用户名: 密码: 验证码:
渤海湾西岸中更新世晚期以来的海相地层与沉积环境演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海湾西岸泥质海岸带记录了丰富的海陆相互作用信息,其沉积特征和环境演化既具区域性特征,又受全球变化规律的制约,是进行全球变化研究的理想地区。通过渤海湾海岸带中更新世晚期以来的环境演化和海面变化研究,对提高预测未来全球变化的能力有重要意义。
     论文以渤海湾西岸为研究区,主要开展了两方面的研究工作。第一,利用钻孔岩心资料,识别了渤海湾西岸地区80m以浅地层的海相层,厘定海侵期次,并讨论其对海面变化和新构造运动的指示意义。第二,对环境信息保存相对完整的全新世海相层进行精细划分,判别沉积亚相,恢复区内全新世以来的古环境,讨论全新世海侵及沉积物供给等因素对区内沉积环境的影响。
     钻孔岩心的岩性、沉积结构与构造、生物组合分带性及加速器质谱碳十四(Accelerator Mass Spectrometry, AMS14C)和光释光(Optically StimulatedLuminescence, OSL)测年结果显示:
     (1)渤海湾西岸80m以浅地层自下向上发育了3个海相层,分别是中更新世晚期的第三海相层(简称“海三”)、晚更新世的第二海相层(简称“海二”)和全新世的第一海相层(简称“海一”),标志着中更新世晚期以来研究区经历了3次较大范围的海侵。根据本论文获得的新的OSL年代框架并与全球eustatic(即the ice-equivalent sea level)变化曲线对比,这3个海相层自下向上与深海氧同位素阶段7(Marine Isotope Stage 7, MIS 7)、MIS 5和MIS 1时期的高海面依次对应,表明研究区海相地层记录的海面变化与全球变化趋势一致。
     (2)通过多个钻孔对比分析,渤海湾西岸地区中更新世晚期以来的3个海相层分布较广,具有良好的可比性。各孔岩心海相层顶、底板高程和厚度表现出不同程度的差异。其中,第三海相层和第二海相层顶底板高程和厚度的差异显示了研究区中更新世晚期至晚更新世发生了不同期次、不同强度的构造活动。进入全新世后,构造活动影响减弱。
     (3)根据新的年代学框架,重新修定了前人的研究成果。经深入研究,本文的第一海相层、第二海相层分别对应前人的MIS 1阶段的I海和MIS 5阶段的III海,但并未发现前人所认为的MIS 3阶段的海侵沉积(前人将此定为“II海”)。MIS 3阶段较低的海面和较浅的渤海海峡地形导致渤海湾西岸地区在该时期并未发生规模较大的海侵。
     (4)渤海湾西岸全新世以来经历了(沼泽)–潮滩–浅海–前三角洲–三角洲前缘–三角洲平原环境演化过程。全新世初期研究区南部处于暴露剥蚀状态,无沉积,全新统与上更新统不整合接触,间断期长达27ka。研究区中部和北部发育湖泊和沼泽环境。这种环境差异可能由南北部地貌差别所致。全新世早期,研究区整体进入潮滩环境。潮间带沉积物厚度约1m,远小于渤海湾2.5m的现代平均潮差可提供的可容空间(accommodation),历时数百至千余年。全新世中期水深增大,研究区进入浅海环境,随着沉积速率的增加,中晚全新世过渡为三角洲沉积体系。
     (5)全新世环境演化记录了渤海湾西岸的海面变化过程。8.5ka cal BP前后全新世海侵到达研究区,当时的相对海面(Relative Sea Level, RSL)位置在–16.7m~–14.7m。8.5~5.6ka cal BP期间,海面上升速率较快,约0.4~0.6cm/a,初期大致对应融水脉冲MWP 1C(Meltwater Pulse 1C)事件。大约6ka cal BP,研究区相对海面在2.5~ 1.8m。总体说来,研究区全新世的相对海面与冰川融化造成的全球eustatic海面(即the ice-equivalent sea level)变化趋势一致。
     (6)研究区全新世沉积速率的变化是沿岸不同河流在不同时期作用的结果,揭示了渤海湾西岸河流输入对沉积环境演化的影响。早全新世至中全新世初期,渤海湾西岸地区整体沉积速率偏低,表明此时段没有明显河流供给。中全新世滦河供给影响渤海湾西岸北部。中全新世晚期,黄河供给影响渤海湾西岸南部。晚全新世黄河和海河先后影响渤海湾西岸中部。
A wealth of information concerning land-ocean interaction was recorded in thewest coast of Bohai Bay. The depositional characteristics and environmental evolutionare constrained by both regional and global variations, thus the muddy coast in westBohai Bay is considered as an ideal area for global change research.
     This thesis is mainly focused on two major aspects as follows. First, three marinebeds are indentified within the 80-m-thick strata, revealled by a number of boreholes,and the transgressive stages are determined. Also, the geological significance of suchthree marine beds that indicate sea level change and tectonic movement are discussed.
     Second, sophisticated subdivision for the Holocene marine bed, preserved muchentire geoenvrionmental information, is carried out in order to distinguish a system ofsubfacies, and reconstruct the Holocene palaeoenvironment in the study area. Impactsof the Holocene transgression and sediment supply on the environmental revolution inthe region are analyzed.
     The analyses of lithology, sediment composition, sedimentary structure, faunalcontent (assemblages of mollusk, benthic foraminifera and ostracoda) as dating ofAMS14C and OSL as well indicate that:
     (1) Three typical marine beds are identified in the 80-m-thick strata. Inascending order from the base, they are interpreted as Marine Bed 3 (M3) deposited inthe late Mid-Pleistocene, Marine Bed 2 (M2) in the Late Pleistocene and Marine Bed1 (M1) in the Holocene, respectively. These beds record three major sea levelhighstands, occurred since the late Mid-Pleistocene. M3, M2 and M1, correspond tothe marine facies in MIS 7, MIS 5 and MIS 1, respectively. Therefore, this thesisconcludes that these marine beds recorded the regional sea level trend in the westcoast of Bohai Bay and responded well to the global change.
     (2) Comparative analysis with other boreholes in the region indicates that thethree marine beds are widely distributed and are comparable well in the west coast ofBohai Bay. Changeable elevation and thickness of the marine beds among differentboreholes suggest that the differential depression movements existed during the LatePleistocene, while the tectonics are relative stablely in the Holocene.
     (3) Our results differ from the previous studies based on the new OSL datingframework: the M1 and M2 in this thesis correspond to the previously concludedmarine bed I, deposited in MIS 1, and marine bed III deposited in MIS 5, respectively.However, there is not such a so-called marine bed II, deposited in the period of MIS 3.The different result indicates that the marine transgression did not reach the study areaduring MIS 3 due to the relative lowstand of sea level at that time and shallowtopography of the Bohai Strait, which separated the sea water from the Yellow Sea tointrude into the Bohai Sea during that period. The previous dating of the marine bed IIneeds to be proven by further dating effort.
     (4) In the entire Holocnene, the study area was through various stages ofenvironmental development from swamp, tidal flat, shallow sea, prodelta, delta frontto delta plain. The south part of the study area, however, was exposed withoutdepositon in the Early Holocene. Thus, there is unconformity between the Holoceneand the underlying Pleistocene sediments with a time gap of 27ka. Nevertheless,swamps developed in the mid to north parts in the study area by the beginning of theHolocene. The different environments may be caused by undulated palaeotopographyfrom the south to the north coast. Overall, tidal flat developed in the Early Holocenewith about 1m sediment only which was obviously thiner than the accommodationspace provided by the mean high tidal range, if we consider that the palaeotidal rangeis the same as the present one. This thesis speculates that such a rather thin tidal layerexperienced a relatively short time (several hundred to over a thousand years only).Then, the sedimentary environment was transformed into shallow sea with the EarlyMid–Holocene, and then, changed into delta regime with increased sedimentation rateuntil the Late Holocene.
     (5) The environmental change in the west coast of Bohai Bay reflects the sealevel change in the Holocene. The Holocene marine transgression reached the studyarea at ca. 8.5ka cal BP with relative sea level at 16.7~ 14.7m. During the period of8.5~5.6ka cal BP, sea level rose with a faster rate of about 0.4~0.6cm/a. Possibly, sucha jump was indicated by MWP 1C event?! The relative sea level was 2.5~ 1.8m atca. 6.0 ka cal BP and basically coincident with the eustatic level (the ice-equivalentsea level) caused by the melting ice at the same time.
     (6) The sedimentation changed with various rates occurred in different periods inthe Holocene responded to different fluvial activities. Such a variety reveals that the sediment supplies impact the sedimentary environment along the west coast of BohaiBay. From the Early Holocene to Early Mid–Holocene, the low sedimentation ratealong the whole west coast presents less impotant fluvial input at that time. Thesediment supplies of Luanhe River were dumped on the north of the west coast ofBohai Bay in the Mid–Holocene, while the Yellow River downloaded its sedimtnes atthe south part of the area in the late Mid–Holocene Finally, during the Late Holocene,both Yellow River and Haihe River emptied to the mid–part of the area.
引文
Banerjee D, Murray A S, Botter-Jensen L, Lang A. Equivalent Dose Estimation Using a SingleAliquot of Polymineral Fine Grains [J]. Radiat. Meas, 2001, 33: 73–94.
    Belis C A, Finsinger W, Ammann B. The Late Glacial-Holocene Transition as Inferred fromOstracod and Pollen Records in the Lago Piccolo Di Avigliana (Northern Italy) [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264: 306–317.
    Benedetti M M, Haws J A, Funk C L, et al. Late Pleistocene Raised Beaches of CoastalEstremadura, Central Portugal [J]. Quaternary Science Reviews, 2009, 28:3428–3447.
    Bennett R H, Faris J R. Ambient Dynamic Pore Pressures in Fine-Grained Submarine Sediments:Mississippi Delta [J]. Applied Ocean Research, 1979, 1(3):115–123.
    Bintanja R, Van de Wal R, Oerlemans J. Modeled Atmospheric Temperature and Global SeaLevels over the Past Million Years [J]. Nature, 2005, 437:125 128.
    Boski T, Moura D, Veiga- Pires C, et al. Postglacial Sea-Level Rise and Sedimentary Response inthe Guadiana Estuary, Portugal/ Spain Border [J]. Sedimentary Geology, 2002, 150: 103–122.
    Chappell J, Omura A, East T, et al. Reconciliation of Late Quaternary Sea Levels Derived fromCoral Terraces at Huon Peninsula with Deep-Sea Oxygen Isotope Records [J]. EarthPlanetary Science Letter, 1996, 141: 227 236.
    Chen Z Y, Stanley D J. Sea-Level on Eastern China’s Yangze Delta [J]. Journal of CoastalResearch,1998, 14(1): 360–366.
    Cronin T M. Paleoclimates: Understanding Climate Change Past and Present [M]. New York,Columbia University Press, 2010: 185–272.
    Coutellier V, Stanley V. Late Quaternary Stratigraphy and Paleogeography of the Eastern NileDelta, Egypt [J]. Marine Geology, 1987, 77: 257–275.
    Davis A M, Aitchison J C, Flood P G, et al. Late Holocene Higher Sea-Level Indicators from theSouth China Coast [J]. Marine Geology, 2000, 171: 1–5.
    Davis Jr R A, Hayes M O. What is a Wave-Dominated Coast? [J]. Developments inSedimentology, 1984, 39: 313–329.
    Fairbanks R G. A 17,000-year Glacio-Eustatic Sea Level Record: Influence of Glacial MeltingRates on the Yonger Dryas Event and Deep Ocean Circulation [J]. Nature, 1989, 342:637–642.
    Fletcher III C H, Van Pelt J E, Brush G S, et al. Tidal Wetland Record of Holocene Sea-LevelMovements and Climate History [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1993, 102: 177–213.
    Folk R J, Ward W C. Brazos River Bar: A Study in a Significance of Grain-size Parameters [J].Journal of Sedimentary Petrology, 1957, 27: 3–26.
    Gehrels R, Long A. Sea Level is not Level: the Case for Approach to Predicting UK Sea-LevelRise [J]. Geography, 2008, 93: 11–16.
    Geng X S. Transgressions and Regressions in the Eastern China since the Late Pleistocene Epoch[J]. Acta Oceanologica Sinica, 1982, 1(2): 234–247.
    Hayward B, Grenfell H, R, Sabaa A T, et al. Foraminifera Evidence of Holocene Subsidence andFault Displacements, Coastal South Otago, New Zealand [J]. Journal of ForaminiferalResearch, 2007, 37(4): 344–359.
    Holligan P M, Deboois H. LOICZ Science Plan [M]. IGBP Report No 25, 1993.
    Horton B P. Sea-Levels, Late Quaternary Mid-Latitudes [J]. Encyclopedia of Quaternary Science,2007: 3064–3072.
    Huang J, Li A C, Wang S M. Sensitive Grain-Size Records of Holocene East Asian SummerMonsoon in Sediments of Northern South China Sea Slope [J]. Quaternary Research, 2011,75: 734–744.
    Hughen K A, Baillie M G L, Bard E, et al. Marine04 Marine Radiocarbon Age Calibration,26–0ka BP [J]. Radiocarbon, 2004, 46: 1059–1086.
    Hughes G R, Kennedy D M. Late Pleistocene Sea-level Oscillations (10-2) Recorded in ShallowCoastal Plain Sediments of the Southern Wanganui Basin, New Zealand [J]. QuaternaryResearch, 2009, 71: 477–489.
    Houghton, J T, Ding Y, Griggs D J, et al. IPCC, 2001: Climate Change 2001: The Scientific Basis.Contribution of Working Group I to the Third Assessment Report of the IntergovernmentalPanel on Climate Change [M]. Cambridge, United Kingdom and New York, NY, USA,Cambridge University Press, 2001.
    Lambeck K., Esat T.M., Potter E-K. Links between Climate and Sea Levels for the Past ThreeMillion Years [J]. Nature, 2002, 419, 199–206.
    Lambeck K, Woodroffe C D, Antonioli F, et al. Paleaoenvironmental Records, GeophysicalModeling, and Reconstruction of Sea-Level Trends and Variability on Centennial and LongerTimescales [C]// Understanding Sea-Level Rise and Variability Oxford,Wiley-Blackwell,2010: 61–121.
    Liu J P, Milliman J D, Gao S, et al. Holocene Development of the Yellow River’s SubaqueousDelta, North Yellow Sea [J]. Marine Geology, 2004, 209: 45–67.
    Liu J, Saito Y, Wang H et al. Stratigraphic Development During the Late Pleistocene and HoloceneOffshore of the Yellow River Delta, Bohai Sea [J]. Journal of Asian Earth Sciences, 2009,36:318–331.
    Martinho C T, Dillenburg S R, Hesp P A. Mid to Late Holocene Evolution of TransgressiveDunefields from Rio Grande do Sol Coast, Southern Brazil [J]. Marine Geology, 2008, 256:49–64.
    Murray A S, Wintle, A G. Luminescence Dating of Quartz Using an Improved Single-AliquotRegenerative-Dose Protocol [J]. Radiat. Meas, 2000, 32: 57–73.
    Murray A S, Wintle, A G. The Single Aliquot Regenerative Dose Protocol: Potential forImprovements in Reliability [J]. Radiat. Meas, 2003, 37: 377–381.
    Murray N, Klaus-Güther B, Barth H, et al. Introduction: European Land-Ocean Interaction Studiesthe ELOISE Thematic Network [J]. Continental Shelf Research, 2001, 21: 1919–1923.
    Namiotko T, Namiotko L, Wysocka A. Distribution of Subfossil Ostracod Assemblages inLacustrine Profundal Sediments of North-Eastern Poland [J]. Revue de Micropaléontologie,2012, 55: 17–27.
    Ocean Studies Board, Commission on Geosciences, Environment and Resources NationalResearch Council, U.S.A. Oceanography in the Next Decade-Building New Partnerships [R].National Academy Press, Washington D.C, 1992:107–202.
    Okazaki H, Kobayashi M, Momohara A, et al. Early Holocene Coastal Environment ChangeInferred from Deposits at Okinoshima Archeological Site, Boso Peninsula, Central Japan [J].Quaternary International, 2011, 230: 87–94.
    Paine J G. Subsidence of the Texas Coast: Inferences from Historical and Late Pleistocene SeaLevels [J]. Tectonophysics, 1993, 222: 445–458.
    Parham P R, Stanley R R, Stephen J C, et al. Quaternary Depositional Patterns and Sea-levelFluctuations, Northeastern North Carolina [J]. Quaternary Research, 2007, 67: 83–99.
    Pedoja k, Shen J W, Kershaw Steve, et al. Coastal Quaternary Morphologies on the NorthernCoast of the South China Sea, China, and Their Implications for Current Tectonic Models: AReview and Preliminary Study [J]. Marine Geology, 2008, 255: 103–117.
    Peltier W R, Fairbanks R G. Global Glacial Ice Volume and Last Glacial Maximum Duration froman Extended Barbados Sea Level Record [J]. Quaternary Science Reviews, 2006, 25,3322–3337.
    Peltier W R. Mechanisms of Relative Sea-Level Change and the Geophysical Response toIce-Water Loading [C]// Sea Surface Studies: A Global View, London, Croom Helm Ltd.,1987: 57–94.
    Pernetta J C, Milliman J D. Global Change (IGBP Report No. 33): Land–Ocean Interactions in theCoastal Zone, Implementation Plan [M]. Stock holm: IGBP, 1995.
    Qi J, Yang Q. Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay BasinProvince, China [J]. Marine and Petroleum Geology, 2010, 27: 757–771.
    Rhodes E.J., Bronk Ramsey C., Outram Z. et al. Bayesian Methods Applied to the Interpretationof Multiple OSL Dates: High Precision Sediment Ages from Old Scatness Broch Excavations,Shetland Isles [J]. Quaternary Science Reviews, 2003, 22: 1231–1244.
    Rolett B V, Zheng Z, Yue Y F. Holocene Sea-Level Change and the Emergence of NeolithicSeafaring in the Fuzhou Basin (Fujian, China) [J]. Quaternary Science Reviews, 2011, 30:788–797.
    Saito Y, Wei He-long, Zhou Yong-qing, et al. Delta Progradation and Chenier Formation in theHuanghe (Yellow River) Delta, China [J]. Journal of Asian Earth Science, 2000, 18:489 497.
    Shackleton N J. The Deep-Sea Sediment Record of Climate Variability [J]. Prog. Oceanog, 1982,11: 199–218.
    Shackleton N J, Opdyke N D. Oxygen Isotope and Palaeomagnetic Stratigraphy of EquatorialPacific Core V28-238: Oxygen Isotope Temperature and Ice Volumes on a 105 and 106 YearScale [J]. Quaternary Research, 1973, 3: 39–55.
    Shackleton N J. Oxygen Isotope, Ice volume and Sea level [J]. Quaternary Science Review, 1987,6: 183–190.
    Shepard F. Nomenclature Based on Sand-Silt-Clay Ratios [J]. Journal of Sedimentary Petrology,1954, 24: 151–158.
    Short M A, Huntley D J. Infrared Stimulation of Quartz. Ancient-TL, 1992, 10: 19–21.
    Shennan I. Late Quaternary Sea-level Changes and Palaeoseismology of the Bering Glacer Region,Alaska [J]. Quaternary Science Reviews, 2009, 28:1762–1773.
    Solomon S, Qin D H, Manning M, et al. IPCC, 2007: Climate Change 2007: The Physical ScienceBasis. Contribution of Working Group I to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change [M]. Cambridge, United Kingdom and NewYork, NY, USA, Cambridge University Press, 2007.
    Southon J, Kashgarian M, Fontugne, M, et al. Marine Reservoir Corrections for the Indian Oceanand Southeast Asia. Radiocarbon [J], 2002, 44:167–180.
    Stea R R, Boyd R, Fader G B J, et al. Morphology and Seismic Stratigraphy of the InnerContinental Shelf off Nova Scotia, Canada: Evidence for a–65 m Lowstand between 11,650and 11,25014C yr B.P. [J]. Marine Geology, 1994, 117: 135–154.
    Talma A S, Vogel J C. A Simplified Approach to Calibrating14C Dates [J]. Radiocarbon, 1993, 35:317–322.
    Trenhaile A S. Modeling Cohesive Clay Coast Evolution and Response to Climate Change. [J].Marne Geology, 2010, 277: 11–20.
    Van de Plassche O. Mid-Holocene Sea-level Change on the Eastern Shore of Virginia [J]. MarineGeology, 1990, 91: 149–154.
    Wang Hong. Palaeoenvironment of Holocene Chenier and Oyster Reefs in the Bohai Bay (China)[D]. Brussel, Vrije Universiteit Brussel, 1994.
    Wang H, Strydonck M V. Chronology of Holocene Cheniers and Oyster Reefs on the Coast ofBohai Bay [J]. Quaternary Research, 1997, 47: 192–205.
    Wang Y, Ke X K. Cheniers on the East Coastal Plain of China [J]. Marine Geology, 1989, 90:321–335.
    Wintle A G. Luminescence Dating: Laboratory Procedures and Protocols [J]. RadiationMeasuremetns, 1997, 27: 769–817.
    Woodroffe S A, Horton B P. Holocene Sea-Level Changes in the Indo-Pacific [J]. Journal of AsianEarth Sciences, 2005, 25: 29–43.
    Woodroffe S A. Testing Models of Mid to Late Holocene Sea-level Change, North Queensland,Australia [J]. Quaternary Science Reviews, 2009, 28:2474–2488.
    Xue Chun-ting. Historical Changes in the Yellow River Delta, China [J]. Marine Geology, 1993,113:321 329.
    Yim W W–S, Huang G, Fontugne M R, et al. Postglacial Sea-Level Changes in the Northern SouthChina Sea Continental Shelf: Evidence for a Post-8200 Calendar yr BP Meltwater Pulse [J].Quaternary International, 2006, 145–146: 55–67.
    Yong B C, Dalrymple R W, Chun S S, et al Transgressive Sedimentation and StratigraphicEvolution of a Wave-dominated Macrotidal Cosat, Western Korea [J]. Marine Geology, 2006,235: 35–48.
    Zhao X T. Cheniers in China: An Overvierw [J]. Marine Geology, 1989, 90: 311–335.
    Zong Y Q. Mid-Holocene Sea-Level Highstand along the Southeast Coast of China [J].Quaternary International, 2004, 117: 55–67.
    安芷生,魏兰英,卢演俦,等.顺5孔的磁性地层学和早松山世的北京海侵[J].地球化学,1979, (4): 343–346.
    陈灵芝,钱迎倩.生物多样性科学前沿[J].生态学报,1997, 17(6): 565–572.
    陈文文,刘东生,邢军辉.渤海湾北部底栖有孔虫的组合分布及沉积环境[J].内蒙古石油化工,2008, 23: 135–138.
    陈宇坤,李振海,邵永新,等.天津地区第四纪年代地层剖面研究[J].地震地质,2008, 30(2):483–993.
    程广芬,刘东升,武心尧,等.渤海中、南部表层沉积物中有孔虫的初步研究[J].青岛海洋大学学报,1991, 21(1): 109–121.
    大港油田地质研究所,海洋石油勘探局研究院,同济大学海洋地质研究所.滦河冲积扇–三角洲沉积体系[M].北京:地质出版社,1985.
    范昌福,李建芬,王宏,等.渤海湾西北岸大吴庄牡蛎礁测年与古环境变化[J].地质调查与研究,2005, 28(2): 124–129.
    冯文科,薛万俊,杨达源.南海北部晚第四纪地质环境[M].广东:广东科技出版社,1987.
    高善明.全新世滦河三角洲相和沉积模式[J].地理学报,1981, 36(3): 303–314.
    郭兴伟,施小斌,丘学林,等.渤海湾盆地新生代沉降特征及其动力学机制探讨[J].大地构造与成矿学,2007, 31(3): 273–280.
    何起祥,刘守全,周永青,等.中国海岸带的地质特征与综合治理[C]//中国地质调查局,海岸带地质环境与城市发展论文集.北京,中国地质大学出版社,2005: 36–42.
    黄庆福,苍树溪,张宏才,等.关于渤海湾西岸自10万年以来的地层划分问题[J].地层学杂志,1981, 5(3): 231–239.
    黄盛璋.历史时期的水系变迁,海河[M].中国科学院《中国自然地理》编辑委员会.中国自然地理,历史自然地理.北京:科学出版社,1982, 38–86.
    姜在兴.沉积学[M].北京,石油工业出版社,2003.
    雷坤,孟伟,郑丙辉,等.渤海湾西岸潮间带沉积物粒度分布特征[J].海洋通报,2006, 25(1):54–61.
    李从先,陈刚,王利.滦河废弃三角洲和砂坝—泻湖沉积体系[J].沉积学报,1983, 1(2): 60–72.
    李凤林.渤海湾西岸环境地质图集.2008.
    李凤林,王宏,王云生,等.渤海湾滨海平原全新世层型地层划分与建组[J].地质通报, 2005,24(2): 124–135.
    李建芬.渤海湾西部现代有孔虫种群分布特征及对地质环境的记录[D].北京,中国地质大学,2010.
    李建芬,王宏,李凤林,等.渤海湾牡蛎礁平原中部兴坨剖面全新世地质环境变迁[J].地质通报,2004, 23(2): 169–176.
    李建芬,王宏,夏威岚,等.渤海湾西岸210Pb1exc、37Cs测年与现代沉积速率[J].地质调查与研究,2003, 26(2): 114–128.
    李三忠,索艳慧,周立宠,等.华北克拉通内部的拉分盆地:渤海湾盆地黄骅坳陷结构构造与演化[J].吉林大学学报(地球科学版),2011, 41(5): 1362 1379.
    李淑鸾.辽东湾表层沉积中有孔虫介形虫研究[J].北京大学学报(自然科学版),1994, 30(2):181–193.
    李淑鸾.珠江口底质中有孔虫埋葬群的分布规律[J].海洋地质与第四纪地质,1985, 5(2):83–101.
    林防,王建中,李建芬,等.渤海莱州湾第四纪晚期以来微体化石组合特征和沉积环境演化[J].地质通报,2005, 24(9): 879–884.
    刘东生,丁仲礼,郭正堂.国际南北两半球古气候计划简介[J].地球科学进展,1995, 10(5):483–487.
    刘恩峰,张祖陆,沈吉.莱州湾南岸滨海平原晚更新世以来古环境演变的孢粉记录[J].古地理学报,2004, 6(1): 78–86.
    刘欣,高抒.北黄海西部晚第四纪浅层地震剖面层序分析[J].海洋地质与第四纪地质,2005,25(3): 61–68.
    刘振夏,Berne Serge,L′ATALANTE科学考察组.中更新世以来东海陆架的古环境[J].海洋地质与第四纪地质,1999, 19(2):1 10.
    孟伟,雷坤,郑丙辉,等.渤海湾西岸潮间带现代沉积速率研究[J].海洋学报,2005, 27(3):67–72.
    任美锷.黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测[J].地理学报,1993, 48(5): 386–393.
    商志文.天津海域表层沉积硅藻分布特征及其全新世古环境的指示意义[D].北京,中国地质科学院,2011.
    沈明洁,谢志仁,朱诚.中国东部全新世以来海平面波动特征探讨.地球科学进展,2002,17(6):886–894.
    施林峰,翟子梅,王强,等.从天津CQJ4孔探讨中国东部海侵层的年代问题[J].地质论评,2009, 55(5): 375–384.
    苏盛伟,商志文,王福,等.渤海湾全新世贝壳堤:时空分布和海面变化标志点[J].地质通报,2011, 30(9): 1382–1395.
    孙成权,张志强.国际全球变化研究计划综览[J].地球科学进展,1994, 9(3): 53–70.
    孙廷智,李波.渤海西部近海全新世孢粉组合及古气候、古植被的演变[J].海洋地质通报,1992, 11: 32 40.
    汤良杰,万桂梅,周心怀,等.渤海盆地新生代构造演化特征[J].高校地质学报,2008, 14(2):191–198.
    天津市勘察院,中国地质调查局天津地质调查中心,中国地震局,等.天津滨海新区软土分布规律及土质特性研究报告[R].2011, 20–27.
    天津市地质矿产局.天津市区域地质志北京[M].北京,地质出版社,1992.田立柱,王东,裴艳东,等.天津滨海新区中全新世以来地形地貌演化[J].地质调查与研究,2011, 34 (1): 53–62.
    同济大学海洋地质系微古组.南黄海西北部底质中有孔虫、介形虫分布规律及其地质意义[M].同济大学科技情报组编印,1978.
    Tooley M J,赵松龄译.中国海平面变化[J].海洋科学,1987, (2): 67–69.
    王福,裴艳东,刘志广,等.137Cs示踪的渤海湾黄骅港两侧海区的沉积特征[J].地质通报,2008, 27(7): 1054–1059.
    王福,钟新宝,康慧,等.天津市及其沿海地区地表高程变化现状及趋势[J].地质通报,2005,24(1): 87–91.
    王海峰,裴艳东,刘会敏,等.渤海湾全新世牡蛎礁:时空分布和海面变化标志点[J].地质通报,2011, 30(9): 1396–1404.
    王宏.渤海湾全新世贝壳堤和特蛎礁的古环境[J].第四纪研究,1996, (1): 71–79.
    王宏,陈永胜,田立柱,等.渤海湾全新世贝壳堤与牡蛎礁:古气候与海面变化[J].地质通报,2011, 30(9): 1405–1411.
    王宏,范昌福,李建芬,等.渤海湾西北岸全新世牡蛎礁研究概述[J].地质通报,2006, 25(3):315–331.
    王乃文,何希贤.北京平原地区钙质超微化石的发现及其意义[J].科学通报, 1982, 27(13):805–805.
    汪品先,闵秋宝,卞云华,等.我国东部第四纪海侵地层的初步研究[J].地质学报,1981(1):1–13.
    汪品先,章纪军,赵泉鸿,等.东海底质中的有孔虫介形虫[M].海洋出版社,1988.
    王强,李凤林.渤海湾西岸第四纪海陆变迁[J].海洋地质与第四纪地质,1983, 3(4): 83–89.
    王强,李凤林.对渤海西、南岸平原第四纪海侵命名的讨论[J].海洋学报,1986, 8(1):72–82.
    王强,田国强.中国东部晚第四纪海侵的新构造背景[J].地质力学学报,1999, 5(4): 41–48.
    王强,张玉发,袁桂邦,等.MIS 3阶段以来河北黄骅北部地区海侵与气候期对比[J].第四纪研究,2008, 28(1): 79 95.
    王若柏,周伟,李凤林,等.天津地区构造沉降及控沉远景问题[J].水文地质工程地质,2003,(5): 12–17.
    王兆荣,张汉昌,黄培华.渤海南岸海平面变化的研究[J].中国科学技术大学学报,1995, 25(3):342–345.
    肖国桥,郭正堂,陈宇坤,等.渤海湾西岸BZ1钻孔的磁性地层学研究[J].第四纪研究,2008, 28(5): 909 916.
    谢志仁.海面变化与环境变迁:海面—地面系统和海–气–冰系统初探[M].贵阳:贵州科技出版社,1995.
    徐方建,李安春,肖尚斌,等.末次冰消期以来东海内陆架古环境演化[J].沉积学报,2009,27(1): 118–127.
    胥勤勉,袁桂邦,张金起,等.渤海湾沿岸晚第四纪地层划分及地质意义[J].地质学报,2011,85(8): 1352 1367.
    薛春汀.7000年来渤海西岸、南岸海岸线变迁[J].地理科学,2009, 29 (2): 217–222.
    薛春汀,李绍全,周永青.西汉末–北宋黄河三角洲(公元11~1099年)的沉积记录[J].沉积学报,2008, 26 (5): 804–812.
    薛春汀,周永青,朱雄华.晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J].海洋学报,2004, 26 (1): 48–61.
    阎玉忠,王宏,李凤林,等.渤海湾西岸BQ1孔揭示的沉积环境与海平面波动[J].地质通报,2006, 25(3): 357–382.
    阎玉忠,王宏,李凤林,等.渤海湾西岸晚更新世沉积的差异性特征[J].第四纪研究,2006,26(3): 321–326.
    杨子庚,李幼军,丁秋玲,等.试论河北平原东部第四纪地质几个基本问题[J].地质学报,1979, (40): 263–281.
    姚政权,郭正堂,陈宇坤,等.渤海湾海陆交互相沉积的磁性地层学[J].海洋地质与第四纪地质,2006, 26(1): 9–15.
    于洪军.晚更新世末期黄、渤海陆架环境的新探讨[J].海洋湖沼通报,1995, 1: 26–32.
    袁又申,毕福志.广东达濠半岛近代高海滩岩的研究[J].现代地质,1988, 2(2): 215–225.
    张锦文,王喜亭,王惠.未来中国沿海海平面上升趋势估计[J].测绘通报,2001, (4): 4–5.
    赵保仁,庄国文,曹德明,等.渤海的环流、潮余流及其对沉积物的分布和影响[J].海洋与湖沼,1995, 26(5): 466–473.
    赵长荣,Hus J,阎玉忠,等.渤海湾西岸湾顶更新世–全新世年代地层序列与地磁极漂移[J].地质调查与研究,2003, 26(3): 183–192.
    赵华,卢演俦,张金起,等.天津大直沽晚第四纪沉积物红外释光测年及环境变迁年代学[J].地质科学,2002, 37(2): 174–183.
    赵松龄,于洪军.晚更新世末期黄、渤海陆架沙漠化环境的形成[J].第四纪研究,1996, 1:42–47.
    赵松龄,张宏才.渤海地区近20万年以来的海面变化[J].海洋科学,1985, 9(3): 10–14.
    赵希涛,耿秀山,张景文,等.中国东部20000年来的海平面变化[J].海洋学报,1979,1(2):269–281.
    郑守仪,郑执中,王喜堂,等.山东省打渔张灌区第四纪有孔虫及其沉积环境的初步探讨[J].海洋科学集刊,1978, 13: 16–65.
    钟新宝,康慧.渤海湾海岸带近现代地质环境变化[J].第四纪研究,2002, 22(2): 131–137.
    中国海湾志编纂委员会.中国海湾志(第十四分册)[M].北京,海洋出版社,1998.
    中国科学院海洋研究所海洋地质研究室.渤海地质[M].北京,科学出版社,1985.
    朱诚,谢志仁,申洪源,等.全球变化科学导论(第二版)[M].南京,南京大学出版社,2006.
    朱玉荣.全新世渤、黄、东海陆架泥沙输运演变过程模拟研究[J].黄渤海海洋,2001, 19(2):25–38.
    张宗祜,邵时雄,陈云,等.中国北方晚更新世以来地质环境演化与未来生存环境变化趋势预测[M].地质出版社,北京,1999.
    庄振业,许卫东,刘东生,等.渤海南部S3孔晚第四纪海相地层的划分及环境演变[J].海洋地质与第四纪地质,1999, 19(2): 27–35.
    邹逸麟,谭其骧,史念海.历史时期水系变迁,黄河[M].中国科学院《中国自然地理》编辑委员会.中国自然地理,历史自然地理.北京:科学出版社,1982, 38–86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700