curves. Cement andConcrete Res.,1973,3(5):583~599
    [64] Sheikh, S A. and Khoury, S S. Confined Concrete Columns with Stubs. ACIStructural Journal,1993,90(4):414-431.
    [65] F A Zahn, R Park, M J N Priestley, etc. Development of Design for the FlexuralStrength and Ductility of Reinforced Concrete Bridge Columns. Buletin of NewZealand National Society for Earthquake Engineering.1986,19(3).
    [66] Wood, B. R., Beaulieu, D., and Adams, P. F.. Column design by P-delta method.J. Struct. Engrg., ASCE,1976,102(2):411-427.
    [67] Poston, R. W., Diaz, M., and Breen, J. E. Design trends for concrete bridge piers.ACI J.,1986,83(1):14-20.
    [68] EI-Metwally, S. E, Chen, W. F. Load-deformation relations for reinforcedconcrete sections. ACI Struct. J.,1989,86(2),163-167.
    [69] Huang, C. Nonlinear time-dependent finite element analysis of reinforcedconcrete space frames containing slender columns and flangedbeams:[dissertation]. Univ. of Kentucky, Lexington,1990
    [70] Anibal A, Manzelli, Issam E. Harik. Approximate moment-curvaturerelationships for slender columns. Journal of Structural Engineering,1993,119(4):1133-1149
    [71] Priestley M J N. Brief comments on elastic flexibility of reinforced concreteframes and significance to seismic design. Bulletin, New Zealand NationalSociety for Earthquake Engineering,1998,31(4):246-259.
    [72]朱伯龙,吴明舜.钢筋混凝土受弯构件延性系数的研究.同济大学学报,1978,(1)
    [73]沈聚敏,瓮义军.钢筋混凝土构件的变形和延性.建筑结构学报,1980,(2)
    [74]邹银生,程翔云.钢筋混凝土压弯构件的延性分析.湖南大学学报,1980,(4)
    [75]孙克俭.矩形截面构件延性系数计算.建筑结构,1987,(2):30-34
    [76]孙克俭.钢筋混凝土抗震结构矩形截面构件截面的延性设计.建筑结构,1990(5):23-64
    [77]范立础.桥梁抗震.上海:同济大学出版社,1997,264~273.
    [78]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法.地震工程与工程振动,2005,25(6):53~61.
    [79] Takemura, H. and Kawashima, K. Effect of loading hysteresis on ductilitycapacity of reinforced concrete bridge piers. Journal of StructuralEngineering,Japan,1997,43A:849-858
    [80] Fujikura, S., Kawashima, K., Shoji, G., Zhang, J. and Takemura, H. Strength andDuctility of Reinforced Concrete Bridge Columns with Interlocking Ties andCross Ties. Report No. TIT/EERG98-9, Tokyo. Institute of Technology, Japan.1998.
    [81] Kawashima, K., Shoji, G. and Sakakibara, Y. A Cyclic Loading Test forClarifying the Plastic Hinge Length of Reinforced Concrete Piers. Journal ofStructural Engineering,2000,46A:767-776
    [82] Nagaya, K. and Kawashima, K. Effect of Aspect Ratio and LongitudinalReinforcement Diameter on Seismic Performance of Reinforced Concrete BridgeColumns. Report No. TIT/EERG01-*, Tokyo Institute of Technology, Japan2001
    [83] Sakai, J. and Kawashima, K. Effect of Varying Axial Loads Including a ConstantTension on Seismic Performance of Reinforced Concrete Bridge Columns.Report No. TIT/EERG00-2, Tokyo Institute of Technology, Tokyo, Japan.2000
    [84] Tirasit, P., Kawashima, K. and Watanabe, G. An Experimental Study on thePerformance of RC Columns Subjected to Cyclic Flexural-Torsional Loading.Proceedings of2nd International Conference on Urban Earthquake Engineering,2005:357-364
    [85] Sasaki, T., Kurita, H., Kawashima, K., Watanabe, G., ect. Effect of Input GroundAccelerations on Failure Modes of RC Bridge Columns with Termination ofMain Reinforcements.In: Proceedings of the10th Symposium on DuctilityDesign Method for Bridges, Japan,2007,35-42
    [86] Kurita, H., Sasaki, T., Kawashima, K.etc. Failure Mechanism of RC BridgeColumns with Termination of Main Reinforcements. In: Proceedings of the10thSymposium on Ductility Design Method for Bridges, Japan,2007,43-50
    [87] Wehbe, N.I., Saiidi, M.S. and Sanders, D.H. Effects of Confinement and Flareson the Seismic Performance of Reinforced Concrete Bridge Columns.In: ReportNo. CCEER-97-2, University of Nevada, Reno,1997:1-399
    [88]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社.2003:185-188
    [89]沈聚敏,瓮义军.钢筋混凝土构件的刚度和延性.清华大学抗震抗爆工程研究室.科学报告集第3集钢筋混凝土结构的抗震性能.北京:清华大学出版社,1981:51-71
    [90]方鄂华等.轴压比和含箍率对框架柱延性的影响.建筑技术通讯(建筑结构),1983(3)
    [91]张国军.高强混凝土框架柱抗震性能的试验研究.[同济大学博士后学位论文].上海,同济大学,2006,22-28
    [92] ACI Committee318. Building Code Requirements for Reinforced Concrete andCommentary (ACI318-11/ACI318R-11). American Concrete Institute, Detroit,Michigan,2011:1-423
    [93] Applied Technology Council. Improved Seismic Design Criteria for CaliforniaBridges: Provisional Recommendations.ATC-32, California,1996,1-215
    [94] International Conference of Building Officials (ICBO). Uniform Building Code.Whittier, CA.1997
    [95] International Code Council (ICC). International Building Code. Falls Church,VA.2003
    [96] Standard Specifications for Highway Bridges.16th Edition, Division I-A:Seismic Design Washington American Association of State Highway andTransportation Officials(AASHTO), Inc.,1995
    [97] ACI Committee105. Reinforced Concrete Column Investigation-Tentative FinalReport. Journal of The American Concrete Institute,1933,29(6):275-282.
    [98] Park R, Sampson R A. Ductility of Reinforced Concrete Column Sections inSeismic Design. Journal of American Concrete Institute, Proceedings1972,69(9):543-555
    [99] Park, R and Leslie, P.D. Curvature Ductility of Circular Reinforced ConcreteColumns Confined by the ACI Sprial.6th Australasian Conference on theMechanics of Structures and Materials, Christchurch, New Zealand,1977,342-349.
    [100] Ang, B.G., Priestley, M.J.N. and Park, R. Ductility of Reinforced ConcreteBridge Piers under Seismic Loading. Research Report81-3, Department of CivilEngineering, University of Canterbury, Christchurch, New Zealand,1981,1-109
    [101]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010).北京:中国建筑工业出版社,2010
    [102] Yan Xiao, Armen Martirossyan. Seismic performance of high-strength concretecolumns. Journal of Structural Engineering,ASCE,1998,124(3):241-251
    [103]江见鲸,陆新征,叶列平,混凝土结构有限元分析,北京:清华大学出版社,2005
    [104] Kato B, Aoki H, Yamanonchi H. Experimental Study of Structural SteelSubjected to Tensile and Compressive Cycle Loads, In:Proceeding14th JapanCongress on Materials Research,1971
    [105] Park R, Paulay T Reinforced Concrete Structures. John Wiley&Son Inc, NewYork,1975
    [106]悬臂柱实验研究.日本东京工业大学网: http://seismic.cv.titech.ac.jp/,2008,
    [107]程海根,董明,李睿.约束混凝土压弯构件曲率延性分析.昆明理工大学学报.2001,26(6):89-93
    [108]郑建岚,钱春,郑作樵.钢纤维钢筋高强混凝土柱延性的试验研究.土木工程学报.1999,32(1):56-59
    [109] Chen W F. Plastic in reinforced concrete. McGraw-Hill Book Co. New York, NY1982
    [110] N. S. Ottosen. Constitutive model for short-time loading of concrete. J. Eng.Mech.,1979,105(),127-141.
    [111] Candappa, D. P., Setunge, S., Sanjayan, J G. Stress versus strain relationship ofhigh strength concrete under lateral confinement. Cement and Concrete Res.,1999,29(12),1977-1982.
    [112] D. C. Candappa,1J. G. Sanjayan, and S. Setunge.Complete triaxial stress-straincurves of high-strength concrete. Journal of Materials in Civil Engineering2001,13(3):209-215
    [113] A. A. Elwi and D. W. Murray, A3D hypoelastic concrete constitutiverelationship, J. Eng. Mech.,1979,105,623-641.
    [114] Amir Mirmiran and Mohsen Shahawy. Dilation characteristics of confinedconcrete. Mechanics of Cohesive-Frictional Material,1997,Vol.2,237-249
    [115] Amir Mirmiran and Mohsen Shahawy Behavior of Concrete Columns Confinedby Fiber Composites. Journal of Structural Engineering,1997,123(5):583-590
    [116] Bayrak, S Sheikh. Plastic hinge analysis. J. Struct.Eng.ASCE,2001,127(9):1092–1100.
    [117] Sungjin Bae Seismic performance of Full-scale reinforced concrete columns:
    [dissertation]. The University of Texas, Austin,2005
    [118] Watson, S. and Park, R. Simulated Seismic Load Tests on Reinforced ConcreteColumns. Journal of Structural Engineering, ASCE,1994,120(6):1825-1849.
    [119] Baker, A.L.L. Ultimate Load Theory Applied to the Design of Reinforced andPrestressed Concrete Frames. Concrete Publications Ltd., London.1956
    [120]李永哲.钢筋混凝土桥墩弹塑性变形及塑性铰区特性研究:[北京交通大学博士学位论文].北京:北京交通大学,2004
    [121] Mattock, A.H. Rotational Capacity of Hinging Regions in Reinforced Con creteBeams. Proceedings International Symposium on the Flexural Mechanics ofReinforced Concrete, ACI SP-12,1964:143-181.
    [122] Corley, W.G. Rotational Capacity of Reinforced Concrete Beams. Journal of theStructural Division, ASCE,1966,92(5):121-146
    [123]孙克俭,钢筋混凝土框架结构抗震设计的延性分析,建筑结构,1989(2)
    [124] Sakai, K. and Sheikh, S.A.. What Do We Know about Confinement in ReinforcedConcrete Columns (A Critical Review of Previous Work and Code Provisions).ACI Structural Journal,1989,86(2):192-207
    [125] Mendis, P. Plastic Hinge Lengths of Normal and High-Strength Concrete inFlexure. Advances in Structural Engineering,20014(4)189-195
    [126] Mieses, A.M. Inelastic Buckling Behavior of Concrete ReinforcingBars underMonotonic Uniaxial Compressive Loading:[dissertation]. TheUniversity ofTexas, Austin,2002,1-236
    [127] Bayrak, O. Seismic Performance of Rectilinearly Confined High StrengthConcrete Columns:[dissertation]. University of Toronto, Ontario,1999:1-339
    [128]叶列平,丁大钧,程文壤.高强砼框架柱抗震性能的试验研究.建筑结构学报,1992,13(4):41-48
    [129]肖潇.配有高强钢筋的高强混凝土柱的抗震性能研究:[沈阳建筑大学硕士学位论文].沈阳:沈阳建筑大学,2004,41-54
    [130]徐伟栋.配置高强钢筋的混凝土柱抗震性能研究:[同济大学硕士学位论文].上海:同济大学,2007,18-58
    [131]贾金青,姜睿徐世娘等.超高强混凝土短柱抗震性能的试验研究.地震工程与工程振动.2006,26(6):121-126
    [132]梁书廷,丁大均.钢筋混凝土复合配箍柱铰的延性和抗震耗能试验研究.工业建筑,1994,11():16-36
    [133]郭子雄,吕西林.高轴压比框架柱抗震性能试验研究.华侨大学学报,1999,20(3):258-263
    [134]马德祥,赵建军,丁大钧.框架柱延铰抗震性能试验研究.建筑结构学报,1996,17(4):35-43
    [135] Trezos C G. Reliability consideration on the confinement of RC columns forductility. Soil Dynamics and Earthquake Engineering,1997,3:184-191
    [136] Kappos A J, Chryssanthopoulos M K, Dymiotis C. Uncertainty analysis ofstrength and ductility of concrete reinforced concrete members. EngineeringStructures,1999,21:195-208
    [137]马宏旺,赵国藩.钢筋混凝土矩形柱截面曲率延性系数概率分析.大连理工大学学报,2001,41(4):485-490
    [138]吴波,郭安薪,林少书.钢筋混凝土柱极限变形角的概率特性及其在有控结构大震可靠度分析中的应用.地震工程与工程振动,2001,21(3):36-40
    [139]刘洪兵,王君杰,孙利民,范立础.钢筋混凝土桥墩截面能力的概率分析.工程力学,2005,22(6):104-111
    [140]王建民,朱晞.圆截面RC桥墩曲率极限状态和延性的概率分析.土木工程学报,2006,39(12):88-94
    [141]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究.土木工程学报,2005,38(1):1-10
    [142] Ghobarah A. Performance-based design in earthquake engineering: state ofdevelopment. Engineering Structures,2001,23:878-884
    [143]钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构2001,31(4):3-6.
    [144]马宏旺.基于性能的抗震设计-几个相关问题的研究.同济大学博士后学位论文.同济大学,2004
    [145]李国强,姜丽人,张晓光.高层建筑钢-混凝土混合结构简化分析模型.建筑结构,1999,(6):12-13.
    [146] Veletsos A S, Newmark N M. Effect of inelastic behavior on the response ofsimple system to earthquake motions. Proc.,2nd World Conf. on EarthquakeEngrg., Vol.2.Tokyo,1960,895–912.
    [147] Veletsos A S, Newmark N M, Chepalati C V. Response of ground-excitedelastoplastic systems subjected to ground shock and earthquake motion. Proc.,3rd World Conf. on Earthquake Engrg., Vol.2. Wellington, New Zealand,1965,663–682.
    [148] Miranda E. Inelastic displacement ratios for structures on firm sites. J. Struct.Eng., ASCE,2000,126(10):1150–1159.
    [149] Miranda E. Seismic evaluation and upgrading of existing structures:
    [dissertation]. Berkeley:Univ.of California,1991,89-91.
    [150] Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOF systems.John A. Blume Earthquake Engineering Center, Rep. No.95, Stanford University.Stanford, California,1991,54-61.
    [151] Krawinkler H, Nassar A A. Seismic design based on ductility and cumulativedamage demands and design of reinforced concrete buildings. Elsevier, NewYork,1992:75-86.
    [152] Vidic T, Fajfar P, Fischinger M. Constent inelastic design spectra: strength anddisplacement. Earthquake Engineering and Structure Dynamics,1994,23(5):507-521.
    [153] B.Borzi,A.S.Elnashai. Refined Force Reduction Factors for Seismic D esign.Engineering Structures.2000(2):1244-1260
    [154] Fajfar P. Capacity spectrum method based on inelastic demand spectra[J].Earthquake Engineering and Structure Dynamics,1999,23:979-993
    [155]卓卫东.桥梁结构延性抗震设计研究:[同济大学博士论文].上海:同济大学,2000:1-40
    [156]赵冠远.阎贵平.一种基于能力谱法的位移抗震设计方法.中国铁道科学,2002,23(3):64-67
    [157]王威,孙景江.基于改进能力谱方法的位移反应估计.地震工程与工程振动,2003,23(6):37-43.
    [158]何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤设计.地震工程与工程振动,2000,20(2):31-38.
    [159]周雍年,周正华,于海英.设计反应谱长周期区段的研究.地震工程与工程振动,2004,24(2):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700