用户名: 密码: 验证码:
云南腾冲上新世团田植物群及其古环境分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西地处横断山系的南部、青藏高原的东南缘,新近纪以来受喜马拉雅强烈构造运动的影响,形成了复杂的地形地貌、独特的植被景观和立体的气候特征。滇西地区不仅拥有复杂的植被类型和丰富的植物资源,而且是我国乃至全球新生代植物化石保存最好的地区之一。研究滇西地区的新生代植物,尤其是新近纪植物的发展和演化,不仅可以为了解我国植物的多样性提供资料,而且可以从中提取古气候、古环境数据,进而为研究青藏高原隆升时期的气候环境演变提供古植物学证据。
     本文通过叶结构与角质层微细构造特征相结合,对腾冲地区团田盆地上新世芒棒组植物化石进行了分类鉴定。目前鉴定的化石植物共有:裸子植物1科1属1种,被子植物化石20科28属36种。从植物的组合面貌来看,团田植物群以盛产大型常绿阔叶植物为主,气候类型为热带至亚热带气候。
     解剖学和同位素地球化学研究表明,叶片面积、表皮细胞壁的弯曲程度等形态特征,气孔密度、气孔指数以及角质层的δ~(13)C值可以用于辨别化石植物叶片的古生态类型。化石和现生植物的表皮和碳同位素特征显示,金缕梅科马蹄荷属(Exbucklandia)植物的阴叶相对于阳叶有以下特点:较大的叶片面积、较弯曲的表皮细胞壁、较小的气孔密度和气孔指数,以及较低的δ~(13)C值等特征;此外,阳叶具有优先保存为化石的埋藏学特点。
     通过气孔比率法重建地史时期的大气CO_2浓度,是当前古植物学领域的重要课题。本文利用10种化石植物及其现存最近亲缘种的气孔比率,恢复出团田晚上新世的古大气CO_2浓度值在387.5-466.5 ppmv之间,平均值为433.4 ppmv,明显较当前的水平要高。
     通过共存因子分析法,取团田植物群37个化石种的最近亲缘种的气候因子的共存区间,定量重建了团田晚上新世的古气候特征:年均温为16.4-19.8℃,最热月平均气温21.3-25.1℃,最冷月平均气温10.8-14.6℃,气温年较差11.3-16.3℃,年均降水量1225.7-1638.3 mm,年均相对湿度75-82%。同时对腾冲中新世南林组、剑川中新世双河组以及洱源晚上新世三营组三个植物群的植物大化石进行了古气候共存分析,并与团田晚上新世植物群古气候数据进行了对比。结果表明,滇西地区新近纪以来的古气候演变存在以下趋势:中新世至晚上新世,滇西地区的古气候条件基本未变,或仅有微小变化;晚上新世之后,腾冲以及洱源地区气温下降幅度均较大,气候迅速变冷。
West Yunnan lies in the South of Hengduan Mountains and Southeast edge of theQinghai-Tibetan Plateau. It has been affected by the Himalayan tectonic movement sincethe Neogene, which has formed a complicated physiognomy, peculiar vegetation andtridimensional climate. The various vegetation conditions, abundant modern plantresources and plentiful Cenozoic fossil plants of West Yunnan can provide us goodmaterials for the studies of the plant diversity and paleoenvironmental evolvement. What isremarkable that the Neogene fossil plants from West Yunnan will greatly help us tounderstand the uplift and paleoclimatic evolvement of the Qinghai-Tibet Plateau.
     The combination of the leaf architectural and cuticular characters, will improve thereliability of the identification of fossil plants. Based on leaf architecture and cuticularanalysis, 1 gymnosperm species and total 36 angiosperm species which belong to 20families and 28 genera have been identified from the Pliocene Mangbang Formation ofTuantian Basin. The plant fossil assemblage shows that the Pliocene Tuantian flora ismainly composed of evergreen broad-leaved trees and living under a tropical or subtropicalclimatic condition.
     The evidences of anatomy and isotope geochemistry have proved that the leaf area,undulated degree of epidermal cell anticline, stomatal density and stomatal index, andδ~(13)Cvalue can be regard as good indicators for the distinguish of sun and shade morphotypes offossil leaves. The cuticular and carbon isotope characters of fossil and modern leaves ofExbucklandia (Hamamelidaceae) show that the shade ecotype leaves usually possessbigger laminas, more undulated epidermal cell anticlines, and lower stomatal density,stomatal index andδ~(13)C values. In addition, the present study also indicates that the sunleaves usually tend to be fossilized preferentially relative to the shade ecotypes.
     Reconstruct the paleoatmospheric CO_2 concentration of the geological history is animportance issue for palaeobotanical and paleoenvironmental research. In present study,the method of Stomatal Ratio on the 10 fossil plant species from the Pliocene Tuantianflora and their nearest living relatives are utilized to reconstruct the paleoatmospheric CO_2 concentration. The values of paleoatmospheric CO_2 concentration during the Late Pliocenein Tuantian Basin is range of 387.5-466.5 ppmv, and the mean value is 433.4 ppmv, whichis evidently higher than that of current levels.
     The paleoclimatic parameters were quantitatively reconstructed based on theCoexistence Approach of the NLRs of 37 fossil species from Tuantian flora. The resultsshow that the Pliocene paleoclimate of Tuantian Basin is characterized by the mean annualtemperature (MAT) 21.3-25.1℃, mean temperature of the warmest month (WMT)21.3-25.1℃, mean temperature of the coldest month (CMT) 10.8-14.6℃, difference intemperature between the coldest and warmest month (DT) 11.3-16.3℃, mean annualprecipitation (MAP) 1225.7-1638.3 mm, and relative humidity (RH) 75-82%. Thepaleoclimates of the Miocene Nanlin Formation of Tengchong, Miocene ShuangheFormation of Jianchuan and Pliocene Sanying Formation of Eryuan were as well asanalyzed by the Coexistence Approach. Comparing the paleoclimatic data of thesemacrofossil floras, the conclusion can be inferred that the areas of West Yunnan had notoccurred remarkable climatic changes from the Miocene to Late Pliocene, however, thetemperatures of Tengchong and Eryuan had declined quickly since the Late Pliocene.
引文
1. Adams JM, Green WA, Zhang Y. Leaf margins and temperature in the North American flora: Recalibrating the paleoclimatic thermometer. Global and Planetary Change, 2008, 60: 523-534.
    2. Alvin KL. Reconstruction of a Lower Cretaceous conifer. Botanical Journal of the Linnean Society,1983,86: 169-176.
    3. Anderson JE, Williams J, Kriedemann PE, Austin MP, Farquhar GD. Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden. Australian Journal of Plant Physiology, 1996, 23(3): 311-320.
    4. Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the earth. Philosophical Magazine, 1896,41: 237-276.
    5. Axelrod DI. The Miocene Trapper Creek flora of southern Idaho. University of California Publications in Geological Sciences, 1964, 51:1-148.
    6. Axelrod DI. The Miocene Purple Mountain flora of western Nevada. University of California Publications in Geological Sciences, 1995, 139: 1-62.
    7. Axelrod DI. The Oligocene Haynes Creek flora of eastern Idaho. University of California Publications in Geological Sciences, 1998, 143: 1-99.
    8. Axsmith BJ, Jacobs BF. The conifer Frenelopsis ramosissima (Cheirolepidiaceae) in the Lower Cretaceous of Texas: systematic, biogeographical, and paleoecological implications. International Journal of Plant Sciences, 2005, 166(2): 327-337.
    9. Baghai NL, Jorstad RB. Paleontology, paleoclimatology and paleoecology of the late Middle Miocene Musselshell Creek flora, Clearwater County Idaho. A preliminary study of a new fossil flora. Palaios, 1995, 10: 424-436.
    10. Barbacka M, van Konijnenburg-van Cittert JHA. Sun and shade leaves in two Jurassic species of Pteridosperms. Review of Palaeobotany and Palynology, 1998, 103:209-221.
    11. Barclay R, McElwain J, Dilcher D, Sageman B. The cuticle database: developing an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record. Courier Forschungsinstitut Senckenberg, 2007, 258: 39-55.
    12. Becker HF. The new species of Mahonia from the Grant-Horse Prairie Basin in southwestern Montana. Bulletin of the Torrey Botanical Club, 1962, 89(2): 114-117.
    13. Beerling DJ, Bemer RA. Feedbacks and the coevolution of plants and atmospheric CO_2. Proceedings of the National Academy of Sciences, USA,2005, 102(5): 1302-1305.
    14. Beerling DJ, Chaloner WG. Evolutionary responses of stomatal density to global CO_2 change. Biological Journal of the Linnean Society, 1993, 48: 343-353.
    15. Beerling DJ, Lomax BH, Royer DL, Upchurch GRJ, Kump LR. An atmospheric pCO_2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proceedings of the National Academy of Sciences, USA, 2002, 99 (12): 7836-7840.
    16. Beerling DJ, McElwain J, Osborne C. Stomatal responses of the 'living fossil' Ginkgo biloba L. to changes in atmospheric CO_2 concentrations. Journal of Experimental Botany, 1998, 49:1603-1607.
    17. Beerling DJ, Osborne CP. Physiological ecology of Mesozoic Polar forests in a high CO_2 environment. Annals of Botany, 2002, 89: 329-339.
    18. Beerling DJ, Royer DL. Fossil plants as indicators of the Phanerozoic global carbon cycle. Annual Review of Earth and Planetary Sciences, 2002, 30: 527-560.
    19. Beerling DJ, Woodward FI. Stomatal density responses to global environmental change. Advances in Bioclimatology, 1996,4: 171-221.
    20. Beerling DJ, Woodward FI. Stomatal responses of variegated leaves to CO_2 enrichment. Annals of Botany, 1995,75:507-511.
    21. Berner RA. Paleozoic atmospheric CO_2: importance of solar radiation and plant evolution. Science, 1993,261:68-69.
    22. Berner RA. The rise of plants and their effects on weathering and CO_2. Science 1997, 276:544-546.
    23. Berner RA. GEOCARBSULF: A combined model for Phanerozoic atmospheric O_2 and CO_2. Geochimica et Cosmochimica Acta, 2006, 70: 5653-5664.
    24. B6hme M, Bruch AA, Selmeier A. The reconstruction of Early and Middle Miocene climate and vegetation in Southern Germany as determined from the fossil wood flora. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,253: 91-114.
    25. Brodribb T, Hill RS. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology, 1998, 12(3): 465-471.
    26. Brown RW. Paleocene flora of the Rocky Mountains and Great Plains. United States Geological Survey Professional Paper, 1962,375: 1-119.
    27. Burgess SSO, Dawson TE. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell and Environment, 2004, 27(8): 1023-1034.
    28. Burnham RJ, Pitman NCA, Johnson KR, Wilf P. Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. American Journal of Botany, 2001, 88: 1096-1102.
    29. Chamberlin TC. The method of multiple working hypotheses. Journal of Geology, 1897, 5: 837-848.
    30. Chamberlin TC. The influence of great epochs of limestone formation upon the constitution of the atmosphere. Journal of Geology, 1898, 6(6): 609-621.
    31. Chamberlin TC. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. Journal of Geology, 1899, 7: 545-584.
    32. Colani MM. E'tude sur les flores Tertiares de quelques gisments de lighit de l'lndochine et du Yunnan. Bulletin du Service geologique de l'lndochine, 1920, 8: 1-260.
    33. Craig H. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta, 1953, 3: 53-92.
    34. Denk T, Velitzelos D. First evidence of epidermal structures of Ginkgo from the Mediterranean Tertiary. Review of Palaeobotany and Palynology, 2002, 120: 1-15.
    35. Dilcher DL. Approaches to the identification of angiosperm leaf remains. The Botanical Review, 1974,40: 1-157.
    36. Ehleringer JR, Field CB, Lin ZF. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia, 1986,70(4): 520-526.
    37. Exell AW. A revision of the genus Rhodoleia. Sunyatsenia, 1933, 1: 95-102.
    38. Ferguson DK. The origin of leaf-assemblages, new light on an old problem. Review of Palaeobotany and Palynology, 1985,46: 117-188.
    39. Ferguson DK. Plant Taphonomy: Ruminations on the past, the present, and the future. Palaios, 2005,20:418-428.
    40. Gao X, Zhu YP, Wu BC, Zhao YM, Chen JQ, Hang YY. Phytogeny of Dioscorea sect. Stenophora based on chloroplast matK, rbcL and trnL-F sequences. Journal of Systematics and Evolution, 2008,46 (3): 315-321.
    41. Gaponoff SL. Palynology of the Silverado Formation (Late Paleocene), Riverside and Orange Counties, California. Palynology, 1984, 8: 71-106
    42. Gastaldo RA. Plant taphonomy. In Briggs DEG, Crowther PR (eds.), Palaeobiology Ⅱ. Blackwell Scientific, Oxford, 2001, 314-317.
    43. Gebrekirstos A, Worbes M, Teketay D, Fetene M, itlohner R. Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: Patterns and climatic signals. Global and Planetary Change, 2009, 66: 253-260.
    44. Geissert F, Gregor HJ, Mai DH, Boenigk W, Guenther T. Die "Saugbaggerflora", eine Frucht- und Samenflora aus dem Grenzbereich Miozaen-Pliozaen von Sessenheim im Elsass (Frankreich). Documenta naturae, 1990, 57: 1-207.
    45. Givnish TJ. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New phytologist, 1987, 106(1): 131-160.
    46. Gomez B, Martin-Closas C, Meon H, Thevenard F, Barale G. Plant taphonomy and palaeoecology in the lacustrine Una delta (Late Barremian, Iberian Ranges, Spain). Palaeogeography, Palaeoclimatology Palaeoecology, 2001, 170: 133-148.
    47. Graham A, Gregory-Wodzicki KM, Wright KL. Studies in neotropical paleobotany. XV. A Mio-Pliocene palynoflora from the eastern cordillera, Bolivia: Implications for the uplift history of the Central Andes. American Journal of Botany, 2001, 88(9): 1545-1557.
    48. Graham A, Stewart RH, Stewart JL. Studies in Neotropical Paleobotany. Ⅲ. The Tertiary communities of Panama - Geology of the pollen-beating deposits. Annals of the Missouri Botanical Garden, 1985, 72: 485-503.
    49. Graham A. Studies in Neotropical Paleobotany. V. The lower Miocene Communities of Panama-The Culebra Formation. Annals of the Missouri Botanical Garden, 1988, 75: 1440-1466.
    50. Greenwood DR. Leaf form and the reconstruction of past climates. New phytologist, 2005a, 166(2):355-357.
    51. Greenwood DR. Leaf Margin Analysis: Taphonomic Constraints. Palaios, 2005b, 20(5): 498-505.
    52. Greenwood DR, Wilf P, Wing SL, Christophel DC. Paleotemperature estimation using Leaf-Margin Analysis: is Australia different? Palaios, 2004, 19(2): 129-142.
    53. Guignard G, B(?)ka K, Barbacka M. Sun and shade leaves? Cuticle ultrastructure of Jurassic Komlopteris nordenskioeldii (Nathorst) Barbacka. Review of Palaeobotany and Palynology, 2001, 114: 191-208.
    54. Haworth M, Hesselbo SP, McElwain JC, Robinson SA, Brunt JW. Mid-Cretaceous pCO_2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology, 2005, 33(9): 749-752.
    55. Haworth M, McElwain J. Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 262: 79-90.
    56. Herman AB, Spicer RA. New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 128: 227-251.
    57. Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature 2003, 424: 901-908.
    58. Hickey LJ. Evolutionary significance of leaf architectural features in the woody dicots (abstract). American Journal of Botany, 1971, 58: 469.
    59. Hickey LJ. Classification of the architecture of dicotyledonous leaves. American Journal of Botany, 1973, 60: 17-33.
    60. Hickey LJ ,Wolfe JA. The bases of angiosperm phylogeny: vegetative morphology. Annals of the Missouri Botanical Garden, 1975, 62: 538-589.
    61. Hickey LJ. Origin of the major features of angiospermous leaf architecture in the fossil record. Courier Forschungsinstitut Senckenberg, 1978, 30: 27-34.
    62. Hickey LJ, Taylor DW. The leaf architecture of Ticodendron and the application of foliar characters in discerning its relationships. Annals of the Missouri Botanical Garden, 1991, 78: 105-130.
    63. Hollick A, Berry EW. A Late Tertiary flora from Bahia, Brazil. The Johns Hopkins University Studies in Geology, 1924, 5:11-137.
    64. Hu HH, Chaney RW. A Miocene flora from Shantung Province, China. Carnegie Institution of Washington Publication 507, 1-147.
    65. Huzioka K, Takahasi E. The Eocene flora of the Ube coal-field, southwest Honshu, Japan. Journal of the Mining College, Akita University, Series A: Mining Geology, 1970, 4(5): 1-88.
    66. Iakovleva AI, Cavagnetto C, Rousseau DD. Paleocene-Eocene dinoflagellate cysts and continental palynomorphs from Borehole No.4 (Vasugan Basin, Central Western Siberia). Palynology, 2000, 24: 187-200.
    67. Ivanov DA, Ashraf AR, Mosbrugger V. Late Oligocene and Miocene climate and vegetation in the Eastern Paratethys area (northeast Bulgaria), based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 255: 342-360.
    68. Jacobs BF, Kabuye CH. An extinct species of Pollia thunberg (Commelinaceae) from the Miocene Ngorora Formation, Kenya. Review of Paleobotany and Palynology, 1989, 59: 67-76.
    69. Jacobs BF. Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology, 2002, 28: 399-421.
    70. Jacobs LL, Anyonge W, Barry J. A giant tenrecid from the Miocene of Kenya. Journal of Mammalogy, 1987, 68(1): 10-16.
    71. Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. American Journal of Botany, 2008, 95: 521-530.
    72. Kennedy EM, Spicer RA, Rees PM. Quantitative paleoclimate estimates from Late Cretaceous and Paleocene leaf floras in the northwest of the South Island, New Zealand. Paleogeography, Paleoclimatology, Paleoecology, 2002, 184:321-345.
    73. Kerp H. Atmospheric CO_2 from fossil plant cuticles. Nature, 2002, 415: 38.
    74. Kerp H. The study of fossil Gymnosperms by means of cuticular analysis. Palaios, 1990, 5: 548-569.
    75. Kou XY, Ferguson DK, Xu JX, Wang YF, Li CS. The reconstruction of paleovegetation and paleoclimate in the late pliocene of West Yunnan, China. Climatic Change, 2006, 77:431-448.
    76. Kowalski EA, Dilcher DL. Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA, 2003, 100(1): 167-170.
    77. K(u|¨)rschner WM, Kvacek Z, Dilcher DL. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA, 2008, 105(2): 449-453.
    78. K(u|¨)rschner WM, van der Burgh J, Visscher H, Dilcher DL. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO_2 concentrations. Marine Micropaleontology, 1996, 27:299-312.
    79. K(u|¨)rschner WM, Wagner F, Visscher EH, Visscher H. Predicting the response of leaf stomatal frequency to a future CO_2-enriched atmosphere: constraints from historical observations. Geologische Rundschau, 1997, 86:512-517.
    80. K(?)rschner WM. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein / Q. pseudocastanea Goeppert): Implications for their use as biosensors of palaeoatmospheric CO_2 levels. Review of Palaeobotany and Palynology, 1997,96: 1-30.
    81. Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL. Sensitivity of climate to Late Cenozoic uplift in Southern Asia and the American West: numerical experiments. Journal of Geophysical Research, 1989, 94(D15): 18393-18407.
    82. Kvacek Z, Walther H. Anisophylly and leaf homeomorphy in some Tertiary plants. Courier Forschungsinstitut Senckenberg, 1978, 30: 84-94.
    83. Kvacek Z, Walther H. Paleobotanical studies in Fagaceae of the European Tertiary. Plant Systematics and Evolution, 1989, 162,213-229.
    84. Lack AJ, Evans DE. Instant notes in plant biology. Bios Scientific Publishers, Oxford, 2001, 1-344.
    85. Lakhanpal RN. The Rugada flora of West Central Oregon. University of California Publications in Geological Science, 1958, 35: 1-66.
    86. LAWG (Leaf Architecture Working Group). Manual of Leaf Architecture: morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. Smithsonian Institution, Washington DC, 1999,1-65.
    87. Liang MM, Bruch A, Collinson M, Mosbrugger V, Li CS, Sun QG, Hilton J. Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shanwang flora of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198(3): 279-301.
    88. Lichtenthaler UK, A(?) A, Marek MV, Kalina J, Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 2007, 45: 577-588.
    89. Lichtenthaler HK, Babani F. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In Papageorgiou GC, Govindjee (eds.), Chlorophyll Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, Netherlands, 2004,713-736.
    90. Lockheart MJ, Pooleb I, van Bergena PF, Eversheda RP. Leaf carbon isotope compositions and stomatal characters: important considerations for palaeoclimate reconstructions. Organic Geochemistry, 1998,29(4): 1003-1008.
    91. Mai DH. The fossils of Rhodoleia Champion (Hamamelidaceae) in Europe. Acta Palaeobotanica, 2001,41(2): 161-175.
    92. Mai DH, Walther H. Die pliozaenen Floren von Thueringen, Deutsche Demokratische Republik. Quartaerpalaeontologie, 1988, 7: 55-297.
    93. Mai DH. Die mittelmiozaenen und obermiozaenen Floren aus der Meuroer und Raunoer Folge in der Lausitz. Ⅲ. Fundstellen und Palaeobiologie. Palaeontographica Abteilung B, 2001,258: 1-85.
    94. Manchester SR. Update on the megafossil flora of Florissant, Colorado. Denver Museum of Nature and Science, 2001,4(1): 137.
    95. Masterson J. Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms.Science, 1994, 264: 421-423.
    96. McElwain JC, Chaloner WG. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Annals of Botany, 1995, 76: 389-395.
    97. McElwain JC, Chaloner WG. The fossil cuticle as a skeletal record of environmental change. Palaios, 1996, 11:376-388.
    98. McElwain JC, Mayle FE, Beerling DJ. Stomatal evidence for a decline in atmospheric CO_2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. Journal of Quaternary Science, 2002,17(1): 21-29.
    99. Meyer H. The Oligocene Lyons flora of northwestern Oregon. The Ore Bin, 1973, 35: 37-51.
    100. Meyer HW, Manchester SR. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences, 1997, 141: 1-195.
    101. Miller IM, Brandon M, Hickey LJ. Using leaf margin analysis to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block. Earth and Planetary Science Letters, 2006, 245: 95-114.
    102. Miller KG, Feigenson MD, Kent DV, Olsson RK. Oligocene stable isotopes (~(87)Sr/ ~(86)Sr, δ~(18)O, δ~(13)C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography, 1988,3:223-233.
    103. Miller KG, Wright JD, Fairbanks RG. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research, 1991, 96: 6829-6848.
    104. Mosbrugger V. The nearest living relative method. In Jones TP and Rowe NP (eds.), Fossil plants and spores: modern techniques. Geological Society of London, 1999,261-265.
    105. Mosbrugger V, Utescher T. The coexistence approach- a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134: 61-86.
    106. Nathorst AG. Nya bidrag till k(?)nnedomen om Spetsbergens k(?)rlv(?)xter och dess geografiska f(?)rh(?)llanden. Kungliga Svenska Vetenskapsakademiens Handlingar, 1883,20(6): 1-88.
    107. Nathorst AG. Zur fossilen Flora Japans. Palaeontologische Abhandlungen, 1888,4(3): 195-250.
    108. Okazaki Y, Yoshida S. On a new fossil Trionyx from the Pliocene Age Group, Mie Prefecture, West Japan. Bulletin of the Mizunami Fossil Museum, 1977, 4: 87-95.
    109. Osborne CP, Beerling DJ, Lomax BH, Chaloner WG. From the Cover: Biophysical constraints on the origin of leaves inferred from the fossil record. Proceedings of the National Academy of Sciences, USA, 2004, 101(28): 10360-10362.
    110. Ozaki K. Late Miocene and Pliocene floras in Central Honshu, Japan. Bulletin of Kanagawa Prefectural Museam Natural Science, 1991, Special Issue: 1-244.
    111. Poole I, K(?)rschner WM. Stomatal density and index: the practice. In Jones TP and Rowe NP (eds.),Fossil plants and spores: modern techniques. Geological Society of London, 1999,257-260.
    112. Poole I, Weyers JDB, Lawson T, Raven JA. Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant Cell Enviroment, 1996, 19: 705-712.
    113. Prell WL, Kutzbach JE. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 1992,360:647- 652.
    114. Rajabi A, Ober ES, Griffiths H. Genotypic variation for water use efficiency, carbon isotope discrimination, and potential surrogate measures in sugar beet. Field Crops Research, 2009, 112: 172-181.
    115. Ramirez JL, Cevallos-Ferriz SRS. Leaves of Berberidaceae (Berberis and Mahonia) from Oligocene sediments, near Tepexi de Rodriguez, Puebla. Review of Palaeobotany and Palynology, 2000,110:247-257.
    116. Retallack GJ. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature,2001.411:287-290.
    117. Retallack GJ, Orr WN, Prothero DR, Duncan RA, Kester PR, Ambers CP. Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geological Society of America Bulletin, 2004,116:817-839.
    118. Richards PW. The tropical rain forest. Cambridge University Press, Cambridge, 1952.
    119. Richards PW. The tropical rain forest, 2 edition. Cambridge University Press, Cambridge, 1996.
    120. Roth JL, Dilcher DL. Some considerations in leaf size and leaf margin analysis of fossil leaves. Courier Forschungsinstitut Senckenberg, 1978,30: 165-171.
    121. Rouse GE, Hopkins WS, Piel KM. Palynology of some late Cretaceous and early Tertiary deposits in British Columbia and adjacent Alberta. Geological Society of America, 1971, 127:213-246.
    122. Royer DL. Stomatal density and stomatal index as indicators of paleoatmospheric CO_2 concentration. Review of Palaeobotany and Palynology, 2001, 114: 1-28.
    123. Royer DL, Berner RA, Park J. Climate sensitivity constrained by CO_2 concentrations over the past 420 million years. Nature, 2007,446: 530-532.
    124. Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL. Correlation of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 2005,92: 1141:1151.
    125. Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA. Paleobotanical evidence for near present-day levels of atmospheric CO_2 during part of the Tertiary. Science, 2001, 292:2310-2313.
    126. Royer DL, Wilf P. Why do toothed leaves correlate with cold climates? Gas-exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 2006, 167: 11-18.
    127. Ruddiman WF, Kutzbach JE. Late Cenozoic plateau uplift and climate change. Transactions of the Royal Society of Edinburgh, Earth Sciences, 1990, 81(4): 301-314.
    128. Salisbury EJ. On the causes and ecological significance of stomatal frequency, with special reference to the Woodland flora. Philosophical Transactions of the Royal Society of London B, 1927, 216: 1-65.
    129. Sarijeva G, Knapp M, Lichtenthaler HK. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. Journal of Plant Physiology, 2007, 164: 950-955.
    130. Schleser GH. Investigation of the δ~(13)C pattern in leaves of Fagus sylvatica L. Journal of Experimental Botany, 1990, 41: 565-572.
    131. Schoenhut K, LePage BA, Vann DR. Identification of sun and shade leaves of Metasequoia occidentalis (Newberry) Chaney from the Middle Eocene of the Canadian High Arctic. Bulletin of the Peabody Museum of Natural History, 2007, 48(2): 301-315.
    132. Song ZC, Wang WM, Huang F. Fossil pollen records of extant angiosperms in China. The Botanical Review, 2005, 70(4): 425-458.
    133. Spicer RA. The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. US Geological Survey Professional Paper, 1981, 1143: 1-77.
    134. Spicer RA, Herman AB, Kennedy EM. Foliar physiognomic record of climatic conditions during dormancy: climate leaf analysis multivariate program (CLAMP) and the cold month mean temperature. Journal of Geology, 2004, 112: 685-702.
    135. Strauss-Debenetti S, Berlyn GP. Leaf anatomical responses to light in five tropical Moraceae of different successional status. American Journal of Botany, 1994, 81 (12): 1582-1591.
    136. Sun BN, Dilcher DL, Beerling DJ, Zhang CJ, Yan DF, Kowalski E. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proceedings of the National Academy of Scienees, USA, 2003, 100(12): 7141-7146.
    137. Sun QG, Collinson ME, Li CS, Wang YF, Beerling DJ. Quantitative reconstruction of palaeoclimate from the Middle Miocene Shanwang flora, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 180(4): 315-329.
    138. Syabryaj S, Utescher T, Molchanoff S, Bruch AA. Vegetation and palaeoclimate in the Miocene of Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253: 153-168.
    139. Tans PP, White JWC. In balance, with a little help from the plants. Science, 1998, 281: 183-184.
    140. Traiser C, Klotz S, Uhl D, Mosbrugger V. Environmental signals from leaves - a physiognomic analysis of European vegetation. New Phytologist, 2005, 166: 465-484.
    141. Uhl D, Klotz S, Traiser C, Thiel C, Utescher T, Kowalski E, Dilcher DL. Cenozoic paleotemperatures and leaf physiognomy - a European perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248: 24-31.
    142. Uhl D, Mosbrugger V. Leaf venation density as a climate and environmental proxy: a critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 149: 15-26.
    143. Uhl D, Mosbrugger V, Bruch A, Utescher T. Reconstructing palaeotemperatures using leaf floras - case studies for a comparison of leaf margin analysis and the coexistence approach. Review of Palaeobotany and Palynology, 2003, 126:49-64.
    144. Uhl D, Walther H. Sun leaf or shade leaf? -Known facts in the light of new data with implications for palaeobotany. Feddes Repertorium, 2000,111: 165-174.
    145. Upchurch GR. Dispersed angiosperm cuticles: their history, preparation, and application to the rise of angiosperms in Cretaceous and Paleocene coals, southern western interior of North America. International journal of coal geology, 1995,28: 161-227.
    146. Utescher T, Mosbrugger V, Ashraf AR. Terrestrial climate evolution in Northwest Germany over the last 25 million years. Palaios, 2000, 15:430-449.
    147. van der Burgh J, Visscher H, Dilcher D L, K(?)rschner WM. Paleoatmospheric signatures in Neogene fossil leaves. Science, 1993,260: 1788-1790.
    148. Vink W. Hamamelidaceae. Flora Malesiana ser. 1. Nijhoff, Groningen, 1957, 5: 363-379.
    149. Wagner F, Below R, Klerk PD, Dilcher DL, Joosten H, Kiirschner WM, Visscher H. A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO_2 increase. Proceedings of the National Academy of Sciences, USA, 1996, 93: 11705-11708.
    150. Wagner F, Bohncke SJP, Dilcher DL, Kurschner WM, van Geel B, Visscher H. Century-scale shifts in early Holocene atmospheric CO_2 concentration. Science, 1999,284: 1971-1973.
    151. Wagner F, Kouwenberg LLR, van Hoof TB, Visscher H. Reproducibility of Holocene atmospheric CO_2 records based on stomatal frequency analysis. Quaternary Science Reviews, 2004, 23: 1947-1954.
    152. Wagner F, Neuvonen S, K(?)rschner WM, Visscher H. The influence of hybridization on epidermal properties of birch species and the consequences for palaeoclimatic interpretation. Plant Ecology, 2000, 148(1): 61-69.
    153. Waldhoff D, Furch B. Leaf morphology and anatomy in eleven tree species from Central Amazonian Floodplains (Brazil). Amazoniana, 2002, 17: 79-94.
    154. Waldhoff D. Leaf structure in trees of Central Amazonian Floodplain Forests (Brazil). Amazoniana, 2003,17:451-469.
    155. Watson J, Alvin KL. An English Wealden floral list, with comments on possible environmental indicators. Cretaceous Research, 1996, 17 (1): 5-26.
    156. Wilf P. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 1997,23:373-390.
    157. Wilkinson HP. The plant surface (mainly leaf). In Metcalfe CR, Chalk L (eds.), Anatomy of the Dicotyledons, 2nd edition. Clarendon Press, Oxford, 1979, 97-162.
    158. Wolfe JA. Temperature parameters of humid to mesic forests of eastern Asia and their relation to forests of other regions of the Northern Hemisphere and Australasia. United States Geological Survey Professional Paper, 1979, 1106: 1-37.
    159. Wolfe JA. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin, 1993,2040: 1-73.
    160. Wolfe JA. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 1995,23: 119-142.
    161. Woodward FI. Stomatal numbers are sensitive to increases in CO_2 from pre-industrial levels. Nature, 1987,327:617-618
    162. Wu JY, Sun BN, Liu YS, Xie SP, Lin ZC. A new species of Exbucklandia (Hamamelidaceae) from the Pliocene of China and its paleoclimatic significance. Review of Palaeobotany and Palynology, 2009,155:32-41.
    163. Xia K, Su T, Liu YS, Xing YW, Jacques FMB, Zhou ZK. Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,276: 80-86.
    164. Xu JX, Ferguson DK, Li CS, Wang YF, Du NQ. Climatic and ecological implications of Late Pliocene Palynoflora from Longling, Yunnan, China. Quaternary International, 2004, 117: 91 -103.
    165. Xu JX, Ferguson DK, Li CS, Wang YF. Late Miocene vegetation and climate of the L(?)he region in Yunnan, southwestern China. Review of Palaeobotany and Palynology, 2008, 148: 36-59.
    166. Yang J, Wang YF, Spicer RA, Mosbrugger V, Li CS, Sun QG. Climatic reconstruction at the Miocene Shanwang Basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. American Journal of Botany, 2007,94(4): 599-608.
    167. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 2001,292: 686-693.
    168. Zhang H, Sharifi MR, Nobel PS. Photosynthetic characteristics of sun versus shade plants of Encelia farinosa as affected by photosynthetic photon flux density, intercellular CO_2 concentration, leaf water potential, and leaf temperature. Australian Journal of Plant Physiology, 1995, 22:833-841.
    169. Zhang ZY, Zhang HD, Endress PK. Hamamelidaceae. In Wu ZY, Raven PH, Hong DY (eds.), Flora of China. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, 2003, 9: 24-26.
    170. Zhao LC, Wang YF, Liu CJ, Li CS. Climatic implications of fruit and seed assemblage from Miocene of Yunnan, southwestern China. Quaternary International, 2004, 117: 81-89.
    171. Zheng F, Li QY, Li BH, Chen MH, Tu X, Tian J, Jian ZM. A millennial scale planktonic foraminifer record of the mid-Pleistocene climate transition from the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005,223: 349-363.
    172. Zhu L, Liang ZS, Xu X, Li SH, Monneveux P. Evidences for the association between carbon isotope discrimination and grain yield - Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Plant Science, 2009, 176(6): 758-767.
    173. Zimmerman JK, EMeringer JR. Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid catasetum viridiflavam. Oecologia, 1990, 83: 247-249.
    174.陈富斌.横断事件:亚洲东部晚新生代的一次重大构造事件.山地学报,1992,10(4):195-202.
    175.陈介.中国植物志,53卷,第1分册.北京:科学出版社,1984.
    176.陈书坤.中国植物志,45卷,第2分册.北京:科学出版社,1999.
    177.陈小勇,林鹏,李振基,杨盛昌,王文卿.福建省和溪南亚热带雨林下木层植物的滴水叶尖和滴水大小.厦门大学学报(自然科学版),1998,37(3):424-428.
    178.陈艺林.中国植物志,48卷,第1分册.北京:科学出版社,1982.
    179.崔之久,高全洲,刘耕年,潘保田,陈怀录.夷平面、古岩溶与青藏高原隆升.中国科学D:地球科学,1996,26:378-385.
    180.地质矿产部南京地质矿产研究所.华东地区古生物图册(三),中、新生代分册.北京:地质出版社,1982,294-316.
    181.方小敏,李吉均.高原隆升的阶段性.见:郑度,主编.青藏高原形成环境与发展.石家庄:河北科学技术出版社,2003,37-47.
    182.方文培,胡文光.中国植物志,56卷.北京:科学出版社,1990,41-83.
    183.冯虎元,安黎哲,王勋陵.环境条件对植物稳定碳同位素组成的影响.植物学通报,2000,17(4):312-318.
    184.高信曾.植物学,形态、解剖部分,第二版.北京:高等教育出版社,1987.
    185.戈鸿儒,李代芸.云南西部新生代含煤盆地及聚煤规律.昆明:云南科学技术出版社,1999.
    186.郭光裕,林卓虹.腾冲地区晚新生代火山活动浅析.地质找矿论丛,1999,14(2):8-15.
    187.郭双兴,孙喆华,李浩敏,窦亚伟.新疆阿勒泰古新世植物.中国科学院南京地质古生物研究所丛刊,1984,8:119-146.
    188.贺新强,林月惠,林金星,胡玉熹.气孔密度与近一个世纪大气CO_2浓度变化的相关性研究.科学通报,1998,43(8):860-862.
    189.胡斌,戴塔根,胡瑞忠,郭群.滇西地区壳体大地构造单元的划分及其演化与运动特征.大地构造与成矿学,2005,29(4):537-544.
    190.姜朝松.腾冲地区新生代火山活动分期.地震研究,1998,21(4):320-329
    191.孔昭宸,杜乃秋,张义君,王富葆,梁幼林,王晓春.句容宝华山山龙眼化石植物群的发现及其在气候学和植物学上的意义.第四纪研究.1991,4:326-335.
    192.匡可任,李沛琼.中国植物志,21卷.北京:科学出版社,1979.
    193.冷琴,2000.一种观察被子植物压膜化石细微叶结构特征的有效方法.古生物学报,2000,39(1):157-158.
    194.李百福.腾冲硅藻土层孢粉组合特征.云南地质,1994,13(3):312-323.
    195.李承森,王宇飞,孙启高.植物对环境的响应-定量重建古气候的研究进展.植物学通报,2003,20(4):430-438.
    196.李承森.生物进化的重大事件-陆地植物起源及其研究的新进展.中国科学基金,1994,8(4),238-244.
    197.李大明,李齐,陈文寄.腾冲火山区上新世以来的火山活动.岩石学报,2000,16(3):362-370.
    198.李浩敏,Hickey LJ.金缕梅科(广义)的叶结构及分类.植物分类学报,1988,26(2):96-110.
    199.李浩敏,郭双兴.西藏南木林中新世植物群.古生物学报,1976,15(4):598-609.
    200.李浩敏,周浙昆.西南极始新世假山毛榉叶化石新材料-兼论该属的起源、分类及其传播路线.中国科学D:地球科学,2007,37(8):1046-1055.
    201.李捷,李锡文.世界樟科植物系统学研究进展.云南植物研究,2004,26(1):1-11.
    202.李吉均,方小敏.青藏高原隆起与环境变化.科学通报,1998,43(15):1569-1574.
    203.李吉均,方小敏,潘保田,赵志军,宋友桂.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381-391.
    204.李吉均,文世宣,张青松,王富葆,郑本兴,李炳元.青藏高原隆起的时代、幅度和形式的探讨.中国科学D:地球科学,1979,(6):608-616.
    205.李明涛,孙柏年,肖良,任文秀,李相传,戴静.浙东中新世Betula mioluminifera Hu et Chaney的发现及古气候重建.地球科学进展,2008,23:651-658.
    206.李文漪.中国第四纪植被与环境.北京:科学出版社,1998,99-214.
    207.李锡康,谭筱虹,高子英,姚金昌.腾冲上新统芒棒组地质时代及沉积环境.云南地质,2004,23(2):241-251.
    208.李锡文.中国植物志,50卷,第2分册.北京:科学出版社,1990,92-94.
    209.李锡文.中国植物志,31卷.北京:科学出版社,1982.
    210.李相博,陈践发.植物碳同位素分馏作用与环境变化研究进展.地球科学进展,1998,13(3):285-290.
    211.李玉梅,陈践发,罗健,刘东生.植物中单体烷烃碳同位素组成与其生长环境的关系.地质学报,2000,74(3):273-278.
    212.林植芳,彭长连,林桂珠,李双顺.菠萝叶片的稳定碳同位素比与PEP羧化酶及PEP羧化酶激活性.植物学报,1994,36(7):534-538.
    213.刘志飞,王成善.青藏高原隆升对新生代全球气候变化的影响.大自然探索,1998,17(3):30-33.
    214.明庆忠.青藏高原与三江并流区新构造期划分及环境演化.云南地质,2007a,26(4):387-396.
    215.明庆忠.西南季风对中国自然环境影响的区域变化研究.云南地理环境研究,2007b,19(4):93-97.
    216.木士春.中国陆相硅藻土物化特征及对硅藻生长、堆理环境指示意义.湘潭矿业学院学报,2002,17(3):16-21.
    217.穆治国,佟伟,Curtis GH.腾冲火山活动的时代和岩浆来源问题.地球物理学报,1987,30(3):261-270.
    218.潘开玉,路安民,温洁.金缕梅科(广义)的叶表皮特征.植物分类学报,1990,28(1):10-26.
    219.潘瑞炽.植物生理学,第五版.北京:高等教育出版社,2004,1-321.
    220.裴鉴,丁志遵.中国植物志,第16卷第1分册.北京:科学出版社,1985.
    221.丘兴华.中国植物志,44卷,第2分册.北京:科学出版社,1996.
    222.尚映莲.腾冲硅藻土矿床及其成因.云南地质,2003,22(4):418-425.
    223.施雅风,李吉均,李炳元,姚檀栋,王苏民,李世杰,崔之久,王富保,潘保田,方小敏,张青松.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10-21.
    224.施雅风,汤懋苍,马玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学D:地球科学,1998,28(3):263-271.
    225.孙柏年,丛培允,阎德飞,解三平.云南腾冲新近纪两种被子植物化石的角质层构造及其古环境意义.古生物学报,2003,42(2):216-222.
    226.孙柏年,闫德飞,解三平,王永栋.化石植物气孔与碳同位素的分析及应用.北京:科学出版社,2009,1-222.
    227.孙博,陶君容,王宪曾,李家英.山旺植物化石.济南:山东科学技术出版社,1999,23-80.
    228.孙启高,宋书银,王宇飞,李承森.介绍双子叶植物叶结构分类术语.植物分类学报,1997,35(3):275-288.
    229.孙启高,陈立群,李承森.地质历史时期大气CO_2浓度变化对陆地维管植物气孔参数的影响.科学通报,1998,43(23):2478-2482.
    230.陶君容,杜乃秋.云南腾冲新第三纪植物群及其时代.植物学报,1982,24(3):273-285.
    231.陶君容,孔昭宸.云南洱源三营煤系的植物化石和孢粉组合.植物学报,1973,15(1):120-126.
    232.陶君容,周浙昆,刘裕生.中国晚白垩世至新生代植物区系发展演变.北京:科学出版社,2000,64-72.
    233.陶君容.横断山区中段-兰坪第三纪植物化石群及其意义.见:中国科学院青藏高原综合科学考察队编,横断山.考察专集(二).北京:北京科学技术出版社,1986,58-65.
    234.韦利杰,孙柏年,解三平,闫德飞,肖良.云南腾冲上新统植物油丹Abeodaphne hainanensis Merr.表皮微细构造研究.微体古生物学报,2005,22(4):392-399.
    235.王成善,向芳.全球气候变化-新生代构造隆升的结果.矿物岩石,2001,21(3):173-178.
    236.汪品先.新生代亚洲形变与海陆相互作用.地球科学,2005,30(1):1-18.
    237.吴靖宇,孙柏年,解三平,林志成,闫德飞,肖良.云南腾冲新近系樟科润楠属两种化石及其古环境意义,高校地质学报,2008,14(1):90-98.
    238.肖良,孙柏年,阎德飞,解三平,韦利杰.云南保山上新统黄背栎Quercus pannosa Hand.-Mazz.角质层特征及古环境意义.微体古生物学报,2006,23(1):23-30.
    239.解三平.滇西新近纪翅果数值分类和被子植物叶片的古环境重建.兰州大学博士研究生学位论文,2007.
    240.徐景先.云南中西部地区晚第三纪孢粉植物群及其古植被和古气候研究.中国科学院植物研究所博士学位论文,2002.
    241.徐景先,王宇飞,杜乃秋.云南西部羊邑和龙陵地区晚上新世植被和古气候.古地理学报,2003,5(2):217-223.
    242.徐仁,陶君容,孙湘君.希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义.植物学报,1973,15(1):103-119.
    243.应俊生.中国植物志,29卷.北京:科学出版社,2001.
    244.云南植被编写组.云南植被.北京:科学出版社,1987,1-76.
    245.张克信,王国灿,曹凯,刘超,向树元,洪汉烈,寇晓虎,徐亚东,陈奋宁,孟艳宁,陈锐明.青藏高原新生代主要隆升事件:沉积响应与热年代学记录.中国科学D:地球科学,2008,38(12):1575-1588.
    246.张宏达.中国金缕梅科植物订正.中山大学学报(自然科学版),1973,1:54-71.
    247.张美珍,邱莲卿.中国植物志,61卷.北京:科学出版社,1992,5-41.
    248.郑万钧,傅立国.中国植物志,第7卷.北京:科学出版社,1999,324-328.
    249.郑度,姚檀栋.青藏高原隆升及其环境效应.地球科学进展,2006,21(5):451-458.
    250.中国气象局气象资料室.中国地面气候标准值(1971-2000),第1,2册(内部资料).2004.中国气象科学数据共享服务网:中国地面气候标准值年值数据集(1971-2000年).(http://cdc.cma.gov.cn/shuju/index3.jsp?tpcat=SURF&dsid=SURF_CLI_CHN_MUL_MYER_19712000&pageid=3)
    251.中国新生代植物编写组.中国各门类化石:中国植物化石第三册,中国新生代植物.北京:科学出版社,1978.
    252.中国植被编委会.中国植被.北京:科学出版社,1995.
    253.周云龙.植物生物学.北京:高等教育出版社,1999.
    254.周浙昆,杨青松,夏珂.栎属高山栎组植物化石推测青藏高原的隆起.科学通报,2007,52(3):249-257.
    255.庄雪影,张粤,孙同兴.香港润楠属植物叶表皮形态及分类学意义.华南农业大学学报,2002,23(1):52-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700