用户名: 密码: 验证码:
改性超滤膜去除水中天然有机物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然有机物(Natural Organic Matter,NOM)广泛存在于地表和地下水中,是多种消毒副产物的前驱物。如何有效地去除水中NOM对于提高给水水质、满足日益严格的饮用水标准具有重要意义。超滤(Ultrafiltration,UF)能有效去除水中的悬浮颗粒、胶体杂质、微生物、细菌病毒和一定量的可溶性有机物,是替代传统饮用水处理技术的理想选择,目前正在饮用水处理领域得到广泛应用。然而,由于超滤膜的截留分子量较大,导致它不能有效地去除水中的NOM。同时,膜污染问题是制约其广泛应用的另一个原因。
     本研究通过对再生纤维素膜(Regenerated Cellulose,RC)进行荷电改性,比较中性膜和荷电超滤膜对水中NOM的去除率和膜通量的衰减情况。考察膜改性的荷电量、截留分子量、膜材料和NOM的不同组分对荷电超滤过程的影响。此外,还研究了溶液pH值、离子强度和代表水体硬度的钙离子浓度等溶液环境因素对荷电超滤行为的影响。最后进一步比较了荷电超滤膜与纳滤膜对水中NOM的去除效果。
     为了获得更加耐用、抗污染的超滤膜,本研究还通过添加聚乙二醇(Polyethylene Glycol,PEG)、氯化锂(LiCl)和二氧化钛(TiO_2)等添加剂,制备并表征了改性后的聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)超滤膜。在死端过滤和错流过滤的实验条件下,研究了不同种类的改性PVDF超滤膜对水中NOM的去除率和膜通量的衰减情况。同时,重点考察了TiO_2改性后的PVDF超滤膜的光催化性能。
     研究结果表明,对中性RC膜进行荷电改性,在传统筛分机理和静电相互作用力的共同作用下,可以有效提高截留率,同时减轻膜污染。对比实验结果表明,在去除水中NOM的应用环境中,荷电超滤膜具备替代纳滤膜的技术可行性。膜的截留分子量、改性后的荷电量、膜材料的性质以及NOM组分的亲疏水性对荷电超滤过程有着重要影响。此外,溶液环境因素同样影响荷电超滤膜的性能。尽管溶液环境因素对中性膜和荷电超滤膜的截留率和膜通量衰减的影响幅度不同,但趋势基本一致。水体的pH值通过质子化作用影响NOM分子和荷电膜表面的荷电量。水体的离子强度影响NOM分子的物理化学性质,改变NOM分子的形状以及膜表面的静电屏蔽作用力。代表水体硬度的钙离子浓度影响膜与NOM分子的静电相互作用力的大小以及膜表面滤饼层的致密/疏松程度。所以,在应用超滤膜去除水中天然有机物的过程中,不仅要考察膜本身的性质(如截留分子量、荷电量、膜材料的亲疏水性),还要考虑溶液环境等诸多影响因素,以便在提高截留率的同时,减轻膜污染。
     在研究具有光催化性能的TiO_2改性PVDF超滤膜的制备与改性实验中,研究结果表明,将TiO_2纳米颗粒按适当比例添加到PVDF膜中,可以有效提高截留率,同时减轻膜污染。TiO_2纳米颗粒的添加可以改善PVDF膜的亲水性,同时提高截留率。TiO_2改性PVDF膜在光催化条件下还具有良好的自清洁性能。光催化条件下的TiO_2改性PVDF膜在错流过滤实验中,污染物在膜表面的沉积与污染物的光催化降解这两种过程可能会达到一种平衡状态。对于TiO_2光催化膜,UV辐照有望成为一种新的膜清洗方法。与传统的物理化学清洗方法相比,这种新型膜清洗方法具有节能环保、高效彻底以及无二次污染等优点,技术应用前景广阔。
Natural organic matter (NOM) is commonly found in surface and ground waterand considered to react with the major disinfectants to produce a host of disinfectionby-products (DBPs). Therefore, the removal of NOM effectively is of significantimportance in meeting the stringent DBPs regulations and providing safe drinkingwater. Ultrafiltration (UF) allows the removal of particle, colloids, microorganism,variety of water born viruses, and certain amount of the dissolved organic matter. Ithas proved to be one of the best alternatives replacing conventional drinking watertreatment technologies and is increasingly used in drinking water treatment. However,UF is not very effectively to remove NOM due to the comparatively larger pore sizecompared with the size of NOM. Membrane fouling is another factor which restrictsits widespread application.
     In this study, the effect of charge modification of regenerated cellulose (RC)membrane was studied by discussing NOM removal and flux decline with neutral andnegatively charged version of RC membranes. Effects of the membrane charge,molecular weight cut-off (MWCO), membrane material and NOM fractions on NOMremoval and flux decline with charged UF membranes were also investigated. Inaddition, solution environment, including pH, ionic strength and calcium ionconcentration, affecting NOM removal and flux decline were evaluated. Furthermore,the performance of charge modified UF membrane and nanofiltration (NF) membraneon NOM removal and flux decline was compared.
     In order to get UF membranes with better durability and anti-fouling properties,the modified polyvinylidene fluoride (PVDF) membranes were prepared andcharacterized by adding different amounts of polyethylene glycol (PEG), LiCl andTiO_2particles. The performances of different kinds of modified PVDF membranes were investigated by discussing NOM removal and flux decline in both dead-end andcross-flow filtration experiments. The effect of photocatalytic degradation onTiO_2-doped PVDF membranes was also evaluated.
     Results indicated that the appropriate charge modification on the neutral RCmembrane could be an effective way for better removal of NOM and reduction of themembrane fouling due to the electrostatic interaction with the combination effect ofmembrane pore size. Charge modified RC membrane could be potentially used toreplace NF membrane on the aspect of NOM removal. The membrane charge,membrane MWCO,membrane material and NOM fractions had some importanteffects on charged UF process. Besides, the extent of flux decline and removal on thecharged RC membrane was also found to be strongly governed by solutionenvironment. Though the degrees of the effects were not the same, the trends of theeffect of solution environment on the NOM removal and fouling were same on bothneutral and negatively charged membrane. The pH value would affect the net chargeof membrane and NOM molecules through the protonation effect. The ionic strengthwould affect the physical and chemical properties of NOM molecules and theelectrostatic shielding on membrane surface. The effect of calcium concentration onNOM removal and flux decline was due to both the electrostatic interaction and thepermeability of the cake layer formed on the membrane. In the application of UFprocess for NOM removal, one has to consider not only the properties of membraneitself (including MWCO, membrane charge, hydrophobicity and material), but alsothe solution environment, to achieve better NOM removal rate and less membranefouling.
     Results also indicated that the appropriate TiO_2-doped modification on PVDFmembrane could be an effective way for better removal of NOM and reduction ofmembrane fouling at the same time. The addition of TiO_2nanoparticles can improvethe hydrophilicity of PVDF membrane and increase the removal rate of testingmolecule pepsin. Compared with PVDF membrane, TiO_2-doped PVDF membraneincreases NOM removal and at the same time decreases the flux decline, which is due to smaller membrane pores, and more hydrophilic and smoother membrane surface.TiO_2-doped PVDF membrane has self-cleaning ability offered by photocatalysis. Asto TiO_2-doped PVDF membrane, an equilibrium might be reached between thefoulants deposited on the membrane surface and photocatalytic degradation of thefoulants during cross-flow UF coupled with photocatalysis. UV irradiation might be anew kind of membrane cleaning method for TiO_2photocatalytic membranes.Compared with conventional physical and chemical cleaning methods, this novelmembrane cleaning method provides advantages of energy saving, high efficiency andno second-pollution, which indicates great potential for applications.
引文
[1] Xia S., Nan J., Liu R., et al., Study of drinking water treatment by ultrafiltration of surfacewater and its application to China [J]. Desalination,2004,170(1):41-47.
    [2] Maartens A., Swart P., Jacobs E., Humic membrane foulants in natural brown water:characterization and removal [J]. Desalination,1998,115(3):215-227.
    [3] M ntt ri M., Puro L., Nuortila-Jokinen J., et al., Fouling effects of polysaccharides andhumic acid in nanofiltration [J]. J. Membr. Sci.,2000,165(1):1-17.
    [4] Zularisam A., Ismail A., Salim R., Behaviours of natural organic matter in membranefiltration for surface water treatment—a review [J]. Desalination,2006,194(1):211-231.
    [5] Choi Y. Critical flux, resistance, and removal of contaminants in ultrafiltration (UF) ofnatural organic materials [D]. The Pennsylvania State University2003.
    [6] Lin C.F., Lin T.Y., Hao O.J., Effects of humic substance characteristics on UF performance[J]. Water Res.,2000,34(4):1097-1106.
    [7] Nilson J.A., DiGiano F.A., Influence of NOM composition on nanofiltration [J].Journal-American Water Works Association,1996,88(5):53-66.
    [8]郭瑾,马军.天然有机物提取及表征技术近期发展动态[J].现代化工,2007,27(2):12-16.
    [9] Enserink E., Maas-Diepeveen J., Van Leeuwen C., Combined effects of metals; anecotoxicological evaluation [J]. Water Res.,1991,25(6):679-687.
    [10] Stevenson F.J., Humus Chemistry. Wiley, New York,1982.
    [11]刘振中,宋刚福.水源水中腐殖酸的危害及去除方法[J].江西科学,2006,24(4):247-52.
    [12]张显球,张林生,吕锡武.纳滤对水中有机微污染的去除效果与应用[J].水处理技术,2005,31(2):62-65.
    [13] Volk C., Bell K., Ibrahim E., et al., Impact of enhanced and optimized coagulation onremoval of organic matter and its biodegradable fraction in drinking water [J]. Water Res.,2000,34(12):3247-3257.
    [14]刘洋,崔云霞.两级臭氧-活性炭组合工艺净化太湖水中试研究[J].环境科技,2011,24(4):39-41.
    [15]程爱华,郭璇,李富生.生物活性炭去除水中天然有机物的性能研究[J].水处理技术,2011,37(10):83-85.
    [16]陈治安,刘通,尹华升等.超滤在饮用水处理中的应用和研究进展[J].工业用水与废水,2006,37(3):7-10.
    [17]王晓昌,王锦.混凝-超滤去除腐殖酸的试验研究[J].中国给水排水,2002,18(3):18-22.
    [18] Tomaszewska M., Mozia S., Removal of organic matter from water by PAC/UF system [J].Water Res.,2002,36(16):4137-4143.
    [19] Tsujimoto W., Kimura H., Izu T., et al., Membrane filtration and pre-treatment by GAC [J].Desalination,1998,119(1-3):323-326.
    [20] Yan M., Wang D., Shi B., et al., Effect of pre-ozonation on optimized coagulation of atypical North-China source water [J]. Chemosphere,2007,69(11):1695-1702.
    [21] Cho J., Amy G., Pellegrino J., Membrane filtration of natural organic matter: initialcomparison of rejection and flux decline characteristics with ultrafiltration andnanofiltration membranes [J]. Water Res.,1999,33(11):2517-2526.
    [22]楼雅青,肖凯军,郭远.荷电膜的研究及其应用[J].净水技术,2003,22(4):4-6.
    [23]汪勇,范云双,杜启云.荷正电膜的研究[J].天津工业大学学报,2001,20(1):79-83.
    [24]汪锰,王湛,李政雄.膜材料及其制备.北京:化学工业出版社,2003.
    [25]李娜,刘忠洲,续曙光.再生纤维素分离膜制备方法研究进展[J].膜科学与技术,2001,21(6):27-32.
    [26]冯晶.有机物特性对超滤膜通量的影响[硕士学位论文].同济大学,2007.
    [27]王湛.膜分离技术基础.北京:化学工业出版社,2000:1-18,173-200.
    [28]郝继华.低压季胺化聚砜反渗透膜.水处理技术,1987,13(5):255-59.
    [29]高丛颐.荷电的反渗透膜和超滤膜.水处理技术,1987,13(5):140-45.
    [30] Teixeira M.R., Rosa M.J., Nystr m M., The role of membrane charge on nanofiltrationperformance [J]. J. Membr. Sci.,2005,265(1):160-166.
    [31] Burns D.B., Zydney A.L., Buffer effects on the zeta potential of ultrafiltration membranes[J]. J. Membr. Sci.,2000,172(1):39-48.
    [32] Hunter R.J. Zeta potential in colloid science: principles and applications [M]. Academicpress London,1981.
    [33] Nakao S., Osada H., Kurata H., et al., Separation of proteins by charged ultrafiltrationmembranes [J]. Desalination,1988,70(1-3):191-205.
    [34]徐铜文,徐绪国,杨伟华.膜法浓缩明胶蛋白水溶液[J].膜科学与技术,2000,20(3):50-53.
    [35]夏冰,董声华,金秀龙.荷电纳滤膜的研究[J].水处理技术,1992,2.
    [36]鲁学仁,高从堦,鲍志国.高分子聚电解质膜处理阴极电泳漆[J].水处理技术,1988,1:39-43.
    [37]刘淑英,施印华,关玲玲.聚砜类超滤膜在分离造纸废液时的应用[J].中国造纸,1989,2.
    [38] Nakatsuka S., Nakate I., Miyano T., Drinking water treatment by using ultrafiltration hollowfiber membranes [J]. Desalination,1996,106(1-3):55-61..
    [39] Jung C.W., Son H.J., Kang L.S., Effects of membrane material and pretreatment coagulationon membrane fouling: fouling mechanism and NOM removal [J]. Desalination,2006,197(1):154-164.
    [40] Jucker C., Clark M.M., Adsorption of aquatic humic substances on hydrophobicultrafiltration membranes [J]. J. Membr. Sci.,1994,9737-52.
    [41]谭绍早,陈中豪.荷电超滤膜的结构性能和应用[J].化工新型材料,1999,28(1):28-30.
    [42] Nabe A., Staude E., Belfort G., Surface modification of polysulfone ultrafiltrationmembranes and fouling by BSA solutions [J]. J. Membr. Sci.,1997,133(1):57-72.
    [43] Shao J., Zydney A.L., Retention of small charged impurities during ultrafiltration,Biotechnol. Bioeng.,2004,87:7-13.
    [44] Shim Y., Lee H.J., Lee S., et al., Effects of natural organic matter and ionic species onmembrane surface charge [J]. Environ. Sci. Technol.,2002,36(17):3864-3871.
    [45] Yuan W. Fouling of humic acid during ultrafiltration and microfiltration for water treatment
    [D]. Ph.D. Dissertation, Delaware: University of Delaware2001.
    [46] Jermann D., Pronk W., Meylan S., et al., Interplay of different NOM fouling mechanismsduring ultrafiltration for drinking water production [J]. Water Res.,2007,41(8):1713-1722.
    [47] Bob M., Walker H.W., Enhanced adsorption of natural organic matter on calcium carbonateparticles through surface charge modification [J]. Colloids Surf. Physicochem. Eng. Aspects,2001,191(1-2):17-25.
    [48] Zularisam A.W., Ismail A.F., Salim M.R., et al., The effects of natural organic matter(NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes[J]. Desalination, Jun25,2007,212(1-3):191-208.
    [49] Zularisam A.W., Ismail A.F., Salim M., et al., Fabrication, fouling and foulant analyses ofasymmetric polysulfone (PSF) ultrafiltration membrane fouled with natural organic matter(NOM) source waters [J]. J. Membr. Sci.,2007,299(1):97-113.
    [50] Carroll T., King S., Gray S. R., et al., The fouling of microfiltration membranes by NOMafter coagulation treatment [J]. Water Res.,2000,34(11):2861-2868.
    [51] Fan L., Harris J. L., Roddick F. A., et al., Influence of the characteristics of natural organicmatter on the fouling of microfiltration membranes [J]. Water Res.,2001,35(18):4455-4463.
    [52] Cho J., Amy G., Pellegrino J., Membrane filtration of natural organic matter: comparison offlux decline, NOM rejection, and foulants during filtration with three UF membranes [J].Desalination,2000,127(3):283-298.
    [53]董秉直,冯晶.有机物对UF膜过滤通量的影响[J].环境科学学报,2007,27(5):758-762.
    [54] Sch fer A., Schwicker U., Fischer M., et al., Microfiltration of colloids and natural organicmatter [J]. J. Membr. Sci.,2000,171(2):151-172.
    [55] Combe C., Molis E., Lucas P., et al., The effect of CA membrane properties on adsorptivefouling by humic acid [J]. J. Membr. Sci.,1999,154(1):73-87.
    [56] Wu L., Sun J., Wang Q., Poly (vinylidene fluoride)/polyethersulfone blend membranes:Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on theirproperties and morphology [J]. J. Membr. Sci.,2006,285(1-2):290-298.
    [57] Oh S.J., Kim N., Lee Y. T., Preparation and characterization of PVDF/TiO2organic-inorganic composite membranes for fouling resistance improvement [J]. J. Membr.Sci.,2009,345(1-2):13-20.
    [58] Cao X., Ma J., Shi X., et al., Effect of TiO2nanoparticle size on the performance of PVDFmembrane [J]. Appl. Surf. Sci.,2006,253(4):2003-2010.
    [59] Luo M.L., Tang W., Zhao J.Q., et al., Hydrophilic modification of poly(ether sulfone) usedTiO2nanoparticles by a sol-gel process [J]. J. Mater. Process. Technol.,2006,172(3):431-436.
    [60] Yang Y., Zhang H., Wang P., et al., The influence of nano-sized TiO2fillers on themorphologies and properties of PSF UF membrane [J]. J. Membr. Sci.,2007,288(1-2):231-238.
    [61] Zhang C.H., Yang F.L., Wang W.J., et al., Preparation and characterization of hydrophilicmodification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol)[J].Sep. Purif. Technol.,2008,61(3):276-286.
    [62] Nunes S.P., Peinemann K.V., Ultrafiltration membranes from PVDF/PMMA blends [J]. J.Membr. Sci.,1992,73(1):25-35.
    [63] Maiti P., Nandi A.K., Influence of chain structure on the crystallization mechanism ofpoly(vinylidene fluoride)/poly(methyl acrylate) blends: evidence of chain extension due toblending [J]. Polymer,1998,39(2):413-421.
    [64] Vargo T.G., Gardella Jr J.A., Meyer A.E., et al., Hydrogen/liquid vapor radio frequencyglow discharge plasma oxidation/hydrolysis of expanded poly (tetrafluoroethylene)(ePTFE)and poly (vinylidene fluoride)(PVDF) surfaces [J]. J. Polym. Sci., Part A: Polym. Chem.,1991,29(4):555-570.
    [65] Duca M.D., Plosceanu C.L., Pop T., Surface modifications of polyvinylidene fluoride(PVDF) under rf Ar plasma [J]. Polym. Degrad. Stab.,1998,61(1):65-72.
    [66] Jokela K., Galambosi S., Karjalainen M., et al. Temperature-Dependent X-Ray ScatteringStudies on Radiation Grafted and Sulfonated Poly (Vinylidene Flouride)[A]. In2000;481-486.
    [67] Wang P., Tan K., Kang E., et al., Plasma-induced immobilization of poly (ethylene glycol)onto poly (vinylidene fluoride) microporous membrane [J]. J. Membr. Sci.,2002,195(1):103-114.
    [68] Iwata H., Matsuda T., Preparation and properties of novel environment-sensitive membranesprepared by graft polymerization onto a porous membrane [J]. J. Membr. Sci.,1988,38(2):185-199.
    [69] Han S., Koh S.K., Yoon K.H., Induced Surface Reactions and Chemical States: AKiloelectronvolt Ion Irradiation on Simple Linear Chain Structure Polymers in an OEnvironment [J]. J. Electrochem. Soc.,1999,146(11):4327-4333.
    [70] Park Y., Inagaki N., Surface modification of poly (vinylidene fluoride) film by remote Ar,H2, and O2plasmas [J]. Polymer,2003,44(5):1569-1575.
    [71]李晓,陆晓峰,施柳青等. γ射线共辐照接枝聚偏氟乙烯超滤膜表面亲水性研究[J].辐射研究与辐射工艺学报,2007,25(2):65-69.
    [72]魏建功,李志明,王新灵.甲基丙烯酸甲酯在聚偏氟乙烯膜上的辐照接枝[J].应用化学,2007,24(10):1197-1200.
    [73]杨虎,许振良,周立志等.聚偏氟乙烯膜表面丙烯酸接枝改性研究[J].膜科学与技术,2006,26(4):24-26.
    [74]邵平海,孙国庆.聚偏氟乙烯微滤膜亲水化处理[J].水处理技术,1995,2(11):26-29.
    [75]董声雄,洪俊明.聚偏氟乙烯超滤膜的制备及亲水改性[J].福州大学学报(自然科学版),1998,26(6):119-122.
    [76] Akhtar S., Hawes C., Dudley L., et al., Coatings reduce the fouling of microfiltrationmembranes [J]. J. Membr. Sci.,1995,107(3):209-218.
    [77] Akthakul A., Salinaro R.F., Mayes A.M., Antifouling polymer membranes withsubnanometer size selectivity [J]. Macromolecules,2004,37(20):7663-7668.
    [78] Revanur R., McCloskey B., Breitenkamp K., et al., Reactive amphiphilic graft copolymercoatings applied to poly (vinylidene fluoride) ultrafiltration membranes [J]. Macromolecules,2007,40(10):3624-3630.
    [79] Nunes S.P., Sfor a M.L., Peinemann K.V., Dense hydrophilic composite membranes forultrafiltration [J]. J. Membr. Sci.,1995,106(1):49-56.
    [80] Kise H., Ogata H., Phase transfer catalysis in dehydrofluorination of poly (vinylidenefluoride) by aqueous sodium hydroxide solutions [J]. Journal of Polymer Science: PolymerChemistry Edition,1983,21(12):3443-3451.
    [81] Kuhn K.J., Hahn B., Percec V., et al., Structural and quantitative analysis of surfacemodified poly (vinylidene fluoride) films using ATR FT-IR spectroscopy [J]. Appl.Spectrosc.,1987,41(5):843-847.
    [82] Carey D.H., Ferguson G.S., Synthesis and characterization of surface-functionalized1,2-polybutadiene bearing hydroxyl or carboxylic acid groups [J]. Macromolecules,1994,27(25):7254-7266.
    [83] Marchand‐Brynaert J., Jongen N., Dewez J.L., Surface hydroxylation of poly (vinylidenefluoride)(PVDF) film [J]. J. Polym. Sci., Part A: Polym. Chem.,1997,35(7):1227-1235.
    [84] Bottino A., Capannelli G., Monticelli O., et al., Poly (vinylidene fluoride) with improvedfunctionalization for membrane production [J]. J. Membr. Sci.,2000,166(1):23-29.
    [85] Irvine D.J., Mayes A.M., Griffith L.G., Nanoscale clustering of RGD peptides at surfacesusing comb polymers.1. Synthesis and characterization of comb thin films [J].Biomacromolecules,2001,2(1):85-94.
    [86] Hester J., Banerjee P., Won Y.Y., et al., ATRP of amphiphilic graft copolymers based onPVDF and their use as membrane additives [J]. Macromolecules,2002,35(20):7652-7661.
    [87] Hester J., Mayes A., Design and performance of foul-resistant poly (vinylidene fluoride)membranes prepared in a single-step by surface segregation [J]. J. Membr. Sci.,2002,202(1):119-135.
    [88] Yan L., Li Y.S., Xiang C.B., et al., Effect of nano-sized Al2O3-particle addition on PVDFultrafiltration membrane performance [J]. J. Membr. Sci.,2006,276(1):162-167.
    [89] Hou S.S., Kuo P.L., Synthesis and characterization of amphiphilic graft copolymers basedon poly(styrene-co-maleic anhydride) with oligo(oxyethylene) side chains and their GPCbehavior [J]. Polymer,2001,42(6):2387-2394.
    [90]王湛,吕亚文,王淑梅等. PVDF/CA共混超滤膜制备及其特性的研究[J].膜科学与技术,2002,22(6):4-8.
    [91]尹秀丽,邓桦,杨溥臣. PVDF/PS共混超滤膜的研究[J].水处理技术,1997,23(2):131-134.
    [92]于志辉,钱英,付丽.聚偏氟乙烯/聚丙烯腈共混超滤膜的研究[J].膜科学与技术,2000,20(5):10-15.
    [93]孙漓青,钱英,刘淑秀.聚偏氟乙烯/磺化聚砜共混相容性及超滤膜研究[J].膜科学与技术,2001,21(2):1-5.
    [94]胡晓宇,肖长发,梁海先等. PU/PVDF共混物形貌及其中空纤维膜制备[J].天津工业大学学报,2008,27(3):9-11.
    [95]杜军,白晓渝,陶长元等. PVDF-PANI共混膜气体分离性能的研究[J].膜科学与技术,2002,22(1):21-23.
    [96] Tomaszewska M., Preparation and properties of flat-sheet membranes from poly(vinylidenefluoride) for membrane distillation [J]. Desalination,1996,104(1-2):1-11.
    [97] Chiu H.C., Chern C.S., Lee C.K., et al., Synthesis and characterization of amphiphilicpoly(ethylene glycol) graft copolymers and their potential application as drug carriers [J].Polymer,1998,39(8-9):1609-1616.
    [98] Zhu L.P., Xu L., Zhu B.K., et al., Preparation and characterization of improvedfouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEGcopolymers as additives [J]. J. Membr. Sci.,2007,294(1-2):196-206.
    [99] Bottino A., Capannelli G., Munari S., et al., High performance ultrafiltration membranescast from LiCl doped solutions [J]. Desalination,1988,68(2-3):167-177.
    [100] Le-Clech P., Lee E.-K., Chen V., Hybrid photocatalysis/membrane treatment for surfacewaters containing low concentrations of natural organic matters [J]. Water Res.,2006,40(2):323-330.
    [101] Pekakis P.A., Xekoukoulotakis N.P., Mantzavinos D., Treatment of textile dyehousewastewater by TiO2photocatalysis [J]. Water Res.,2006,40(6):1276-1286.
    [102] Lee S.A., Choo K.H., Lee C.H., et al., Use of ultrafiltration membranes for the separation ofTiO2photocatalysts in drinking water treatment [J]. Industrial&engineering chemistryresearch,2001,40(7):1712-1719.
    [103] Xi W., Geissen S.U., Separation of titanium dioxide from photocatalytically treated waterby cross-flow microfiltration [J]. Water Res.,2001,35(5):1256-1262.
    [104] Anderson M.A., Gieselmann M.J., Xu Q., Titania and alumina ceramic membranes [J]. J.Membr. Sci.,1988,39(3):243-258.
    [105] Molinari R., Mungari M., Drioli E., et al., Study on a photocatalytic membrane reactor forwater purification [J]. Catal. Today,2000,55(1-2):71-78.
    [106] Yu Z.Y., Mielczarski E., Mielczarski J., et al., Preparation, stabilization and characterizationof TiO2on thin polyethylene films (LDPE). Photocatalytic applications [J]. Water Res.,2007,41(4):862-874.
    [107] Ma N., Quan X., Zhang Y., et al., Integration of separation and photocatalysis using aninorganic membrane modified with Si-doped TiO2for water purification [J]. J. Membr. Sci.,2009,335(1-2):58-67.
    [108] Damodar R.A., You S.J., Chou H.H., Study the self cleaning, antibacterial andphotocatalytic properties of TiO2entrapped PVDF membranes [J]. J. Hazard. Mater.,2009,172(2-3):1321-1328.
    [109]陈贻明,王欣泽,何圣兵等.低压膜技术在饮用水处理中的应用和研究现状综述[J].西南给水排水,2005,27(1):5-8.
    [110]宋亚丽,董秉直,高乃云等. PVDF微滤膜处理黄浦江微污染水的研究[J].给水排水,2007,33(6):4-27.
    [111]叶春松,宋小宁,钱勤等.高浊度海水直接超滤处理的中试研究[J].工业水处理,2006,26(6):20-23.
    [112]武春瑞,吴刚,陈华艳等. PVDF疏水中空纤维膜与组件对真空膜蒸馏性能的影响[J].动能材料,2008,6(39):922-925.
    [113]唐娜,陈明玉,袁建军等.海水淡化浓盐水真空膜蒸馏研究[J].膜科学与技术,2007,27(6):93-96.
    [114]李娜,梁伟,李志东等. A/O型IMBR处理生活污水的研究[J].中国给水排水,2006,22(15):25-28.
    [115]汤凡敏,徐高田,董黎静等.聚偏氟乙烯(PVDF)超滤膜生物反应器处理小区生活污水的试验研究[J].化学工程师,2005,115(4):14-16.
    [116]左丹英,吴桂萍.内置转盘式PVDF膜生物反应器污水处理的试验研究[J].环境污染与防治,2008,30(3):62-65.
    [117]乔玉新,宋来洲.聚偏氟乙烯共混改性膜对Zn (Ⅱ)吸附性能的研究[J].唐山师范学院学报,2008,30(5):27-32.
    [118]宋来洲,张尊举,郑秋艳等.聚偏氟乙烯共混改性膜对Cu2+吸附性能的研究[J].环境科学,2007,28(11):2500-2506.
    [119]杜军,刘作华,陶长元等.聚偏氟乙烯微孔膜处理含铬(Ⅲ)水溶液的研究[J].化学研究与应用,2000,12(6):601-604.
    [120]程刚,同帜,郭雅妮等. A/O MBR系统处理印染废水的研究[J].工业水处理,2007,27(2):40-42.
    [121]邱滔,张建文,胡琦等.膜生物反应器工艺处理高浓度前处理印染废水研究[J].环境科学与技术,2008,31(8):93-96.
    [122]王文浪,董红星,梁国明等.水解+MBR工艺处理印染废水的研究[J].化工时刊,2006,20(11):14-16.
    [123]丛利泽,王慧,熊小京等.组合工艺处理印染废水研究[J].厦门大学学报:自然科学版,2008,47(3):457-460.
    [124]张奉东. PVDF管式超滤膜在低渗油田水处理中的研究及应用[J].海洋石油,2008,28(2):92-94.
    [125]镇祥华,于水利,庞焕岩等.超滤膜处理油田采出水用于回注的试验研究[J].环境污染与防治,2006,28(5):329-333.
    [126]芦艳,孟丽丽,于水利等.纳米Al2O3改性PVDF超滤膜处理含油污水研究[J].安全与环境学报,2008,8(4):62-64.
    [127]王玮.焦化废水治理技术现状及进展[J].冶金环境保护,1996(4):16-18.
    [128]李筱焕,吕淑瑜.应用膜生物反应器处理焦化废水的试验研究[J].浙江冶金,2006(2):36-38.
    [129] Abetz V., Brinkmann T., Dijkstra M., et al., Developments in membrane research: frommaterial via process design to industrial application [J]. Adv. Eng. Mater.,2006,8(5):328-358.
    [130] Meng F., Chae S.R., Drews A., et al., Recent advances in membrane bioreactors (MBRs):Membrane fouling and membrane material [J]. Water Res.,2009,43(6):1489-1512.
    [131] Liu C., Zhang D., He Y., et al., Modification of membrane surface for anti-biofoulingperformance: effect of anti-adhesion and anti-bacteria approaches [J]. J. Membr. Sci.,2010,346(1):121-130.
    [132]张爱勇,任玉辉,肖羽堂等. Cu改性悬浮型光催化纳滤膜反应器处理阿特拉津溶液的降解效率及动力学研究[J].环境化学,2007,26:735-740.
    [133] Kochkodan V., Rolya E., Goncharuk V., Photocatalytic membrane reactors for watertreatment from organic pollutants [J]. Journal of Water Chemistry and Technology,2009,31(4):227-237.
    [134] Erdim E., Soyer E., Tasiyici S., et al., Hybrid photocatalysis/submerged microfiltrationmembrane system for drinking water treatment [J]. Desalination and water treatment,2009,9(1-3):165-174.
    [135]马宁.多功能TiO2光催化复合分离膜制备和水处理应用性能研究.[博士学位论文].大连:大连理工大学,2009.
    [136] Pidou M., Parsons S.A., Raymond G., et al., Fouling control of a membrane coupledphotocatalytic process treating greywater [J]. Water Res.,2009,43(16):3932-3939.
    [137] Lydakis-Simantiris N., Riga D., Katsivela E., et al., Disinfection of spring water andsecondary treated municipal wastewater by TiO2 photocatalysis [J].Desalination,2010,250(1):351-355.
    [138] Herrmann J.M., Duchamp C., Karkmaz M., et al., Environmental green chemistry as definedby photocatalysis [J]. J. Hazard. Mater.,2007,146(3):624-629.
    [139] Wu X., Su P., Liu H., et al., Photocatalytic degradation of Rhodamine B under visible lightwith Nd-doped titanium dioxide films [J]. Journal of Rare Earths,2009,27(5):739-743.
    [140] Fujishima A., Zhang X., Titanium dioxide photocatalysis: present situation and futureapproaches [J]. Comptes Rendus Chimie,2006,9(5):750-760.
    [141] Carp O., Huisman C., Reller A., Photoinduced reactivity of titanium dioxide [J]. Prog. SolidState Chem.,2004,32(1-2):33-177.
    [142]许宜铭.环境污染物的光催化降解:活性物种与反应机理[J].化学进展,2009,21(2-3):524-533.
    [143] Turchi C.S., Ollis D.F., Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack [J]. J. Catal.,1990,122(1):178-192.
    [144]刘太奇,操彬彬,王晨.纳米TiO2自清洁材料的研究进展[J].新技术新工艺,2010,10:73-76.
    [145]潘晓燕,马学鸣.纳米TiO2的应用[J].自然杂志,2001,23(1):29-33.
    [146] Matsuzawa S., Maneerat C., Hayata Y., et al., Immobilization of TiO2nanoparticles onpolymeric substrates by using electrostatic interaction in the aqueous phase [J]. AppliedCatalysis B: Environmental,2008,83(1):39-45.
    [147] Molinari R., Palmisano L., Drioli E., et al., Studies on various reactor configurations forcoupling photocatalysis and membrane processes in water purification [J]. J. Membr. Sci.,2002,206(1):399-415.
    [148] Augugliaro V., Litter M., Palmisano L., et al., The combination of heterogeneousphotocatalysis with chemical and physical operations: A tool for improving thephotoprocess performance [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2006,7(4):127-144.
    [149] Pelton R., Geng X., Brook M., Photocatalytic paper from colloidal TiO2-fact or fantasy [J].Adv. Colloid Interface Sci.,2006,127(1):43-53.
    [150]展宗城,任学昌,陈学民等. Mn-Fe氧体/SiO2/TiO2磁载光催化剂的制备及性能[J].环境科学与技术,2009,32:62-66.
    [151] Wang C.X., Yin L.W., Zhang L.Y., et al., Magnetic (γ-Fe2O3-SiO2)n-TiO2FunctionalHybrid Nanoparticles with Actived Photocatalytic Ability [J]. The Journal of PhysicalChemistry C,2009/03/12,2009,113(10):4008-4011.
    [152] Kurinobu S., Tsurusaki K., Natui Y., et al., Decomposition of pollutants in wastewater usingmagnetic photocatalyst particles [J]. J. Magn. Magn. Mater.,2007,310(2):1025-1027.
    [153] Beydoun D., Amal R., Low G.K.C., et al., Novel photocatalyst: Titania-coated magnetite.Activity and photodissolution [J]. The Journal of Physical Chemistry B,2000,104(18):4387-4396.
    [154] Xu S., Shangguan W., Yuan J., et al., Preparations and photocatalytic properties ofmagnetically separable nitrogen-doped TiO2supported on nickel ferrite [J]. AppliedCatalysis B: Environmental,2007,71(3):177-184.
    [155] Li X., Liu H., Cheng L., et al., Photocatalytic oxidation using a new catalyst TiO2microsphere for water and wastewater treatment [J]. Environ. Sci. Technol.,2003,37(17):3989-3994.
    [156]王晓静,刘超,胡中华等.多孔二氧化钛微球的制备、表征及其光催化性能[J].催化学报,2008,29:391-396.
    [157] Xu J.H., Dai W.L., Li J., et al., Novel core-shell structured mesoporous titania microspheres:Preparation, characterization and excellent photocatalytic activity in phenol abatement [J]. J.Photochem. Photobiol. A: Chem.,2008,195(2-3):284-294.
    [158]程刚,周孝德,王静等.纳米晶粒TiO2多孔微球的制备及其光催化性能的研究进展[J].化工环保,2007,27:319-322.
    [159] Loddo V., Augugliaro V., Palmisano L., Photocatalytic membrane reactors: case studies andperspectives [J]. Asia‐Pacific Journal of Chemical Engineering,2009,4(3):380-384.
    [160] Molinari R., Grande C., Drioli E., et al., Photocatalytic membrane reactors for degradationof organic pollutants in water [J]. Catal. Today,2001,67(1-3):273-279.
    [161] Chin S.S., Chiang K., Fane A.G., The stability of polymeric membranes in a TiO2photocatalysis process [J]. J. Membr. Sci.,2006,275(1):202-211.
    [162] Grzechulska-Damszel J., Tomaszewska M., Morawski A., Integration of photocatalysis withmembrane processes for purification of water contaminated with organic dyes [J].Desalination,2009,241(1-3):118-126.
    [163]黄涛,蒋华兵,张国亮等.悬浮态光催化超滤膜反应器处理4BS染料废水[J].水处理技术,2009,35:72-75.
    [164] Zhang H., Zhang G., Yang Z., Degradation of azo dye wastewater in a TiO2photocatalysisand membrane separation hybrid system [J]. Chinese J Catal,2009,30679-684.
    [165] Tsarenko S., Kochkodan V., Samsoni-Todorov A., et al., Removal of humic substancesfrom aqueous solutions with a photocatalytic membrane reactor [J]. Colloid J.,2006,68(3):341-344.
    [166] Benotti M.J., Stanford B.D., Wert E.C., et al., Evaluation of a photocatalytic reactormembrane pilot system for the removal of pharmaceuticals and endocrine disruptingcompounds from water [J]. Water Res.,2009,43(6):1513-1522.
    [167] Horng R.Y., Huang C., Chang M.C., et al., Application of TiO2photocatalytic oxidation andnon-woven membrane filtration hybrid system for degradation of4-chlorophenol [J].Desalination,2009,245(1):169-182.
    [168]崔鹏,赵先治,周民杰等.光催化-膜分离集成反应器及其应用[J].催化学报,2006,27:752-754.
    [169]杨群豪,孟耀斌,黄霞等.悬浮床光催化-膜分离反应器中膜污染的控制[J].净水技术,2002,21:28-30.
    [170] Yao P., Choo K.H., Kim M.H., A hybridized photocatalysis–microfiltration system withiron oxide-coated membranes for the removal of natural organic matter in water treatment:Effects of iron oxide layers and colloids [J]. Water Res.,2009,43(17):4238-4248.
    [171]解立平,王能亮,黄伟.一体式光催化氧化-膜分离流化床反应器性能的研究[J].环境工程学报,2007,1:20-24.
    [172]解立平,王能亮.一体式光催化-膜分离三相流化床反应器膜污染特性[J].环境工程学报,2008,2:1153-1158.
    [173]解立平,王能亮.一体式光催化氧化-膜分离三相流化床反应器[J].化学工程,2009,37:36-38.
    [174] Susanto H., Feng Y., Ulbricht M., Fouling behavior of aqueous solutions of polyphenoliccompounds during ultrafiltration [J]. J. Food Eng.,2009,91(2):333-340.
    [175] Mo H., Tay K.G., Ng H.Y., Fouling of reverse osmosis membrane by protein (BSA): Effectsof pH, calcium, magnesium, ionic strength and temperature [J]. J. Membr. Sci.,2008,315(1):28-35.
    [176] Jermann D., Pronk W., Boller M., Mutual influences between natural organic matter andinorganic particles and their combined effect on ultrafiltration membrane fouling [J].Environ. Sci. Technol.,2008,42(24):9129-9136.
    [177] Liang S., Zhao Y., Liu C., et al., Effect of solution chemistry on the fouling potential ofdissolved organic matter in membrane bioreactor systems [J]. J. Membr. Sci.,2008,310(1-2):503-511.
    [178] Boributh S., Chanachai A., Jiraratananon R., Modification of PVDF membrane by chitosansolution for reducing protein fouling [J]. J. Membr. Sci.,2009,342(1):97-104.
    [179]李永红,张伟,张晓健等.超滤膜的污染控制研究进展[J].中国给水排水,2009,25:1-4.
    [180] Bae T.H., Tak T.M., Effect of TiO2nanoparticles on fouling mitigation of ultrafiltrationmembranes for activated sludge filtration [J]. J. Membr. Sci.,2005,249(1):1-8.
    [181] Bae T.H., Tak T.M., Preparation of TiO2self-assembled polymeric nanocompositemembranes and examination of their fouling mitigation effects in a membrane bioreactorsystem [J]. J. Membr. Sci.,2005,266(1):1-5.
    [182] Madaeni S., Ghaemi N., Characterization of self-cleaning RO membranes coated with TiO2particles under UV irradiation [J]. J. Membr. Sci.,2007,303(1-2):221-233.
    [183] Rahimpour A., Madaeni S., Taheri A., et al., Coupling TiO2nanoparticles with UVirradiation for modification of polyethersulfone ultrafiltration membranes [J]. J. Membr. Sci.,2008,313(1):158-169.
    [184] Kim S.H., Kwak S.Y., Sohn B.H., et al., Design of TiO2nanoparticle self-assembledaromatic polyamide thin-film-composite (TFC) membrane as an approach to solvebiofouling problem [J]. J. Membr. Sci.,2003,211(1):157-165.
    [185] Alem A., Sarpoolaky H., Keshmiri M., Titania ultrafiltration membrane: preparation,characterization and photocatalytic activity [J]. J. Eur. Ceram. Soc.,2009,29(4):629-635.
    [186] Lee H.S., Im S.J., Kim J.H., et al., Polyamide thin-film nanofiltration membranes containingTiO2nanoparticles [J]. Desalination,2008,219(1-3):48-56.
    [187]王龙德.光催化-膜分离集成反应器光催化过程的研究.[硕士学位论文].合肥:合肥工业大学,2005.
    [188]花海蓉,孙秀云,王连军等.膜分离-光催化组合工艺的应用研究[J].环境科学与技术,2007,30:90-92.
    [189]孙秀云.光催化降解斯蒂酚酸性能及一体式光催化-膜分离反应器的研究.[博士学位论文].南京:南京理工大学,2007.
    [190] Song H.C., Shao J.H., He Y.L., et al., Natural organic matter removal and flux decline withPEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis [J].J. Membr. Sci.,2012,405–406(0):48-56.
    [191]张爱勇,肖羽堂,吕晓龙等.悬浮型光催化纳滤膜反应器处理H酸废水光催化降解效率及反应动力学[J].化工进展,2007,26:1610-1615
    [192]花海蓉,孙秀云,王连军等.膜分离-光催化组合工艺中膜污染的控制[J].环境科学与技术,2007,30:26-29.
    [193] Chapman Wilbert M., Delagah S., Pellegrino J., Variance of streaming potentialmeasurements [J]. J. Membr. Sci.,1999,161(1):247-261.
    [194] Amy G.L., Sierka R.A., Bedessem J., et al., Molecular size distributions of dissolvedorganic matter [J]. Journal-American Water Works Association,1992,84(6):67-75.
    [195] Chang C.N., Chao A., Lee F.S., et al., Influence of molecular weight distribution of organicsubstances on the removal efficiency of DBPs in a conventional water treatment plant [J].Water Sci. Technol.,2000,43-49.
    [196]丁一,梁恒国,刘滔.天然有机物在超滤过程中的膜污染和膜清洗[J].西南给排水,2004,26(3):11-12.
    [197]罗欢,刘广立,刘杰.不同超滤膜过滤天然有机物的膜污染特性研究[J].环境污染治理技术与设备,2005,6(5):46-50.
    [198] Digital Instruments, Veeco Metrology Group. SPM Training Notebook. US VeecoMetrology Group,2000:8-11.
    [199] Yuan W., Zydney A.L., Effects of solution environment on humic acid fouling duringmicrofiltration [J]. Desalination, May25,1999,122(1):63-76.
    [200] Aoustin E., Sch fer A., Fane A.G., et al., Ultrafiltration of natural organic matter [J]. Sep.Purif. Technol.,2001,2263-78.
    [201] Elimelech M., Zhu X., Childress A.E., et al., Role of membrane surface morphology incolloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosismembranes [J]. J. Membr. Sci.,1997,127(1):101-109.
    [202] Yuan W., Zydney A.L., Humic acid fouling during ultrafiltration [J]. Environ. Sci. Technol.,Dec,2000,34(23):5043-5050.
    [203] Lee N.H., Amy G., Croue J.P., et al., Identification and understanding of fouling inlow-pressure membrane (MF/UF) filtration by natural organic matter (NOM)[J]. WaterRes.,2004,38(20):4511-4523.
    [204] Katsoufidou K., Yiantsios S., Karabelas A., A study of ultrafiltration membrane fouling byhumic acids and flux recovery by backwashing: Experiments and modeling [J]. J. Membr.Sci.,2005,266(1):40-50.
    [205] M ntt ri M., Pekuri T., Nystr m M., NF270, a new membrane having promisingcharacteristics and being suitable for treatment of dilute effluents from the paper industry [J].J. Membr. Sci.,2004,242(1-2):107-116.
    [206] Chiang C.Y., Reddy M.J., Chu P.P., Nano-tube TiO2Composite PVDF/LiPF6SolidMembranes. Solid State Ionics.2004,175:631-635.
    [207] Wagemaker M. Kearley G.J., Well A.A., et al., Multi Li Positions inside Oxygen Octahedrain Lithiated TiO2Anatase. J. Sm. Chem. Soc.2003,125:840-848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700