用户名: 密码: 验证码:
中国三大粮食作物农田活性氮损失与氮肥利用率的定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探索协调农学、经济和环境友好的农业可持续发展道路,对保障粮食和资源环境安全具有重要意义。但是当前缺乏对区域尺度农田活性氮损失与氮肥利用率定量化研究。本文在文献数据的收集结合多年多点田间试验结果的基础上,明确我国三大粮食作物区域活性氮损失特征和影响因素,以及建立活性氮损失的估算模型,最后了解区域农田氮肥利用率情况及其影响因素。取得的主要结果如下:
     1.全国主要粮食作物农田N淋洗损失最大,N2O排放损失最小。N淋洗(水稻包括径流)损失量和损失率分别为27.2kg N ha-1和12.6%,NH3挥发损失量和损失率分别平均为20.7kg N ha-1和11.2%,N20排放损失量和损失率平均为1.86kg N ha-1和1.0%。
     2.活性氮损失区域间差异显著。N2O排放损失途径中:南方冬小麦损失较大,损失量和损失率分别为3.46kg N ha-1和1.92%。N淋洗(水稻包括径流)损失途径中:长江流域单季稻、华北冬小麦和夏玉米的损失较大,损失量分别为16.8、34.1和58.3kg N ha-1,损失率分别为4.5%、15.6%和124.9%。NH3挥发途径损失中:华南晚稻、南方冬小麦和华北夏玉米较大,损失量分别为54.9、13.1和15.0kg N ha-1、损失率分别为35.2%、9.2%和8.5%。
     3.小麦和玉米中,N20排放和N淋洗损失随着施氮量和氮盈余的增加都呈现指数上升的趋势,NH3挥发随施氮量增加呈直线上升关系。在估算N20排放和N淋洗过程中,基于施氮量估算的活性氮损失比基于氮盈余估算的结果偏高,特别在产量和效率较高水平下,两者差异更大。因此用氮盈余模型估算N20排放和N淋洗损失,用施氮量估算NH3挥发量较为合理。小麦和玉米中表明,基于根层氮素实时监控的优化施氮措施比农民习惯的施氮量分别低60%和39%,产量分别高5%和6%,氮肥利用率分别高146%和98%,同时分别减少单位籽粒活性氮损失量80%和45%。
     4.农学优化施氮量指获得最高产量时的施氮量;经济优化施氮量指获得经济效益最高时的施氮量;生态优化施氮量指综合考虑了经济和环境成本,当净效益最高时的施氮量。河南小麦生态优化施氮量为201kg N ha-1,相对于经济优化施氮量(225kg N ha-1),单位籽粒活性氮损失降低了15%,而产量没有显著性变化。玉米中,比较经济优化施氮量237kg N ha-1,生态优化施氮量平均为185kg N ha-1,单位籽粒活性氮损失降低了27%,产量没有显著性变化。生态优化施氮量随着增产量的增加而增加。
     5.近20年来,我国水稻,小麦和玉米氮肥利用率呈现先下降后上升的趋势。1990-1999,2000-2005,2006-2010年段平均氮肥利用率分别为35%,27%和34%。其中水稻3个年代段平均氮肥利用率分别为37%,28%和37%;小麦分别为34%,28%和35%;玉米分别为35%,26%和30%。水稻中以北方单季稻氮肥利用率最高为40%;南方冬小麦最高为38%;玉米以东北春玉米氮肥利用率最高为32%。
Developing ecologically optimal nitrogen management integrating agronomic, economic, and environmental aspects is urgent to ensure national food security and protect resources and environment. However, there is shortage of quantitative analysis of reactive nitrogen losses and nitrogen use efficiency of major crops in China at regional scale.In this study, based on collecting literature data and field experiments fro several years, we focus on reactive nitrogen losses (Nr) of major cereal crops in different regions and their influence factors, the development and application of empirical model for estimating reactive nitrogen losses. Finally, we comprehensive understand nitrogen recovery efficiency of major crops in China at regional scale and the influence factors. The main results were concluded as follows:
     1. N leaching was the highest and N2O emission was the lowest for major cereal crops. Cross major cereal crops, N leaching loss and rate were average27.2kg N ha-1and12.6%, NH3volatilization loss and rate were average20.7kg N ha-1and11.2%, N2O emission loss and rate were average1.86kg N ha-1and1.0%. N2O emission losses and rate were the highest as2.68kg N ha-1and1.49%for wheat, N leaching losses and rate were the highest as47.6kg N ha-1and20.8%for maize, NH3volatilization losses and rate were the highest as35.2kg N ha-1and17.2%for maize,
     2. There was great variation of Nr losses in different regions. For N2O emission, single rice in Yangtze river basin and winter wheat in south of China were the highest, N2O emission were1.89and3.46kg N ha-1, N2O emission loss rate were0.84%and1.92%. There was no significant difference of N2O emission among different regions for maize. For N leaching, single rice in Yangtze river basin and winter wheat, summer maize in North China Plain were the highest, N leaching were16.8,34.1and58.3kg N ha-1, N leaching loss rate were4.5%,15.6%and24.9%. For NH3volatilization, late rice in southern China, winter wheat in south of China and summer maize in North China Plain were the highest, NH3volatilization were54.9,13.1and15.0kg N ha-1, NH3volatilization loss rate were35.2%,9.2%and8.5%.
     3. Both N2O emissions and N leaching increased exponentially with the N application rate or N surplus, while NH3volatilization increased linearly with the N application rate. Estimated Nr losses were higher by N-R than those estimated by the N-S, especially for high-yield, high-REN systems. Across on-farm experimental of wheat and maize in North China Plain, an in-season root-zone N management strategy with a60%and39%lower N application rate and5%and6%higher grain yield increased the REN by146%and98%and reduced Nr loss intensity (based on the N-S) by80%and45%compared to farmers' typical N practices for wheat and maize, respectively.
     4. For winter wheat in Henan province, compared with economically optimal N rate as225kg N ha-1, ecologically optimal N rate was201kg N ha-1, Nr losses intensity decreased15%without yield losses. For summer maize, compared with economically optimal N rate as237kg N ha-1, ecologically optimal N rate was185kg N ha-1, without yield losses. Ecologically optimal N rate significantly increased with the increase in N-increased yield.
     5. The nitrogen recovery efficiency (REN) of major cereal crops decreased from1990-1999as35%to2000-2005as27%and then increased to34%in2006-2010. For rice, REN were37%,28%and37%in the three years. For wheat, REN were34%,28%and35%in the three years. For maize, REN were35%,26%and30%in the three years. There was great variation of REN in different regions. For rice, REN of single rice in north China was the highest as40%. Winter wheat was the highest as38%. The order of REN for maize in size was Northeast China (32%)> summer maize in North China Plain (29%)> maize in Southwest China (25%).
引文
边秀举,王维进,杨福存,李仁岗,蔡贵信,李新慧,杨震,朱兆良.1997.冀北高原草甸栗钙土春小麦中化肥氮去向的研究,土壤学报,34:60-66.
    蔡承智,陈阜,徐杰,梁颖.2002.作物产量潜力及其提高途径探讨,农业现代化研究,6:465-468.
    蔡贵信,朱兆良.1995.稻田中化肥氮的气态损失,土壤学报,32:128-135.
    陈国平,杨国航,赵明,王立春,王友德,薛吉全,高聚林,李登海,董树亭,李潮海,宋慧欣,赵久然.2008.玉米小面积超高产创建及配套栽培技术研究,玉米科学,16:1-4.
    陈磊.2007.黄土高原旱地农田生态系统N素循环及其环境效应研究,硕士学位论文.陕西:西北农林科技大学.
    陈新平,张福锁.2006.小麦—玉米轮作体系养分资源综合管理理论与实践,中国农业大学出版社.
    陈新平,周金池,王兴仁,张福锁,宝德俊,贾晓红.2000.小麦-玉米轮作制中氮肥效应模型的选择-经济和环境效益分析,土壤学报,37:346-354.
    程杰,高亚军,强秦.2008.渭北旱塬小麦不同栽培模式对土壤硝态氮残留的影响,水土保持学报,22:104-110.
    崔玉亭,李荣刚.1998.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究,中国农业大学学报,3:51-54.
    崔振岭.2005.华北平原冬小麦-夏玉米轮作体系优化氮肥管理-从田块到区域尺度,博士学位论文.北京:中国农业大学.
    董海波,郑循华,黄耀,姚志生,梅宝玲,朱建国.2009.大气CO2浓度升高和秸秆还田对稻麦轮作农田N2O排放的影响,气候与环境研究,14:1-8.
    方华,莫江明.2006.活性氮增加:一个威胁环境的问题,生态环境,15:164-168.
    封克,殷士学.1995.影响氧化亚氮形成与排放的土壤因素,土壤学进展,23:35-42.
    高兵.2012.华北平原不同农作和管理措施温室气体排放及净温室效应,博士学位论文.北京:中国农业大学.
    郭李萍,王兴仁,张福锁,陈新平,毛达如.1999.不同年份施肥对作物增产效应及肥料利用率的影响,中国农业气象,20:20-23.
    侯红乾,刘秀梅,刘光荣,李祖章,刘益仁,黄永兰,冀建华,邵彩虹,王福全.2011.有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响,中国农业科学,44:516-523.
    胡春胜,程一松,李晓欣.2002.太行山前平原农田生态系统中硝态氮的淋失研究,土壤学报,39:262-269.
    胡立勇,丁艳锋.2008.作物栽培学.北京:高等教育出版社.
    胡小康,黄彬香,苏芳,巨晓棠,江荣风,张福锁.2011.氮肥管理对夏玉米土壤CH4和N2O排放的影响,中国科学,41:117-128.
    胡小康.2011.华北平原冬小麦-夏玉米轮作体系温室其他排放及减排措施,博士学位论文.北京:中国农业大学.
    黄丽,丁树文,董舟,蔡强国,张光远.1998.三峡库区紫色土养分流失的试验研究,土壤侵蚀与 水土保持学报,4:8-13.
    焦菊英,王万中,郝小品.1999.黄土高原不同类型暴雨的降水侵蚀特征,干旱区资源与环境,13:34-42.
    巨晓棠,张福锁.2003.关于氮肥利用率的思考,生态环境,12:12-197.
    李贵桐,李保国,陈德立.2001.利用Bowen比仪测定大面积农田土壤氨挥发的方法研究,中国农业大学学报,6:56-62.
    李虎,唐启源.2006.我国水稻氮肥利用率及研究进展,作物研究,5:401-408.
    李荣刚,戴其根,皮家欢.2000.江苏太湖稻麦两熟地区生态、经济施氮量的初步研究,江苏农业研究,21:30-35.
    李书田,金继运.2011.中国不同区域农田养分输入、输出与平衡,中国农业科学,44:4207-4229.
    李晓欣,胡春胜,程一松.2003.不同施肥处理对作物产量及土壤中硝态氮累积的影响,干旱地区农业研究,21:36-42.
    李鑫,巨晓棠,张丽娟,万云静,刘树庆.2008.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响,应用生态学报,19:99-104.
    李增嘉,李凤超.1998.小麦玉米玉米间套作的产量效应与光势资源利用率的研究,山东农业大学学报,29:419-426.
    林葆,林继雄,李家康.1994.长期施肥的作物产量和土壤肥力变化,植物营养与肥料学报,1:6-17.
    刘立军,徐伟,唐成,王志琴,杨建昌.2005.土壤背景氮供应对水稻产量和氮肥利用率的影响,中国水稻科学,19:343-349.
    卢燕宇,黄耀,郑循华.2005.农田氧化亚氮排放系数的研究,应用生态学报,16:1299-1302.
    鲁艳红,纪雄辉,郑圣先,廖育林.2008.施用控释氮肥对减少稻田氮素径流损失和提高水稻氮素利用率的影响,植物营养与肥料学报,14:490-495.
    吕耀,程序.2000.太湖地区农田氮素非点源污染及环境经济分析,上海环境科学,19:143-146.
    吕耀,1998.苏南太湖流域农业非点源污染及农业持续发展战略,环境科学动态,2:1-4.
    马银丽,吉艳芝,李鑫,张琳,巨晓棠,张丽娟.2012.施氮水平对小麦-玉米轮作体系氨挥发与氧化亚氮排放的影响,生态环境学报,21:225-230.
    茅国芳,陆敏,黄明蔚,刘敏.2006.稻麦轮作农田氮素流失及控制对策研究,上海农业学报,22:86-92.
    潘志勇,吴文良,刘光栋,高秀文.2004.不同秸秆还田模式与氮肥施用量对土壤N20排放的影响,土壤肥料,5:6-8.
    彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Buresh R., Witt C.2002.提高中国稻田氮肥利用率的研究策略,中国农业科学,35:1095-1103.
    彭少麟,唐小焱.1998.Meta分析及其在生态学上的应用,生态学杂志,17:74-79.
    秦晓波,李玉娥,刘克樱,万运帆.2006.不同施肥处理稻田甲烷和氧化亚氮排放特征,农业工程学报,22:143-148.
    桑燕鸿,周大杰,杨静.2010.大气污染对人体健康影响的经济损失研究,生态经济,1:178-179.
    史培.2011.长期施肥对黄土旱塬小麦产量及土壤CO2和N2O排放的影响,硕士学位论文.陕西,西北农林科技大学.
    宋海星,李生秀.2003.玉米生长量、养分吸收量及氮肥利用率的动态变化,中国农业科学,36:71-76.
    苏芳,丁新泉,高志岭,黄彬香,陈新平,张福锁,Kogge M., R mheld V.2007.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发,中国环境科学,27:409-413.
    孙彭力,王慧君.1995.氮素化肥的环境污染,环境污染与防治,17:38-41.
    孙政才,陈国平.1993.京郊地区小麦-玉米两茬间氮-磷-钾肥的合理施用,华北农学报,8:99-105.
    谭方颖,王建林,宋迎波,2010.华北平原近45年气候变化特征分析,气象,36:40-45.
    汤勇华,黄耀.2009.中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征,农业环境科学学报,28:1070-1078.
    王春阳,周建斌,郑险峰,李生秀.2007.不同栽培模式对小麦-玉米轮作体系土壤硝态氮残留的影响,植物营养与肥料学报,13:991-997.
    王东,于振文,贾效成.2004.播期对优质强筋冬小麦籽粒产量和品质的影响,山东农业科学,2:25-26.
    王激清.2007.我国主要粮食作物施肥增产效应和养分利用效率的分析与评价,博士学位论文.北京:中国农业大学.
    王家玉,王胜佳,陈义.1996.稻田土壤中氮素淋失的研究,土壤学报,33:28-35.
    王萍,陶丹.1999.品种、播期和密度对冬小麦生育期和产量的影响,沈阳农业大学学报,30:602-605.
    王世济,韩坤龙,李强,陈洪俭.2013.江淮旱地玉米氮肥适宜用量研究,中国农学通报,29:47-50.
    王树安.1994.中国吨粮田建设,北京农业大学出版社.
    王小治,高人,朱建国,宝川靖和,封克.2005.麦季施用不同尿素的氮排水和渗漏损失,农村生态环境,21:24-29.
    王小治,高人,朱建国,蔡祖聪.2004.稻季施用不同尿素品种的氮素径流和淋溶损失,中国环境科学,24:600-604.
    王秀斌,梁国庆,周卫,孙静文,裴雪霞,夏文建.2009.优化施肥下华北冬小麦厦玉米轮作体系农田反硝化损失与N20排放特征,植物营养与肥料学报,15:48-54.
    王宜伦,苗玉红,贵会平,苏瑞光,谭金芳.2012.不同土壤类型夏玉米推荐施肥效应研究,中国农业科技导报,14:110-115.
    夏永秋,颜晓元.2011.太湖地区麦季协调农学、环境和经济效益的推荐施肥量,土壤学报,48:1210-1218.
    向平安,周燕,江巨鳌,郑华,燕惠民,黄璜.2006.洞庭湖区氮肥外部成本及稻田氮素经济生态最佳投入研究,中国农业科学,39:2513-2537.
    肖新华.2004.冬小麦/夏玉米轮作下灌溉农田水氮平衡的定量评价,硕士学位论文.北京:中国农业大学.
    肖焱波,段宗颜,张福锁,苏凡,金航,陈新平,雷宝坤.2001.移栽玉米的氮素诊断及追肥推荐研究,土壤肥料,6:16-19.
    谢立勇,林而达.2007.二氧化碳浓度增高对稻-麦品质影响研究进展,应用生态学报,18:659-664.
    邢素丽,刘孟朝,徐明岗.2010.有机无机配施对太行山山前平原小麦产量和土壤培肥的影响,华 北农学报,25:212-216.
    徐华,邢光熹,蔡祖聪,鹤田治雄.2000.土壤水分状况和质地对稻田N2O排放的影响,土壤学报,37:499-505.
    许仁良.2010.麦秸还田对水稻产量、品质及环境效应的影响,博士学位论文.江苏:扬州大学.
    闫湘.2008.我国化肥利用现状与养分资源高效利用研究,博士学位论文.北京:中国农业科学院农业资源与农业区划研究所.
    晏娟,方舒,杨绳岩,梁华金.2014.巢湖地区水稻氮肥利用率和最大经济效益施氮量的研究,安徽农业大学学报,41:1-6.
    杨海生,张洪程,杨连群,张士永,戴其根,霍中洋.2002.依叶龄运筹氮肥对优质水稻产量与品质的影响,中国农业大学学报,7:19-26.
    杨淑莉,朱安宁,张佳宝,陈效民,朱强根.2010.不同施氮量和施氮方式下田间氨挥发损失及其影响因素,干旱区研究,27:415-421.
    易时来.2005.稻-麦/油轮作体系中氮素淋失与利用研究,硕士学位论文.重庆:西南农业大学.
    袁东海,王兆骞,陈欣,郭新波,张如良.2003.红壤小流域不同利用方式氮磷流失特征研究,生态学报,23:188-198.
    袁伟玲,曹凑贵,程建平,谢宁宁.2008.间歇灌溉模式下稻田CH4和N2O排放及温室效应评估,中国农业科学,41:4294-4300.
    张风荣.2002.土壤地理学,中国农业出版社.
    张福锁,巨晓棠.2002.对我国持续农业发展中氮肥管理与环境问题的几点认识,土壤学报,39:41-55.
    张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.2008.中国主要粮食作物肥料利用率现状与提高途径,土壤学报,45:915-924..
    张福珠,熊先哲,戴同顺.1984.应用15N研究土壤-植物系统氮素淋失动态,环境科学,5:21-24.
    张静,王德建.2007.太湖地区乌栅土稻田氨挥发损失的研究,中国生态农业学报,15:84-87.
    张淑梅,张建明,李丁鲁,李茂柏,王慧,朴钟泽,邹德堂.2009.高抗性淀粉粳稻新品系稻米淀粉链长分布与主要品质特征差异,中国农业科学,42:2237-2243.
    张卫峰,季玥秀,马骥,王雁峰,马文奇,张福锁.2008.中国化肥消费需求影响因素及走势分析(Ⅱ)种植结构,资源科学,30:31-36.
    张卫峰,张福锁.2013.中国肥料发展研究报告,中国农业大学.
    张小莉,孟琳,王秋君,罗佳,黄启为,徐阳春,杨兴明,沈其荣.2009.不同有机无机复混肥对水稻产量和氮素利用率的影响,应用生态学报,20:624-630.
    张玉铭,胡春胜,董文旭.2005.华北太行山前平原农田氨挥发损失,植物营养与肥料学报,11:417-419.
    赵宏伟,沙汉景.2014.我国稻田氮肥利用率的研究进展,东北农业大学学报,45:1-7.
    赵荣芳,陈新平,张福锁.2009.华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡,土壤学报,46:684-697.
    赵荣芳.2006.冬小麦-夏玉米轮作水氮资源优化管理体系的可持续性评价,博士学位论文.北京:中国农业大学.
    郑循华,王明星,王跃思,沈壬兴,张文,龚晏邦.1997.温度对农田N20产生与排放的影响,环境科学,18:1-5.
    周跃.1999.土壤植被系统及其坡面生态工程意义,山地学报,17:224-229.
    朱显漠,任美锷.1991.中国黄土高原的形成过程与整治对策,中国历史地理论丛,4:1-14.
    朱兆良.1992.农田生态系统中化肥的去向和氮素管理,见:朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,228-229.
    朱兆良.1998.我国氮肥的使用现状、问题和对策.见:李庆逵,朱兆良,于天仁.中国农业持续发展中问题,南昌,江西科学技术出版社,35-51.
    Austin A.T., Yahdjian L., Stark J.M., Belnap J., Porporato A., Norton U., Ravetta D.A., Schaeffer S.M. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems, Oecologia, 141:221-235.
    Baggs E., Chebii J., Ndufa J.2006. A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya, Soil and Tillage Research,90:69-76.
    Baggs E., Rees R., Smith K., Vinten A.2000. Nitrous oxide emission from soils after incorporating crop residues, Soil Use and Management,16:82-87.
    Baggs E., Stevenson M., Pihlatie M., Regar A., Cook H., Cadisch G.2003. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage, Plant and Soil, 254:361-370.
    Barning, R.:Economic evaluation of nitrogen application in the North China Plain. Ph.D. thesis, Hohenheim University, Stuttgart, Germany,2008
    Bonesmo H., Skjelvag A.O., Henry Janzen H., Klakegg O., Tveito O.E.2012. Greenhouse gas emission intensities and economic efficiency in crop production:A systems analysis of 95 farms, Agricultural Systems,110:142-151.
    Bouwman A.1996. Direct emission of nitrous oxide from agricultural soils, Nutrient cycling in Agroecosystems,46:53-70.
    Bouwman A., Boumans L., Batjes N.2002a. Emissions of N2O and NO from fertilized fields:Summary of available measurement data, Global Biogeochemical Cycles,16:1058-1064.
    Bouwman A., Boumans L., Batjes N.2002b. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands, Global Biogeochemical Cycles,16:1024-1032.
    Braschkat J., Mannheim T., Horlacher D., Marschner H.1993. Measurement of ammonia emissions after liquid manure application:Ⅰ. Construction of a windtunnel system for measurements under field conditions, Zeitschrift fur Pflanzenernahrung und Bodenkunde,156:393-396.
    Bremner J., Robbins S., Blackmer A.1980. Seasonal variability in emission of nitrous oxide from soil, Geophysical Research Letters,7:641-644.
    Bremner J.M.1997. Sources of nitrous oxide in soils, Nutrient cycling in Agroecosystems,49:7-16.
    Brentrup F., Kiisters J., Lammel J., Barraclough P., Kuhlmann H.2004. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems, European Journal of Agronomy,20:265-279.
    Brink, C., van Grinsven, H., Jakobsen, B. H., Rabl, A., Gren, I. M., Holland, M., Klimont, Z., Hicks, K., Brouwer, R., Dickens, R., Willems, J., Termansen, M., Velthof, G., Alkemade, R., van Oorschot, M., Webb, J.2011. Costs and benefits of nitrogen in the environment. In:The european nitrogen assessment-sources, effects and policy perspectives, edited by:Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B., Cambridge University Press, Cambridge,513-540.
    Bullock D.G., Bullock D.S.1994. Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn:A comparison, Agronomy Journal,86:191-195.
    Bundy L., Andraski T.1995. Soil yield potential effects on performance of soil nitrate tests, Journal of Production Agriculture,8:561-568.
    Cai G.X., Chen D.L., Ding H., Pacholski A., Fan X.H., Zhu Z.L.2002. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain, Nutrient Cycling in Agroecosystems, 63:187-195.
    Cai G.X., Fan X.H., Yang Z., Zhu Z.L.1998. Gaseous loss of nitrogen from fertilizers applied to wheat on a caleareous soil in North China Plain, Pedosphere,8:45-52.
    Cassman K., Plant R.1992. A model to predict crop response to applied fertilizer nutrients in heterogeneous fields, Fertilizer Research,31:151-163.
    Cassman K.G., Dobermann A., Walters D.T.2002. Agroecosystems, nitrogen-use efficiency, and nitrogen management, AMBIO:A Journal of the Human Environment,31:132-140.
    Cassman K.G., Dobermann A., Walters D.T., Yang H.2003. Meeting cerea ldemand while protecting natural resources and improving environmental quality, Annual Review of Environment and Resources,28:315-358.
    Cassman K.G., Pingali P.L.1995. Extrapolating trends from long-term experiments to farmers' fields: the case of irrigated rice systems in Asia. In:Barnett V., Payne R., Steiner R. (Eds.), Agricultural Sustainability in Economic, Environmental, and Statistical Terms. Wiley, London, pp:64-84.
    Chen D., Li Y., Grace P., Mosier A.R.2008. N2O emissions from agricultural lands:a synthesis of simulation approaches, Plant and Soil,309:169-189.
    Chen X., Cabrera M., Zhang L., Wu J., Shi Y, Yu W., Shen S.2002. Nitrous oxide emission from upland crops and crop-soil systems in northeastern China, Nutrient Cycling in Agroecosystems, 62:241-247.
    Chen X., Zhang F., Cui Z., Li J., Ye Y, Yang Z.2010. Critical grain and stover nitrogen concentrations at harvest for summer maize production in China, Agronomy Journal,102:289-295.
    Chen X.P., Cui Z.L., Vitousek P.M., Cassman K.G., Matson P.A., Bai J.S., Meng Q.F., Hou P., Yue S.C., Romheld V., Zhang F.S.2011. Integrated soil-crop system management for food security, PNAS, 108:6399-404.
    Clark C.M., Tilman D.2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands, Nature,451:712-715.
    Cole C., Duxbury J., Freney J., Heinemeyer O., Minami K., Mosier A., Paustian K., Rosenberg N., Sampson N., Sauerbeck D.1997. Global estimates of potential mitigation of greenhouse gas emissions by agriculture, Nutrient Cycling in Agroecosystems,49:221-228.
    Conway G., Toenniessen G.1999. Feeding the world in the twenty-first century, Nature,402 Suppl:C55-C58.
    Cui F., Yan G.X., Zhou Z.X., Zheng X.H., Deng J.2012. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain, Soil Biology and Biochemistry,48:10-19.
    Cui Z., Chen X., Miao Y., Li F., Zhang F., Li J., Ye Y, Yang Z., Zhang Q., Liu C.2008a. On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain, Agronomy Journal,100:1527.
    Cui Z., Chen X., Miao Y., Zhang F., Sun Q., Schroder J., Zhang H., Li J., Shi L., Xu J.2008b. On-farm evaluation of the improved soil N-based nitrogen management for summer maize in North China Plain, Agronomy Journal,100:517-525.
    Cui Z., Chen X., Zhang F.2010a. Current nitrogen management status and measures to improve the intensive wheat-maize system in China, Ambio,39:376-384.
    Cui Z., Yue S., Wang G., Meng Q., Wu L., Yang Z., Zhang Q., Li S., Zhang F., Chen X.2013a. Closing the yield gap could reduce projected greenhouse gas emissions:a case study of maize production in China, Glob Chang Biol. DOI:10.1111/gcb.12213.
    Cui Z., Yue S., Wang G., Zhang F., Chen X.2013b. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production, Environ Sci Technol, 47:6015-22.
    Cui Z., Zhang F., Chen X., Dou Z., Li J.2010b. In-season nitrogen management strategy for winter wheat:Maximizing yields, minimizing environmental impact in an over-fertilization context, Field Crops Research,116:140-146.
    Cui Z., Zhang F., Chen X., Miao Y., Li J., Shi L., Xu J., Ye Y, Liu C., Yang Z.2008c. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test, Field Crops Research,105:48-55.
    Cui Z., Zhang F., Mi G., Chen F., Li F., Chen X., Li J., Shi L.2009. Interaction between genotypic difference and nitrogen management strategy in determining nitrogen use efficiency of summer maize, Plant and soil,317:267-276.
    Cui Z.L., Xu J.F., Shi L.W., Chen X.P., Zhang F.S., Li J.L.2005. Field quick testing method of soil nitrate, Journal of China Agricultural University,10:10-12.
    Davidson E.A.2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860, Nature Geoscience,2:659-662.
    Davidson E.A., Verchot L.V.2000. Testing the Hole in the Pipe Model of nitric and nitrous oxide emissions from soils using the TRAGNET Database, Global Biogeochemical Cycles, 14:1035-1043.
    De Klein C.A., Sherlock R.R., Cameron K.C., van der Weerden T.J.2001. Nitrous oxide emissions from agricultural soils in New Zealand-a review of current knowledge and directions for future research, Journal of the Royal Society of New Zealand,31:543-574.
    Del Grosso S., Mosier A., Parton W., Ojima D.2005. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA, Soil and Tillage Research,83:9-24.
    Denmead O.1983. Micrometeorological methods for measuring gaseous losses of nitrogen in the field, Gaseous loss of nitrogen from plant-soil systems:133-157. In Freney J. R., Simpson J. R. (Eds.) Gaseous loss of nitrogen from plant-soil systems. Martinus Nijhoff, The Hague, The Netherlands.
    Diaz R.J., Rosenberg R.2008. Spreading dead zones and consequences for marine ecosystems, Science, 321:926-929.
    Ding H., Cai G., Wang Y., Chen D.2002. Nitrification-denitrification loss and N2O emission from urea applied to crop-soil systems in North China Plain,17th World Congress of Soil Science. ISSS, Bangkok Thailand. Symp.
    Dobermann A., Cassman K.G.2005. Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption, Science in China Series C:Life Sciences,48:745-758.
    Dobermann A., Dawe D., Roetter R.P., Cassman K.G.2000. Reversal of rice yield decline in a long-term continuous cropping experiment, Agronomy Journal,92:633-643.
    Dobermann, A.2005. Nitrogen use efficiency-State of the art. In "Proceedings of the International Workshop on Enhanced-Efficiency Fertilizers", Frankfurt, Germany. International Fertilizer Industry Association, Paris (CD-ROM).
    Drinkwater L.E., Snapp S.2007. Nutrients in agroecosystems:rethinking the management paradigm, Advances in Agronomy,92:163-186.
    Fageria N., Baligar V.2005. Enhancing nitrogen use efficiency in crop plants, Advances in agronomy, 88:97-185.
    Fan M., Shen J., Yuan L., Jiang R., Chen X., Davies W.J., Zhang F.2012. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China, Journal of experimental botany,63:13-24.
    Fan X.H., Song Y.S., Lin D.X., Yang L.Z., Zhou J.M.2005. Ammonia volatilization losses from urea applied to wheat on a paddy soil in taihu region, China, Pedosphere,15:59-65.
    Fang Q.X., Yu Q., Wang E.L., Chen Y.H., Zhang G.L., Wang J., Li L.H.2006. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain, Plant and Soil,284:335-350.
    FAO.2012. FAOSTAT-Agriculture Database. Available at http://faostat.fao.org/site/339/default.aspx.
    Feng J., Chen C., Zhang Y., Song Z., Deng A., Zheng C., Zhang W.2013. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China:Ameta-analysis, Agriculture, Ecosystems & Environment,164:220-228.
    Fenn L., Miyamoto S.1981. Ammonia loss and associated reactions of urea in calcareous soils, Soil Science Society of America Journal,45:537-540.
    Firestone M., Davidson E., Andreae M., Schimel D.1989. Microbiological basis of NO and N2O production and consumption in soil, p.7-21. In Andreae A. O., Schimel D. S. (Eds.) Exchange of trace gases between terrestrial ecosystems and the atmosphere.. Dahlem Konferenzen. John Wiley & Sons, Ltd., Chichester, United Kingdom.
    Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O'Connell C., Ray D.K., West P.C.2011. Solutions for a cultivated planet, Nature,478:337-342.
    Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Dorland, R. V.2007. Changes in atmospheric constituents and in radiative forcing, p.129-234. In:Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change, edited by:Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L., Cambridge University Press.
    Foulkes M.J., Hawkesford M.J., Barraclough P.B., Holdsworth M.J., Kerr S., Kightley S., Shewry P.R. 2009. Identifying traits to improve the nitrogen economy of wheat:Recent advances and future prospects, Field Crops Research,114:329-342.
    Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C., Green P., Holland E.2004. Nitrogen cycles:past, present, and future, Biogeochemistry,70:153-226.
    Gao Q., Li C., Feng G., Wang J., Cui Z., Chen X., Zhang F.2012. Understanding yield response to nitrogen to achieve high yield and high nitrogen use efficiency in rainfed com, Agronomy Journal, 104:165-168.
    Gburek W.J., Sharpley A.N.1998. Hydrologic controls on phosphorus loss from upland agricultural watersheds, Journal of Environmental Quality,27:267-277.
    Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L, Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C.2010. Food security:the challenge of feeding 9 billion people, science, 327:812-818.
    Goedkoop M.1995. The eco-indicator 95:weighting method for environmental impact analysis for clean design, Comput Chem Eng,20:1377-1382.
    Grassini P., Cassman K.G.2012. High-yield maize with large net energy yield and small global warming intensity, Proceedings of the National Academy of Sciences,109:1074-1079.
    Gregorich E., Rochette P., VandenBygaart A., Angers D.2005. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada, Soil and Tillage Research, 83:53-72.
    Guarda G., Padovan S., Delogu G.2004. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels, European Journal of Agronomy,21:181-192.
    Guo J.H., Liu X.J., Zhang Y, Shen J.L., Han W.X., Zhang W.F., Christie P., Goulding K.W., Vitousek P.M., Zhang F.S.2010. Significant acidification in major Chinese croplands, Science, 327:1008-1018.
    He C.E., Liu X., Fangmeier A., Zhang F.2007. Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain, Agriculture, ecosystems & environment,121:395-400.
    Hoben J., Gehl R., Millar N., Grace P., Robertson G.2011. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest, Global Change Biology, 17:1140-1152.
    Holland E.A., Robertson G.P., Greenberg J., Groffman P.M., Boone R.D., Gosz J.R.1999. Soil CO2, N2O, and CH4 exchange.In:Standard Soil Methods for Long-Term Ecological Research (eds RobertsonGP et al.) Oxford University Press, New York.
    Hou H., Peng S., Xu J., Yang S., Mao Z.2012. Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China, Chemosphere, 89:884-92.
    Huang J., Hu R., Cao J., Rozelle S.2008. Training programs and in-the-field guidance to reduce China's overuse of fertilizer without hurting profitability, Journal of Soil and water Conservation, 63.-165A-167A.
    IPCC.2007. IPCC 2007 Guidelines for National Greenhouse Gas Inventories Volume 4:Agriculture, Forestry, and Other Landuse (OECD, Paris).
    Ju X., Christie P.2011. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems:A case study on the North China Plain, Field Crops Research, 124:450-458.
    Ju X.T., Lu X., Gao Z.L., Chen X.P., Su F., Kogge M., Romheld V., Christie P., Zhang F.S.2011. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions, Environmental Pollution,159:1007-16.
    Ju X.T., Xing G.X., Chen X.P., Zhang S.L., Zhang L.J., Liu X.J., Cui Z.L., Yin B., Christie P., Zhu Z.L. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems, Proceedings of the National Academy of Sciences,106:3041-3046.
    Kim D. G., Hernandez-Ramirez G., Giltrap D.2013. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input:A meta-analysis, Agriculture, Ecosystems & Environment,168:53-65.
    Kim S., Dale B.E.2008. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production, Environmental science & technology,42:6028-6033.
    Klein C.D., McTaggart P., Smith K., Stevens R., Harrison R., Laughlin R.1999. Measurement of nitrous oxide emissions from grassland soil using photoacoustic infrared spectroscopy, longpath infrared spectroscopy, gas chromatography, and continuous flow isotoperatio mass spectrometry, Communications in Soil Science & Plant Analysis,30:1463-1477.
    Kool D.M., Dolfing J., Wrage N., Van Groenigen J.W.2011. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil, Soil Biology and Biochemistry,43:174-178.
    L6pez-Bellido L., L6pez-Bellido R.J., Redondo R.2005. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application, Field Crops Research,94:86-97.
    Ladha J.K., Pathak H., J Krupnik T., Six J., van Kessel C.2005. Efficiency of fertilizer nitrogen in cereal production:retrospects and prospects, Advances in Agronomy,87:85-156.
    Lehmann J., Schroth G.2003. Nutrient leaching. In:Trees, Crops and Soil fertility-Concepts and Research methods (eds Schroth G, Sinclair F) CAB International, Wallingford, UK.
    Li C., Zhuang Y., Cao M., Crill P., Dai Z., Frolking S., Moore Iii B., Salas W., Song W., Wang X.2001a. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China, Nutrient Cycling in Agroecosystems,60:159-175.
    Liang X., Li H., He M., Chen Y., Tian G., Xu S.2008. The ecologically optimum application of nitrogen in wheat season of rice-wheat cropping system, Agronomy journal,100:67-72.
    Linquist B., Groenigen K.J., Adviento Borbe M.A., Pittelkow C., Kessel C.2012. An agronomic assessment of greenhouse gas emissions from major cereal crops, Global Change Biology, 18:194-209.
    Liu C. A., Zhou L. M., Jia J. J., Wang L. J., Si J. T., Li X., Pan C. C., Siddique K.H.M., Li F. M.2014. Maize yield and water balance is affected by nitrogen application in a film-mulching ridge-furrow system in a semiarid region of China, European Journal of Agronomy,52:103-111.
    Liu C., Wang K., Zheng X.2012. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China, Biogeosciences,9:839-850.
    Liu S., Qin Y, Zou J., Liu Q.2010. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China, Science of The Total Environment,408:906-913.
    Liu X., Ju X., Zhang Y., He C., Kopsch J., Zhang F.2006. Nitrogen deposition in agroecosystems in the Beijing area, Agriculture, ecosystems & environment,113:370-377.
    Liu X., Zhang Y., Han W., Tang A., Shen J., Cui Z., Vitousek P., Erisman J.W., Goulding K., Christie P. 2013. Enhanced nitrogen deposition over China, Nature,494:459-463.
    Liu X.J., Ju X.T., Zhang F.S., Pan J.R., Christie P.2003. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain, Field Crops Research,83:111-124.
    Lory J., Scharf P.2003. Yield goal versus delta yield for predicting fertilizer nitrogen need in corn, Agronomy Journal,95:994-999.
    Luo X.S., Liu P., Tang A.H., Liu J.Y., Zong X.Y., Zhang Q., Kou C.L., Zhang L.J., Fowler D., Fangmeier A., Christie P., Zhang F.S., Liu X.J.2013. An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics, Atmospheric Environment,74:209-216.
    Ma Y.C., Kong X.W., Yang B., Zhang X.L., Yan X.Y., Yang J.C., Xiong Z.Q.2013. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management, Agriculture, Ecosystems & Environment,164:209-219.
    Mamo M., Malzer G., Mulla D., Huggins D., Strock J.2003. Spatial and temporal variation in economically optimum nitrogen rate for corn, Agronomy Journal,95:958-964.
    Matzner E., Borken W.2008. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review, European Journal of Soil Science,59:274-284.
    McSwiney C.P., Robertson G.P.2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system, Global Change Biology,11:1712-1719.
    Meng L., Ding W.X., Cai Z.C.2005. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil, Soil Biology and Biochemistry,37:2037-2045.
    Meng Q. F., Chen X. P., Zhang F. S., Cao M. H., Cui Z. L., Bai J. S., Yue S. C., Chen S. Y., MULler T. 2012. In-Season Root-Zone Nitrogen Management Strategies for Improving Nitrogen Use Efficiency in High-Yielding Maize Production in China, Pedosphere,22:294-303.
    Millar N., Baggs E.2005. Relationships between N2O emissions and water-soluble C and N contents of agroforestry residues after their addition to soil, Soil Biology and Biochemistry,37:605-608.
    Moomaw W.R., Birch M.B.2005. Cascading costs:An economic nitrogen cycle, Science in China Series C:Life Sciences,48:678-696.
    Mummey D., Smith J., Bolton Jr H.1994. Nitrous oxide flux from a shrub-steppe ecosystem:sources and regulation, Soil Biology and Biochemistry,26:279-286.
    Neeteson J., Wadman W.1987. Assessment of economically optimum application rates of fertilizer N on the basis of response curves, Fertilizer Research,12:37-52.
    Nykanen H., Alm J., Lang K., Silvola J., Martikainen P.J.1995. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland, Journal of Biogeography:3-51-357.
    Peng S. Z., Yang S. H., Xu J. Z., Luo Y. F., Hou H. J.2011. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements, Paddy and Water Environment, 9:333-342.
    Peng S.B., Cassman K.G.1998. Upper thresholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice, Agronomy Journal,90:178-185.
    Philippot L., Hallin S.2011. Towards food, feed and energy crops mitigating climate change, Trends in Plant Science,16:476-480.
    Raun W.R., Johnson G.V.1999. Improving nitrogen use efficiency for cereal production, Agronomy Journal,91:357-363.
    Reay D.S., Davidson E.A., Smith K.A., Smith P., Melillo J.M., Dentener F., Crutzen P.J.2012. Global agriculture and nitrous oxide emissions, Nature Climate Change,2:410-416.
    Ryden J., Skinner J., Nixon D.1987. Soil core incubation system for the field measurement of denitrification using acetylene-inhibition, Soil Biology and Biochemistry,19:753-757.
    Sawyer J., Nafziger E., Randall G., Bundy L., Rehm G., Joern B.2006. Concepts and rationale for regional nitrogen rate guidelines for corn Iowa State University, University Extension.
    Sayer J., Cassman K.G.2013. Agricultural innovation to protect the environment, Proceedings of the National Academy of Sciences,110:8345-8348.
    Scharf P.C., Kitchen N.R., Sudduth K.A., Davis J.G., Hubbard V.C., Lory J.A.2005. Field-scale variability in optimal nitrogen fertilizer rate for com, Agronomy Journal,97:452-461.
    Schroth G., Sinclair F.L.2003. Trees, crops and soil fertility:concepts and research methods. CABI, Wallingford, UK, p 464.
    Sey B.K., Manceur A.M., Whalen J.K., Gregorich E.G., Rochette P.2008. Small-scale heterogeneity in carbon dioxide, nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil, Soil Biology and Biochemistry,40:2468-2473.
    Snyder C.S., Bruulsema T.W., Jensen T.L., Fixen P.E.2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects, Agriculture, Ecosystems & Environment,133:247-266.
    Stanford G., Dzienia S., Vander Pol R.A.1975. Effect of temperature on denitrification rate in soils, Soil Science Society of America Journal,39:867-870.
    Stehfest E., Bouwman L.2006. N2O and NO emission from agricultural fields and soils under natural vegetation:summarizing available measurement data and modeling of global annual emissions, Nutrient Cycling in Agroecosystems,74:207-228.
    Sutton M.A., Howard C.M., Erisman J.W.2011. The European nitrogen assessment:sources, effects and policy perspectives Cambridge University Press.
    Syakila A., Kroeze C.2011. The global nitrous oxide budget revisited, Greenhouse Gas Measurement and Management,1:17-26.
    Thorn K., Mikita M.2000. Nitrite Fixation by Humic Substances Nitrogen-15 Nuclear Magnetic Resonance Evidence for Potential Intermediates in Chemodenitrification, Soil Science Society of America Journal,64:568-582.
    Tian H., Lu C., Melillo J., Ren W., Huang Y., Xu X., Liu M., Zhang C., Chen G., Pan S., Liu J., Reilly J. 2012. Food benefit and climate warming potential of nitrogen fertilizer uses in China, Environmental Research Letters,7:044020(8pp).
    Tilman D., Balzer C., Hill J., Befort B.L.2011. Global food demand and the sustainable intensification of agriculture, Proceedings of the National Academy of Sciences,108:20260-20264.
    Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S.2002. Agricultural sustainability and intensive production practices, Nature,418:671-677.
    Tilman D., Fargione J., Wolff B., D'Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W.H., Simberloff D., Swackhamer D.2001. Forecasting agriculturally driven global environmental change, Science,292:281-284.
    van Beek C.L., Meerburg B.G., Schils R.L.M., Verhagen J., Kuikman P.J.2010. Feeding the world's increasing population while limiting climate change impacts:linking N2O and CH4 emissions from agriculture to population growth, Environmental Science & Policy,13:89-96.
    Van Groenigen J., Velthof G., Oenema O., Van Groenigen K., Van Kessel C.2010a. Towards an agronomic assessment of N2O emissions:a case study for arable crops, European Journal of Soil Science,61:903-913.
    Van Groenigen J.W., Velthof G.L., Oenema O., Van Groenigen K.J., Van Kessel C.2010b. Towards an agronomic assessment of N2O emissions:a case study for arable crops, European Journal of Soil Science,61:903-913.
    Velthof G.L., Kuikman P.J., Oenema O.2002. Nitrous oxide emission from soils amended with crop residues, Nutrient Cycling in Agroecosystems,62:249-261.
    Wang D., Liu Q., Lin J., Sun R.2004. Optimum nitrogen use and reduced nitrogen loss for production of rice and wheat in the Yangtse Delta region, Environmental geochemistry and health, 26:221-227.
    Wang S.J., Han K.L., Li Q., Chen H.J.2013. The optimum amount of nitrogen fertilizer of maize in Jianghuai area, Chinese Agricultural Science Bulletin,29:47-50.
    Wang X., Cai D., Hoogmoed W.B., Oenema O.2011. Regional distribution of nitrogen fertilizer use and N-saving potential for improvement of food production and nitrogen use efficiency in China, J Sci Food Agric,91:2013-23.
    Wang Y.L., Miao Y.X., Gui H.P., Su R.G., Tan J.F.2012. Effect of recommend fertilization on summer maize in different soil groups, Journal of Agricultural Science and Technology,14:110-115.
    Williams J.D., Crozier C.R., White J.G., Heiniger R.W., Sripada R.P., Crouse D.A.2007. Illinois soil nitrogen test predicts southeastern US corn economic optimum nitrogen rates, Soil Science Society of America Journal,71:735-744.
    Witt C., Dobermann A., Abdulrachman S., Gines H., Guanghuo W., Nagarajan R., Satawatananont S., Thuc Son T., Sy Tan P., Van Tiem L.1999. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia, Field Crops Research,63:113-138.
    Wrage N., Velthof G., Van Beusichem M., Oenema O.2001. Role of nitrifier denitrification in the production of nitrous oxide, Soil Biology and Biochemistry,33:1723-1732.
    Wu L.Q., Ma W.Q., Zhang C.C., Wu L., Zhang W.F., Jiang R.F., Zhang F.S., Cui Z.L., Chen X.P.2013. Current potassium-management status and grain-yield response of Chinese maize to potassium application, Journal of Plant Nutrition and Soil Science,176:441-449.
    Xia Y., Yan X.2011a. Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake region of China, Sustainability Science,7:33-44.
    Xia Y.Q., Yan X.Y.2011b. Nitrogen fertilization rate recommendation integrating agronomic, environmental, and economic benefits for wheat season in the Taihu Lake region, Acta Pedologica Sinica,48:1210-1218.
    Xing G.1998. N2O emission from cropland in China, Nutrient Cycling in Agroecosystems,52:249-254.
    Xing G., Yan X.1999. Direct nitrous oxide emissions from agricultural fields in China estimated by the revised 1996 IPPC guidelines for national greenhouse gases, Environmental Science & Policy, 2:355-361.
    Xing G., Zhu Z.1997. Preliminary studies on N2O emission fluxes from upland soils and paddy soils in China, Nutrient Cycling in Agroecosystems,49:17-22.
    Yan X., Akimoto H., Ohara T.2003. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia, Global Change Biology,9:1080-1096.
    Yan Y, Sha L., Cao M., Zheng Z., Tang J., Wang Y, Zhang Y., Wang R., Liu G., Wang Y 2008. Fluxes of CH4 and N2O from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China, Journal of Environmental Sciences,20:207-215.
    Yao Z.S., Zhou Z.X., Zheng X.H., Xie B.H., Mei B.L., Wang R., Butterbach-Bahl K., Zhu J.G.2010. Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China, Plant and Soil,327:315-330.
    Ye Y., Wang G., Huang Y, Zhu Y, Meng Q., Chen X., Zhang R, Cui Z.2011. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties, Field Crops Research,124:316-322.
    Zhang W., Tian Z., Zhang N., Li X.1996. Nitrate pollution of groundwater in northern China, Agriculture, Ecosystems & Environment,59:223-231.
    Zhang Y.M., Chen D.L., Zhang J.B., R E., Hu C.S., Zhu A.N.2004. Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China Plain, Pedosphere,14:533-540.
    Zhang Y.M., Hu C.S., Zhang J.B., Chen D.L.2009. Nitrogen balance in intensive agriculture in the north china plain:The Proceedings of the International Plant Nutrition Colloquium XVI, Department of Plant Sciences, UC Davis, UC Davis.
    Zhu Z.2006. On the methodology of recommendation for the application rate of chemical fertilizer nitrogen to crops, Plant Nutrition and Fertilizer Science,12:1-4.
    Zhu Z., Cai G., Simpson J., Zhang S., Chen D., Jackson A., Freney J.1988. Processes of nitrogen loss from fertilizers applied to flooded rice fields on a calcareous soil in north-central China, Fertilizer Research,18:101-115.
    Zhu Z., Chen D.2002. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies, Nutrient Cycling in Agroecosystems,63:117-127.
    Zhu Z.L.1992. Efficient management of nitrogen fertilizers for flooded rice in relation to nitrogen transformations in flooded soils, Pedosphere,2:97-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700