用户名: 密码: 验证码:
压裂管柱及关键部件弹塑性接触非线性力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂是油田增产增注的有效技术手段,封隔器的有效座封、水力锚的可靠锚定及压裂管柱的安全作业是水力压裂实施的保障。本文选择封隔器、水力锚以及压裂管柱为研究对象,采用理论分析、数值模拟、试验等方法,对刚体与柔性体的接触、不同硬度刚体间的嵌入、管柱与井壁的轴向摩阻与剪切等问题进行了研究,具有重要的学术价值和良好的工程应用前景。
     首先由拉伸压缩试验比较三种橡胶材料的拉伸强度、压缩永久变形率,优选出适于高温条件的氢化丁腈橡胶材料,测试其在不同温度下的弹性模量。以试验机作为胶筒一端压缩动力源,以压力传感器测试胶筒另一端的压力,得到胶筒压缩过程中与套管的摩阻力,以应变片测试套管外壁的环向应变,得到接触应力沿胶筒轴向分布规律。胶筒座封性能实验表明在胶筒与套管的摩阻力会影响胶筒的座封位置及发生肩突的胶筒。
     其次,以压缩封隔器胶筒为研究对象,考虑胶筒与套管内壁在座封过程中柔性体与刚体的间隙与不定接触边界,将胶筒压缩变形划分自由变形、单向约束、双向约束三个过程,建立了大变形胶筒与套管的弹性接触力学分析模型。采用离散法将胶筒沿轴向划分为若干微段,通过载荷增量方法来分析任一微段受力变形,推导出能够描述压缩胶筒材料、几何和接触三重非线性力学分析的递推和增量计算公式,得出胶筒在不同压力沿轴向的接触压力和整体压缩量,为封隔器设计提供科学的理论依据。
     采用Mooney-Rivlin模型,对不同结构的封隔器在启封、座封工况下进行受力变形分析,计算了有单保护罩、双保护罩、双保护罩且支撑环改形等结构,几种不同结构的封隔器胶筒压缩距基本相同,在完全座封状态下的肩凸程度逐渐减小;密封系数比逐渐增大。由此可以看出,有双保护罩且支撑环改形的封隔器密封性能最好,胶筒肩凸最小。
     再次,考虑套管的弹塑性变形及滑移线,建立了有摩擦、无摩擦两种工况下锚爪嵌入套管的弹塑性接触力学分析模型,推导了锚爪嵌入套管深度的计算公式。依据完全剪切滑脱条件,计算了单个锚爪的锚定力,为水力锚的设计提供理论基础。建立了锚爪锚定有限元模型,采用增量切线刚度法和拉格朗日乘子法,实现了材料与接触双重非线性迭代计算。通过室内压缩实验测试锚爪在不同压力下嵌入套管深度,与理论分析计算结果相符。
     最后,选择整体压裂管柱为研究对象,依据下井、初始座封、压裂等工作状态,建立了压裂管柱的力学模型与非线性静力学分析的有限元单元法。采用了间隙元、弹簧元来模拟计算封隔器、水力锚的轴向摩阻力与轴向锚定力,推导出多组工具的轴向摩阻力与位移协调条件,依据迭代计算结果,能够描述井下管柱的受力和变形状态。编制“压裂管柱受力变形分析软件”,计算出插入式压裂管柱的水力锚、封隔器和滑套喷砂器在压裂压力为83MPa,温度为150℃的轴向摩阻力,对一次、二次压裂作业进行了安全评价。
Hydraulic fracturing is an effective technology for the increasing of production rate inthe oil field. The effective sealing of packer, the reliable anchoring of hydraulic anchor andthe safety of fracturing string’s operations are the safeguards in the hydraulic fracturing. Inthis paper, the packer, the hydraulic anchor and fracturing string are taken to be researchedby theoretical analysis, numerical simulation and the experiment. The research has greatacademic value and good prospect of engineering application, which is on the contactbetween rigid body and flexible body, the embedded depth between two rigid bodies whichhave different hardness and the friction force and shear force between fracturing string andborehole wall.
     Firstly, tensile strength and compression permanent deformation rate of three kinds ofrubber materials are compared by the tensile and compressive test and the optimizingmaterial hydrogenated nitrile rubber(HNBR) is suitable to work under high temperatureconditions. The elastic modulus of HNBR rubber tube is measured under differenttemperatures. The power source of rubber’s compression test come from compression testerand the compressing force under the rubber tube is measured by the pressure sensor, so thefriction force between the casing and the rubber tube is taken in compression process. Thecircumferential strain of casing wall is tested by the strain gauge to get the contact stressdistribution along axial direction of the tube. The rubber sealing test shows that the frictionforce between rubber tube and the casing affect the sealing position and which rubber tubewould protrude.
     Secondly, the rubber tube of compressive packer is taken as research object withconsideration of the gap between the casing and the packer and the changing contactboundary between soft rubber tube and rigid casing within sealing process. The rubber’scompressive deformation can be divided into three processes: free deforming process, singledirection constraint process and double direction constraint process. The elastic contactmechanics analysis model of rubber tube with large deformation is built. The rubber tube isdivided into some micro-sections along axial direction by discrete method. The loadincrement method is used to analysis any micro-section’s mechanical deformation of rubbertube. Recursive and incremental formula of compression rubber, which is three nonlinear mechanics about material, geometry and contact, is derived and the contact stress andcompressive length of different sections along axial direction under different pressure wouldbe obtained, which gives reliable theory basis for the packer’s design.
     Mechanical deformation analysis of different packer is done under the start of sealingcondition and sealing condition with Mooney-Rivlin model. The packer of differentstructure are ones with bottom protection cover, top and bottom protection cover andremodeled support ring. These models of packers have similar compressive length. Theprotruded shoulder of rubber tube become smaller and sealing factors increase. Inconclusion, the third packer has the greatest sealing property and the smallest protrudedshoulder.
     Thirdly, with elastic-plastic deformation and slip line of casing considered, twoelastic-plastic deformation analysis models, with and without the friction force considered,are built and plastic formulation of embedding depth is deduced to analyze embeddingdepth of hydraulic anchor’s anchor into casing. In the conditong of shearing fully andslipping, the single anchor’s anchoring force is calculated to provide fundamental basis forthe anchor’s design. Finite element model of the anchoring fluke is built. The doublenonlinear iterative calculation of material and contact is solved with the incrementaltangential stiffness method and lagrangian multiplier method. The different embeddingdepths are measured by indoor compression experiment under different pressures, which iscorresponding with the theoretical analysis results.
     Lastly, under different conditions of descending fracturing string, initial sealing andfracturing, mechanical model of integral fracturing string and nonlinear static finite elementmethod are built. The axial friction force and axial anchoring force is got through thesimulation method about packer and hydraulic anchor with gap element and spring element.The compatibility conditions of axial friction force and displacement is got for several setsof tools. With the iterative calculation results, the stress and deformation of the downholestring can be described. The analysis software for the stress and the deformation offracturing string is compiled. The axial friction forces for the anchor, the packer and thesliding sleeve sand jet in the plug-in fracturing string under83MPa and150℃arecalculated and a safety analysis for primary and secondary fracturing operation are done.
引文
[1]刘洪,张光华,钟水清,等.水力压裂关键技术分析与研究[J].钻采工艺,2007,(2):49-52,154.
    [2] Maxwell S C,Young R P, and Bossu R. Microseismic logging of the EkofiskReservoirs[C]. SPE/SRM47267, presented at the1998SPE/SRM Eurock’98heldinTrondheim, Norway,8-10July.
    [3] Aguilera Roberto. Naturally fractured reservoirs (2nd Ed.)[M]. PennWell Books,PennWell Publishing Company, Tulsa, Oklahoma, USA,1995.
    [4] Yale D P, Lyons S L, qin G. Coupled geomechanics-fuid flow modeling in petroleumreservoirs: Coupled versus uncoupled response[C]. Pacific Rocks2000,137-144.
    [5] Wenlong Ding, Chao Li, Chunyan Li, etal. Fracture development in shale and itsrelationship to gas accumulation[J]. Geoscience Frontiers,2012,3(1):97-105.
    [6] Dianne Rahm. Regulating hydraulic fracturing in shale gas plays: The case of Texas[J].Energy Policy,2011,39(5):2974-2981.
    [7]唐颖,张金川,张琴,等.页岩气水力压裂技术及其应用分析[J].天然气工业,2010,30(10):33-38.
    [8]唐颖,唐玄,王广源,等.页岩气开发水力压裂技术综述[J].地质通报,2011,30(3):393-399.
    [9] Maurice Dusseault, John McLennan, Shu Jiang. Massive multi-Stage hydraulic fracturingfor oil and gas recovery from low mobility reservoirs in China[J]. Petroleum DrillingTechniques,2011,39(3):6-16.
    [10]田守增,李根生,黄中伟,等.水力喷射压裂机理与技术研究进展[J].石油钻采工艺,2008,30(1):58-62.
    [11]纪树培,李文魁.高能气体压裂在美国东部泥盆系页岩气藏中的应用[J].断块油气田,1994,1(4):2-8.
    [12]张景超,张显忠.泡沫压裂技术的研究及应用前景[J].石油钻采工艺,1991,12(2):71-74,84.
    [13]许卫,李勇明,郭建春,等.氮气泡沫压裂液体系的研究与应用[J].西南石油学院学报,2002,24(3):64-67.
    [14]贾利春,陈勉,金衍.国外页岩气井水力压裂裂缝监测技术进展[J].天然气与石油,2012,30(1):44-47.
    [15]李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中的应用[J].特种油气藏,2012,19(6):1-7.
    [16]刘清友,湛精华,黄云,等.深井、超深井高温高压井下工具研究[J].天然气工业,2005,(10):73-75.
    [17]杜现飞.深井压裂工艺管柱力学分析[D].中国石油大学(华东),2009.
    [18]张应安.水平井多封隔器压裂管柱通过性力学关键问题研究[D].东北石油大学,2011.
    [19]叶红,李良军,吴国洲,等.压裂管柱砂卡及组合解卡工艺技术在江苏油田的应用[J].断块油气田,2006,13(3):75-77.
    [20]任厚毅,张雷,迟鹏,等.大斜度超深井压裂管柱探讨[J].石油矿场机械,2005,34(4):57-60.
    [21]王彦兴,兰中孝,张晓君,等.套损井压裂管柱的研制[J].石油矿场机械,2006,35(6):90-92.
    [22]李敬元,李子丰,李天降,等.井下管柱力学分析软件及应用[J].石油钻采工艺,2008,30(5):118-121.
    [23]高宝奎,高德利.高温高压井测试管柱变形增量计算模型[J].天然气工业,2002,22(6):52-54.
    [24]王宇,高国华.斜直井眼中管柱变形参数仿真实验[J].石油学报,2003,24(3):94-97.
    [25]李子丰.油气井杆管柱力学[M].北京:石油工业出版社,1996:72-86.
    [26]李子丰,蒋恕,阳鑫军.油气井杆管柱力学研究现状和发展方向[J].石油机械,2002,30(12):30-33.
    [27]刘巨保,丁皓江,张学鸿.间隙元在钻柱瞬态动力学分析中的应用[J].计算力学学报,2002,19(4):456-460,471.
    [28]邱利琼.钻柱动态数学模型的建立及求解[J].重庆大学学报(自然科学版),2002,25(5):148-151.
    [29]吴泽兵,马德坤,况雨春.钻柱纵向振动仿真分析[J].石油学报,2000,21(3):73-76.
    [30]朱才朝,谢永春,刘清友.钻头钻柱系统非线性耦合动力学仿真[J].兵工学报.2003,24(1):85-88.
    [31]管志川,韩志勇,王以法,等.井下钻柱受力实测接头研究[J].石油大学学报(自然科学版),2002,26(4):29-32,35.
    [32] David C-K Chen, Mark Smith, and Scott LaPierre, Halliburton Sperry-Sun. IntegratedDrilling Dynamics System Closes the Model-Measure-Optimize Loop in Real Time[J].SPE/IADC79888,2003.
    [33] S.DeWayne Everage, Nanjiu Zheng, Sean E.Ellis. Evaluation of Heave-InducedDynamic Loading on Deepwater Landing String[J]. IADC/SPE87152,2004.
    [34]况雨春,马德坤,刘清友,等.钻柱—钻头—岩石系统动态行为仿真[J].石油学报,2001,22(3):81-85.
    [35]范慕辉,焦永树,王磊.垂直井中受压段旋转钻柱的分岔研究[J].工程力学,2003,20(6):127-129,126.
    [36]岳欠杯.压裂管柱有限元分析及应用[D].大庆石油学院,2009.
    [37]肖文生,张扬,钟毅芳.钻柱在钻井液和井壁摩阻共同作用下的涡动[J].中国机械工程,2004,15(4):334-337.
    [38]况雨春.牙轮钻头与井壁碰撞的室内实验研究[J].天然气工业.2002,22(1):55-57.
    [39]管志川,靳彦欣,王以法.直井底部钻柱运动状态的实验研究[J].石油学报.2003,24(6):102-106,20.
    [40] Milheim K K. Apostal M C. The Effect of Bottomhole Assembly Dynamics on theTrajectory of a Bit[J]. JPT. Dec.1981(SPE9222).
    [41] Milheim K K. Apostal M C. How BHA Dynamics Affect Bit Trajectory[J]. World Oil,May1981,92(6):183-205.
    [42] Milheim K K. Computer Simulation of the Directional Drilling Process[J]. SPE9990,1982.
    [43] Wolf SF, Zacksenhouse M., Arian A.. Field Measurements of Downhole DrillstringVibrations[J].SPE14330,1995.
    [44] David C-K Chen, Mark Smith, Scott LaPierre. Advanced Drillstring Dynamics SystemIntegrates Real-Time Mideling and Measurements[J]. SPE81093.2003.
    [45] David C-K Chen, Mark Smith, Scott LaPierre. Integrated Drilling Dynamics SystemCloses the Model-Measure-Optimize Loop in Real Time[J]. SPE/IADC79888.2003.
    [46] Robert F. Mitchell,Halliburton, Stefan Miska, etal. Helical Buckling of Pipe WithConnectors and Torque[J]. SPE Drilling&Completion.2006,21(2):108-115.
    [47] Walker B H and Friedman M B, Three Dimensional Force and Deflection Analysis of aVariable Cross Section Drillstring[J]. Journal of Pressure Vessel Technology,1977,367-373.
    [48] Clayer F.The Effect of Surface and Downhole Boundary Conditions on the Vibration ofDrillstrings[J].SPE,20447,1990.
    [49]李子丰.近期国内钻柱静动力分岔研究及存在问题[J].石油机械.2004,32(6):68-70.
    [50] Lubinski, A., Althouse, W.S., Logan, J.L. Helical Buckling of Tubing sealed in Packers[J]. JPT,1962,14(3):655-670.
    [51] Hammerlindl, D.L. Movement, Forces and Stresses Associated with Combination TubingStrings sealed in Packers[J]. PET,1977,29(1):195-208.
    [52] Hammerlindl, D.J. Basic Fluid and Pressure Forces on oil well Tubular [J]. J.PET.Tech.,1980,32(3):153-159.
    [53] Hammerlindl, D.J.Packer-to-Tubing Forces for Intermediate Packers [J]. J. PET. Tech.,1980,32(2):515-527.
    [54] Cheatham, J.B., Pattillo, P.D. Helical Postbuckling Configuration of a WeightlessColumn Under the Action of an Axial Load [J]. SPE, J.1984,(4):467-472.
    [55] E.E.Maidla, A.K.Woitanowicz. Predicting of casing running loads in directional well[C].The20th annual OTC in Houston,Tekas,1998.
    [56] Wu.J. Juvkam-wold, H.C. Helical Buckling of Pipes in Extended Reach and Horizontalwells-Part1: Preventing Helical Buckling[J]. Journal of Energy Resources Tech.1993,115(3):190-195.
    [57] Wu.J.Juvkam-wold,H.C. Preventing Helical Buckling of Pipes in Extended Reach andHorizontal Wells[C].93-PET-7. Energy-Sources Tech. Conference&Exhibition,1993:1-4.
    [58] Wu.J. Juvkam-wold, H.C. Helical Buckling of Pipes in Extended Reach andHorizontalwells-Part2: Frictional Drag Analysis[J]. Journal of Energy Resources. Tech.1993,115(3):196-201.
    [59] Wu.J. uvkam-wold, H.C.Frictional Drag Analysis for Helically Buckled Pipes inExtended and Horizontal Wells[C].93-PET-8. Energy-Sources Tech. Conference&Exhibiton,1993:5-8.
    [60]冯建华,罗铁军,金学锋.双封隔器复合管柱受力分析方法及应用[J].石油钻采工艺,1993,16(2):65-68.
    [61]刘巨保,栾绍信,张学鸿.水平井压裂管柱受力变形分析的间隙元法[J].石油学报,1994,15(1):135-140.
    [62]李文魁.深井高能气体压裂技术试验研究[J].石油钻采工艺,1995(2):55-60.
    [63]虞建业.江苏油田分层压裂工艺技术与研究[J].试采技术,1995,16(2):38-42.
    [64]刘巨保,张学鸿,朱振锐.水平井分流压裂管柱设计与力学分析[J].天然气工业,1998,18(3):46-49.
    [65]陈明忠.分层压裂技术在多层开采中的应用[J].钻采工艺,2001,24(4):81-82.
    [66]岳惠,余梅卿,鲁献春,等.高压分层酸化管柱的研制和应用[J].石油机械,2001,29(2):44-46.
    [67] Josef, Shaul, Edgar,etal. Hydraulic Fracturing improves Recovery in a LayeredReservoir Under Waterflood in Kazakhstan[R]. SPE75146,2002.
    [68]孙爱军,徐英娜,李洪洌,等.注水管柱的受力分析及理论计算[J].钻采工艺,2003,26(3):55-57.
    [69]窦益华,张福祥.高温高压深井试油井下管柱力学分析以其应用[J].钻采工艺,2007,30(5):17-20.
    [70]董蓬勃,窦益华.封隔器管柱屈曲变形及约束载荷分析[J].石油矿场机械,2007,36(10):14-17.
    [71]王祖文,林玉玺,窦益华.大庆油田高温深井试气井下管柱力学分析及应用[J].大庆石油地质与开发,2007,26(6):102-106.
    [72]生丽敏.井下管柱力学分析及优化设计[D].成都:西南石油学院,2005.
    [73]杜现飞,王海文,王帅,等.深井压裂井下管柱力学分析及其应用[J].石油矿场机械,2008,37(8):28-33.
    [74]姜民政,王新民,尹兆国,等.多级封隔器对注水管柱轴向变形的有限元分析[J].大庆石油学院学报,2007,31(5):78-79,84.
    [75]廖玉华,杨斌,李敏.封隔器管柱效应力学模型分析[J].机械,2012,39(5):40-43.
    [76]何玉发,刘清友,鲁柳利.封隔器系统工作行为仿真软件的开发[J].计算机仿真,2009,(6):296-299.
    [77]湛精华,王国荣,刘清友.井下封隔器工作行为仿真研究[J].石油矿场机械,2006,(2):9-12.
    [78]刘清友,黄云,湛精华,等.井下封隔器及其零件工作行为仿真研究[J].石油机械,2005,(6):23-26.
    [79]刘清友,黄云,湛精华,等.井下封隔器及其各部件工作行为仿真研究[J].石油仪器,2005,(1):1-4.
    [80]刘清友,黄云,湛精华,等.井下封隔器接触有限元模型研究[J].钻采工艺,2005,(2):58-60,67.
    [81]王海兰.井下封隔器工作行为仿真研究[D].西南石油学院硕士学位论文,2004,53-64.
    [82]伍朝东,何祖清,叶峰,等.封隔器工作性能试验研究[J].石油矿场机械,2007,(2):37-38.
    [83]杨秀娟,闫相祯,贾善坡,等.封隔器胶筒大变形的粘—滑摩擦接触分析[J].机械强度,2006,28(2):229-234.
    [84]贾善坡,闫相祯,杨丽.封隔器胶筒大变形摩擦接触的有限元分析[J].润滑与密封,2005,(4):71-74,83.
    [85]葛松.压缩式封隔器密封胶筒有限元分析及改进[J].石油矿场机械,2011,40(12):92-95.
    [86]尹飞,高宝奎,金磊.压缩式封隔器座封力学有限元分析[J].石油机械,2012,40(2):39-41.
    [87]刘林,陈和平,李永革,等.水平井分段压裂封隔器研制与风格性能分析[J].石油矿场机械,2012,41(1):86-88.
    [88]刘永辉,付建红,林元华,等.封隔器胶筒密封性能有限元分析[J].石油矿场机械,2007,(9):38-41.
    [89]马卫国,张亚昌,张德彪,等.双胶筒封隔器胶筒密封性能分析[J].石油机械,2010,(11):51-53,68.
    [90]伍开松,翟志茂,古剑飞,等.封隔器胶筒几何参数优选[J].石油矿场机械,2008,(10):68-71.
    [91]练章华,乐彬,宋周成,等.封隔器座封过程有限元模拟分析[J].石油机械,2007,(9):19-21,41.
    [92]李晓芳,杨晓翔,王洪涛.封隔器胶筒接触应力的有限元分析[J].润滑与密封,2005,(5):90-92,125.
    [93]龙连春,杜家政,阳志光,等.封隔器胶筒的分析与优化设计[J].北京工业大学学报,2006,(S1):52-57.
    [94]李旭,窦益华.压缩式封隔器胶筒变形阶段力学分析[J].石油矿场机械,2007,36(10):17-19.
    [95]刘富.接触式电测法测量封隔器封隔件接触挤压应力的测量装置[J].新疆石油科技,1992,1(2):33-35,30.
    [96]刘天良,施纪泽.封隔器封隔时胶皮筒接触应力的模拟实验研究[J].断块油气田,2000,7(4):51-52,69.
    [97]岳澄,王燕群,邵立国,等.高温封隔器胶筒与套管接触压力的实验研究[J].实验力学,1999,14(3)::390-394.
    [98]夏元白,张平,孙广领,等.井下封隔器封隔时套管应力的测试与计算[J].石油矿场机械,1997,26(5):11-15.
    [99]张劲,李炜,张士诚.封隔器超弹性胶筒力学性能的试验研究[J].机械工程学报,2011,(8):71-76.
    [100]唐海雄,冯定,张俊斌,等.封隔器工作性能室内试验研究[J].石油天然气学报,2009,(3):154-156.
    [101]刘汝福,王隆慧,韩进,等.水力锚对套管损伤数值模拟分析及结构优化[J].石油矿场机械,2004,33(5):65-67.
    [102]游龙潭.水力锚损伤套管数值模拟分析.内蒙古石油化工[J],2005,08:20-22.
    [103]伍开松,谢斌,杨新克.封隔器卡瓦的三维接触有限元分析[J].石油矿场机械,2005,(6):47-49.
    [104]刘天良,谢洪德,王倩,等.封隔器卡瓦损伤套管的模拟试验研究[J].石油矿场机械,2001,30(2):49-51.
    [105]王迪,何世平,张熹.封隔器卡瓦接触应力研究[J].实验力学,2006,(3):351-356.
    [106]马长友,翟庆宏.封隔器卡瓦三维光弹性应力分析[J].炼油与化工,2009,(1):40-43,69.
    [107]李桐,马庆贤,崔奋.封隔器卡瓦咬合过程受力模拟研究[J].石油矿场机械,2004,(S1):11-13.
    [108]张晶,赵启成,王振清,等.卡瓦封隔器工作过程的电测分析[J].大庆石油学院学报,2005,(4):89-91,144.
    [109]徐兴权,王成军,姜建平等.封隔器胶筒橡胶材料力学性能试验[J].江汉石油职工大学学报,2010,23(2):82-84.
    [110]杨新克,海沙尔.压缩式封隔器胶筒设计思路浅谈[J].新疆石油天然气,2012,8(S):115-118.
    [111]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2004.
    [112]钱志平.绘制滑移线场的一种新方法[J].燕山大学学报,2001,25(3):239-240.
    [113]夏志高.塑性力学[M].上海:同济大学出版社,1999.
    [114]郑文斌.模具抛光机构运动仿真及抛光工艺参数研究[D].哈尔滨理工大学,2006.
    [115]安虎平,盛冬发,银光球.滑移线基本理论及其在金属切削加工中的应用[J].中国工程机械学报,2009,7(3):308-311,316.
    [116]徐秉业,罗学福,刘信声等.接触力学[M].高等教育出版社.1992,9(6):175-195.
    [117]徐芝纶.弹性力学[M].高等教育出版社.2009:54-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700