用户名: 密码: 验证码:
京杭大运河生态环境变迁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
京杭大运河全长1794km,具有2500多年的历史,在中国历史上发挥了政治、经济、军事、文化交流等重要作用,至今济宁以南1100多公里的航道仍在被利用。但目前运河存在着的生态环境现状不良、人文环境关注度不足的问题。南水北调东线工程的实施和京杭大运河申请世界文化遗产,为大运河生态环境的保护提供了新的机遇和挑战。开展京杭大运河沿线生态环境变迁研究,对京杭大运河区域及沿岸城市的经济可持续发展具有现实意义。
     本文通过野外调查,结合历史文献,以遥感数据为基础,进行土地利用解译和植被反演,分析了京杭大运河两岸60km范围内的土地利用结构变化和植被分布、年内变化及年际变化现状;以京杭大运河徐州段为例,采用遥感数据进行解译和温度反演,提出不同年代区域森林覆盖率和区域平均温度变化定量关系式;运用RegCM3气候模型对不同区域地表温度的模拟,探讨各区域多年平均气温和森林覆盖率关系;以京杭大运河扬州段为例,通过将河口、河道、运河变迁和城市演变相结合,分析扬州城市自形成之初至2006年2500年来的空间演变;以京杭大运河北京段为例,提出了历史文化遗产类环境评价构成要素及新的综合环境评价模型。具体研究内容及结果简述如下:
     本文通过野外调查,结合历史文献,以遥感数据为基础,进行土地利用解译和植被反演,分析了京杭大运河两岸60km范围内的土地利用结构变化和植被分布、年内变化及年际变化现状;以京杭大运河徐州段为例,采用遥感数据进行解译和温度反演,提出不同年代区域森林覆盖率和区域平均温度变化定量关系式;运用RegCM3气候模型对不同区域地表温度的模拟,探讨各区域多年平均气温和森林覆盖率关系;以京杭大运河扬州段为例,通过将河口、河道、运河变迁和城市演变相结合,分析扬州城市自形成之初至2006年2500年来的空间演变;以京杭大运河北京段为例,提出了历史文化遗产类环境评价构成要素及新的综合环境评价模型。具体研究内容及结果简述如下:
     (1)以遥感反演植被指数,结合MODIS-NDVI和SPOT/VEGETATION NDVI序列植被指数,探讨了京杭大运河两岸60km范围内的植被分布、年内变化及年际变化。结果表明,大运河沿线植被覆盖总体呈增加趋势,植被指数最高值为0.42出现在8月份,最低值为0.18出现在1月份。
     (2)以京杭大运河徐州段为例,对徐州地区不同时期同一月份的遥感数据进行解译和温度反演,获得各土地利用类型及各区域平均温度,提出了区域森林覆盖率和区域气候变化定量关系。研究表明,区域温度变化和林地覆盖变化密切相关,且1987年8月11日区域最高与最低温度差为0.98℃。其遥感影像反演各区域多年平均温度与森林覆盖率关系式为:y=-0.2132x+25.769;2006年8月11日区域平均最高温度为29.61℃,最低为26.37℃,区域间最高温度与最低温度差异为3.24℃,这不仅反映了城市化带来的热岛效应对局部区域极端温度和平均温度的影响,同时也反映了森林覆盖率变化对区域极端温度和平均温度的双重影响。遥感影像反演各区域多年平均温度与森林覆盖率关系式为:y=-0.1044x+30.649。
     运用RegCM3气候模型,对不同间隔期(1960-1967年间,1990-1997年间)区域地表温度的模拟表明,1960-1967年间各区域间多年年平均气温介于13.6℃-14.1℃之间,低于1990-1997年间各区域间多年年平均气温(13.5℃-14.5℃)。1990-1997年间最高区域多年平均温度较1960-1967年间升高0.4℃,最低区域多年平均温度较1960-1967年间低0.1℃。1960-1967年间徐州市各区域多年平均气温和森林覆盖率负相关,森林覆盖率每增加10%,区域多年平均气温降低0.68℃左右,函数关系式为y=0.0201x2-0.3791x+15.398, R2=0.67,各区域间多年年平均气温介于13.6℃-14.1℃之间。1990-1997各区域多年平均气温和森林覆盖率负相关,森林覆盖率每增加10%,多年平均气温下降0.75℃,函数关系式为y=-0.0747x+15.229, R2=0.90,在全球气温升温情形下,徐州市各县区多年森林覆盖率的增加,对于应对全球变暖、控制区域气候变暖具有重大意义。
     (3)以京杭大运河扬州段为例,运用3S技术和城市历史地理学研究成果,通过将河口、河道和运河变迁和城市演变相结合,分析了扬州城市自形成之初,历经春秋、汉代、东晋、唐代、明清至今2006年2500年来的空间演变,并深入探讨这种演变的驱动力因素,为城市历史地理学的研究探索了一种新方法。由于长江河道北岸大量泥沙淤积的南移带来城市变迁,通过3S技术复原的不同历史时期的长江河道与邗沟运河的演变过程,得出2000多年间扬州附近长江河道水域面积缩减了663km2,城市面积由最初的317km2增加到2006年的980km2,年平均淤积面积最高达0.49km2,而运河在这期间发生了四次较大的变化,入江位置也南移了20km。结果表明,扬州城市演变受多种因素影响,其中气候因素是大背景,长江河道和运河水系变化起主导作用,而且运河对城市的影响贯穿始终,城市的发展始终朝向运河的方向拓展,即使城市缩小了也依然邻近运河的方向。总体上看,唐代之前,受自然因素影响较多,唐代之后受人文因素影响较多。
     (4)以京杭大运河北京段为例,利用遥感数据和统计资料,以及大量的野外调查,在原有生态环境评价基础上,增加了人文环境评价,构建了综合环境评价体系,提出了历史文化遗产类环境评价构成要素及新的评价模型,对北京地区京杭大运河沿线区域综合环境定量评价。结果表明:北京地区运河沿线区域环境总体状况一般,中等及以下等级的区域占34%;在区域上,表现为由郊区向市区逐渐变差的态势,需因地制宜采取措施,加强运河沿线地区整体环境现状的改善。北京地区的评价结果与现状相符,该评价体系也可运用于其他省市运河沿线区域的环境综合评价,可为运河全线区域环境的保护、规划和可持续发展提供理论依据。
The Jing-Hang Grand Canal with a total length of more than1,700km, goes through2,500years in Chinese history. It plays an important role in the field of Canal navigation, militaryaffairs, political affairs and culture. Until now, the part of the Canal from Jining to Hangzhou,which is more than1100km, is still being used. However, the current situation of environmentalong the Canal is disgusting and the human environment is not thought important. The east lineof south to north water transfer project and the application for the world heritage of theJing-Hang Grand Canal provided new chance and challenge to protect its environment. Study onthe variation of environment along the Jing-Hang Grand Canal is of vital importance for itssustainable development as well as cities along the canal.
     Based on remote sensing inversion of vegetation index of the whole Jing-Hang Grand Canalwithin60km, this study analyzed the vegetation distribution along the canal; in the case of theXuzhou city on the canal, based on remote sensing inversion of temperature and interpretation ofland use, equation between regional forest coverage and regional average surface temperaturewas established; With RegCM3to simulate surface annual average temperature, equationbetween regional forest coverage and regional average annual surface temperature wasestablished; in the case of Yangzhou city, integrated estuary change, river bank change and canalchange with urban change of Yangzhou city, the variation of Yangzhou city within2500yearswas analyzed; in the case of Beijing city, a new human environmental evaluation model wasproposed systematically with cultural and heritage factors. It was integrated with ecologicalenvironment evaluation model to create a synthetic environment assessment model to evaluatethe environment along the Canal of Beijing. The results are as follow:
     (1)Based on remote sensing inversion of vegetation index of the whole Jing-Hang GrandCanal within60km, as well as the vegetation index from MODIS-NDVI andSPOT/VEGETATION NDVI, this study analyzed the vegetation distribution along the canal. Itshowed that the vegetation index was the highest in the August (0.42) and the lowest in theJanuary (0.18).
     (2)In the case of the Xuzhou city on the canal, based on remote sensing inversion oftemperature under Arc GIS9.3from remote sensing image on August,11th,1987and August,12th,2006, and interpretation of land use, lad use map and regional average surface temperaturewas acquired and equation between regional forest coverage and regional average surfacetemperature was established. It showed that on August,11th,1987, the max temperaturedifference among seven prefectures was0.98℃, the equation between regional forest coverage and regional average surface temperature was y=-0.2132x+25.769; While on August,11th,2006,the max temperature difference among seven prefectures was3.24℃, which showed on one hand,the increase of extreme surface temperature due to hot island effect in the city area, on the otherhand the decreases of regional average surface temperature in several prefectures due to theincrease of forest. The equation between regional forest coverage and regional average surfacetemperature was y=-0.1044x+30.649.
     With RegCM3surface annual average temperature was simulate for the period1960-1969and1990-1997. It showed that surface annual average temperature varied between13.6℃-14.1℃in the years from1960-1969,lower than those(13.5℃-14.5℃) in the period form1990-1997.The max surface annual regional temperature in the years1990-1997was0.4℃higher than thatin the years1960-1969while the minimum annual regional temperature in the years1990-1997was0.1℃lower than that in the years from1960-1969. The equation between regional averageannual surface temperature and regional forest coverage for the period1960-1969was:y=0.0201x2-0.3791x+15.398, R2=0.67, showing that for each10%increase of forest coverage,regional average annual surface temperature decreased by0.68℃. That for the period1990-1997was y=-0.0747x+15.229, R2=0.90, showing that for each10%increase of forest coverage,regional average annual surface temperature decreased by0.75℃. On the background of globalwarming, increase of forest coverage in the Xuzhou city controlled regional warming, showinggreat importance in response for global warming.
     (3)Yangzhou city, which lies besides the north bank of the Yangtze River, was built in theyear B.C.486and the same old as the Grand Canal. Within2500years, it experienced greatdevelopments and changes in several important historical periods (Spring and Autumn, HanDynasty, Jin Dynasty, Tang Dynasty, Song Dynasty, Ming and Qing Dynasties). Based onliterature of historical geography and archaeological data, using the historical geography methodand3S (GIS (Geographic Information System), RS (Remote Sensing) and GPS (GlobalPositioning System)), this study integrated estuary change, river bank change and canal changewith urban change of Yangzhou city. Firstly, the boundary of the Yangzhou city was made on theimages in September2006of the LANDSAT ETM remote sensing data based on itsadministrative map; Then according to history literature and archaeology data, key points for theboundary of the Yangzhou city were selected and located by GPS field observation and stackedwith the RS image, using ArcGIS9.3to simulate the change process of the Yangtze River indifferent periods and acquire its attribute data quantitatively, based on which, characteristics ofurban change were analyzed in six historical periods and the driving factors for the urban changewere discussed.
     The results showed that climate change was the background of urban changes of theYangzhou city, but these changes were also affected by several other factors. The changes of theYangtze River channel and the Hangou Canal guided the changes of the Yangzhou city. Thespatial changes of the bank of the Yangtze River and of the Hangou Canal in different periods were estimated. The silted area and water area of the Yangtze River within Yangzhou city inhistorical periods were calculated. The changes that took place in the ancient Yangzhou city werecaused by the silt of the Yangtze River moving the bank southward by deposition on its northernbank, which in turn resulted in the necessary extension of the Canal for shipping. The cityextended its area, following the extension of the Canal. Even when the city decreased in size, itdid so by retreating back towards the Canal. In general, before the Tang Dynasty, the city waschanged mainly by natural factors, and after the Tang Dynasty by human factors.
     (4)Based on GIS and RS, SPOT5RS image data of September in the year2006forBeijing city was interpreted and raster database of land use/vegetation coverage was made.According to the cultural heritage data obtained from field observation as well as the ecologicalcharacteristics along the Grand Canal, a new human environmental evaluation model wasproposed systematically with cultural and heritage factors. It was integrated with ecologicalenvironment evaluation model to create a synthetic environment assessment model to evaluatethe environment along the Canal of Beijing. Results showed that the general environment alongthe Canal was usual, and the area under middle level takes34%of the whole. Correlating withnatural condition, economic development and human environment, its spatial distribution showsthat the synthesis value of environment decreased from the suburb to the urban area. So measuresshould be taken to improve both ecological environment and human environment along the canalin Beijing. The new model was believed useful for the ecological and human environmentassessment of the area along the Jing-Hang Grand Canal for its planning, protection,management and application for the world heritage as well as its sustainable development.
引文
[1]徐化成.景观生态学[M].北京:中国林业出版社,1995.
    [2]蔡晓明.生态系统生态学[M].北京:科学出版社,2000.
    [3]王汉杰.生态边界层原理与方法[M].北京:气象出版社,1999.
    [4]丁军.我国生态环境恶化的现状、原因及给西部大开发带来的思考[J].农业环境与发展,2001(4):37-40.
    [5]范志平.西北水土流失土地质量评价与综合治理优化结构研究[J].沈阳农业大学学报,1997,28(2):49-54.
    [6]孙国庆.中国内河航运回顾与展望[J].港航建设,2008(4):29-31
    [7] Needham Joseph. Science and Civilization in China. Vol.4:Physics and Physical Technology, Patr III: Civil Engineering andNautics [M]. Cambridge: Cambridge University Press,1971.
    [8]李伟,俞孔坚,李迪华.遗产廊道与大运河整体保护的理论框架[J].城市问题,2004(1):28-31.
    [9]毛锋,聂跃平,陈述彭.伟大的生态文明工程———对中国大运河遗址的再认识[J],地球信息科学,2008,10(4):511-519.
    [10]谭旭明,于冰等.京杭大运河遗产的特性与核心构成[J].水利学报,2009,40(10):1219-1226.
    [11]单霁祥.群策群力,步调一致,科学编制大运河遗产保护规划[EB/OL]//在大运河遗产第一阶段保护规划编制工作会议上的讲话.[2008-12-01].http://blo-g.sina.com.cn/dyhzgc.
    [12]单霁翔.活态遗产_大运河保护创新论[J].中国名城,2008.
    [13] Jing Yang, Jinchi Zhang.Water pollution and sustainable utilization of the Jing Hang Grand Canal in China, EnvironmentalPollution and Public Health Special Track within iCBBE(2010,Chengdu,China)宣读论文, EI扩展版收录.
    [14]李书恒等.京杭大运河的功能与苏北运河段的发展利用[J].第四纪研究,2007,27(5):861-1869.
    [15]傅峥嵘.京杭大运河_嘉兴段_遗产构成与价值研究[D].浙江大学,2009.
    [16]张金池.京杭大运河生态环境变迁[M].北京:科学出版社,2012.
    [17]李晓秀.北京山区生态环境质量评价体系初探[J].自然资源,1997(5):31-35.
    [18]陈怡.大运河作为文化线路的认识与分析[J].东南文化,2010(1):13-17.
    [19]李伟,俞孔坚.世界文化遗产保护的新动向_文化线路[J].城市问题,2005,(4):7-12.
    [20]李伟,俞孔坚,李迪华.遗产廊道与大运河整体保护的理论框架[J].城市问题,2004,(1):28-32.
    [21]俞孔坚,李迪华,李伟.京杭大运河的完全价值观[J].地理科学进展,2008,27(2):1-8.
    [22]张兰生.环境演变研究[M].北京:科学出版社,1992.
    [23]左其亭,王中根,陈嘻等.西部干旱区生态环境质量定量评价理论方法[J].郑州工业大学学报,2001,22(2):34-38.
    [24]王应刚,张志耀.石虹区域生态环境质量定量化方法研究[J].系统工程理论与实践,1996(10):53-55.
    [25]史培军.地理环境演变研究的理论与实践[M].北京:科学出版社,182页,1991.
    [26]黄春长.环境变迁[M].北京:科学出版社,1998.
    [27]李轶冰.江河源区生态环境演变与时空格局[D].西北农林科技大学,2006.
    [28]王伟武,王人潮,朱利中基于“3S”技术的环境质量评价及其研究进展[J].浙江大学学报(农业与生命科学版),2002,28(5):578-584.
    [29] http://www.chinagrandcanal.com
    [30]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003
    [31] Johnson R, Kasinschke E S. Change vector analysis: a technique for the multispectral monitoring for land cover andcondition[J]. Int.J.Remote Sensing,1998,19(3):411-426.
    [32] Clark, C.D., Garrod, S.M., Pearson, M.P.. Landscape archaeology and remote sensing in southern Madagascar. InternationalJournal of Remote Sensing,1998,19(8):1461-1477.
    [33]宋宝泉,邵锡惠.遥感考古学[M],郑州:中州古籍出版社,2000.
    [34] Raczkowski, W.,2004. Aerial photography in protection and management of cultural heritage in Poland: practice, potentialsand perspectives, In: Proceedings of the International Conference on Remote Sensing Archaeology, Beijing, pp.75-83.
    [35] Stefanov, W. L., Ramsey, M.S., and Christensen, P.R.. Monitoring Urban Land Cover Change: An Expert System Approach toLand Cover Classification of Semiarid to Arid Urban Centers. Remote Sensing of Environment2001,77(2):173–185.
    [36]李秀彬.全球环境变化研究的核心领域—土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):553-558.
    [37]吴炳方,李苗苗,颜长珍等.生态环境典型治理区5年期遥感动态监测[J].遥感学报,2005,9(1):32-38.
    [38]邱海军.基于SPOT VEGETATION数据的中国植被覆盖时空变化分析[J].资源科学,2011,33(2):335-340.
    [39]付新峰,杨胜天,刘昌明.雅鲁藏布江流域NDVI变化与主要气候因子的关系[J].地理研究,2007,26(1):60-66.
    [40] Shabanov N,Zhou L,Knyazikhin Yet a1. Analysis of interannual changes in northern vegetation activity observed inAVHRR data from1981to1994[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(1):115-130.
    [41]张继权.气候遥感解译法在区域气候研究中的应用[J].1993,9(3):185-216.
    [42]赵生才.人类文化遗产信息的空间认识[J].地球科学进展,2004,(4).
    [43] Sarris, A.,2005b. Use of remote sensing for archaeology: state of the art, In: Proceedings of the International Conference onthe Use of Space Technologies for the Conservation of Natural and Cultural Heritage, Campeche, Mexico.
    [44] Ebert, J.I., Lyons, T.R.,1980. Remote sensing in archaeology, cultural resources treatment and anthropology: The UnitedStates of America in1979. Aerial Archaeology5,1-19
    [45]毛锋,王凌云.大运河历史文化环境保护支持系统[J].清华大学学报,2007,47(9):1401-1404.
    [46]毛锋.空间信息技术在线形文化遗产保护中的应用研究_以京杭大运河为例[J],中国名城,2009,(5):20-24.
    [47]熊鹰,曾光明,吕辉红,等.基于多元空间信息的湖南省生态环境综合评价[J].湖南大学学报:自然科学版,2007,34(10):86-89.
    [48] Schotten K,Goetgeluk R, Hilerink M,et al.Resi-dential construction, land use and the environment simulations for theNeth-erlands using a GIS based land use model [J].Environ-mental Modeling and Assessments,2001,(6):133-143.
    [49]高志强,刘纪远,庄大方.基于RS和GIS的中国土地资源生态环境质量同人口分布的关系研究[J].遥感学报,1999,3(1):66-70.
    [50]王维.基于RS与GIS的土地利用_覆盖变化与生态环境综合评价[D].山东师范大学,2009.
    [51]马荣华.综合利用GIS与RS方法的海南生态环境研究[J].江西师范大学学报:自然科学版,2000,24(4):370-373.
    [52]张秀英,赵传燕.基于的陇中黄土高原潜在生态环境评价研究[J].兰州大学学报:自然科学版,2003,39(3):73-76.
    [53]江振蓝,沙晋明,杨武年.基于GIS的福州市生态环境遥感综合评价模型[J].国土资源遥感,2004,61(3):46-49.
    [54]王磊,丁晶晶,任义军,等.江苏盐城淤泥质海岸带湿地生态系统健康评价[J].南京林业大学学报:自然科学版,2011,35(4):13-17.
    [55]王根绪.黄河源区生态环境变化与成因分析[J],冰川冻土,2000,22(3):200-205.
    [56]赵静.基于NDVI变化的三江源生态环境演变分区研究[J],世界地质,2008,27(4):427-431.
    [57]张蓉珍.渭河流域陕西段近50年生态环境演变[J],干旱区资源与环境,2008,22(2):37-42.
    [58]罗湘华,倪晋仁.土地利用/土地覆盖变化研究进展[J],应用基础与工程科学学报,2000,8(3):262-272.
    [59]赵静.基于RS和GIS技术三江源生态环境演变及驱动力分析[D].吉林大学,2009.
    [60]龙华楼,李秀彬.长江沿线样带土地利用格局及其影响因子分析[J].地理学报,2001,56(4):417-425.
    [61]庄大方,刘纪远.中国土地利用程度的区域分异模型研究.自然资源学报,1997,12(2):106-111.
    [62]刘盛和,何书金.土地利用动态变化的空间分析测算模型[J].自然资源学报,2002,17(5):533-540.
    [63]王思远,刘纪远,张增祥,等.近10年中国土地利用格局及其演变[J].地理学报,2002,57(5):523-530.
    [64]刘盛和,吴传钧,沈洪泉.基于GIS的北京城市土地利用扩展模式[J].地理学报,2000,55(4):407-416.
    [65] Munyati, C.(2000)'Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remotesensing image dataset', International Journal of Remote Sensing,21:9,1787–1806.
    [66]全国政协文史和学习文员会.中国大运河[M].北京:中国文史出版社,2012.
    [67]陈桥驿.中国运河开发史[M].北京:中华书局,2008.
    [68]孙光新.京杭运河山东段航运发展战略环境与对策研究[D].大连海事大学2009.
    [69]刘继斐.苏北运河对区域经济的贡献研究[D].南京航空航天大学,2006.
    [70]蔡建.里运河功能变迁与发展战略研究[D].扬州大学,2006.
    [71]戴建强等.京杭大运河邳州段主要污染物污染现状及防治措施[J].水资源保护,2004,(4):52-53.
    [72]孙常青.浅谈京杭大运河_杭州段_的综合整治和保护性开发[J].大众科技,2008,(10):106-108.
    [73]汤国安.《ERDAS遥感数字图像处理实验教程》.北京:科学出版社,2011年.
    [74]白振平.塔里木河水系变迁遥感研究[J].首都师范大学学报(自然科学版),1994,15(3)”105-110
    [75]罗湘华,倪晋仁.土地利用/土地覆盖变化研究进展.应用基础与工程科学学报,2000,8(3):262-272.
    [76]赖震刚.利用ERDASINAGINE进行影像的几何精矫正[J].现代测绘,2003,26(2):38-40.
    [77]周斌.运用多时相直接分类法对土地利用遥感动态监测的研究[J].自然资源学报,2001,16(3):263-267.
    [78] E. Frihy, S. M Nasr, M. M. El Hattab, and M. El Raey,“Remote sensing of beach erosion along the Rosetta promontary,northwestern Nile delta, Egypt,” INT. J. Remote Sensing, vol.15(8), pp.1649-1660,1994.
    [79] Johnson R D, Kasischeke E S. Change vector analysis: A technique for the multispectral monitoring of land cover andcondition[J]. International Journal of Remote Sensing,1998,19(3):411-426.
    [80]李明诗.基于ASTER遥感数据的建湖县杨树信息提取的研究[J].南京林业大学,2005.
    [81]赵庚星,李玉环,徐春达.遥感和GIS支持的土地利用动态监测研究[J].应用生态学报,2000,11(4):573-576.
    [82]邹逸麟,黄淮海平原历史地理[M].安徽教育出版社,1993.
    [83]景才瑞,刘会平.论中国第四纪冰期与间冰期[j].成都理工学院学报,1999,26(1):97-100.
    [84]邵天杰,赵景波,李强.历史时期黄河中游流域气候变迁研究[J].农业系统科学与综合研究,2009,25(1):30.
    [85]吴忱等,华北平原古河道研究[M].中国科学技术出版社,1991.
    [86]王会昌.河北平原的古代湖泊[M].科学出版社出版,1987.
    [87]赵希涛.渤海湾西岸全新世海岸线变迁[M].福建科学技术出社,1984.
    [88]王艳.渤海湾曹妃甸晚更新世末期以来古植被与古气候演变序列.海洋地质与第四纪地质,2000,20(2):87-92.
    [89]张丕远,王铮,刘啸雷等.中国近2000年来气候演变的阶段性.1994,24(9):998-1008.
    [90]郑润林.浅谈森林与防止气候变暖的问题[J].能蒙古林业调查设计,2011,34(1):14-15.
    [91]王祝雄.林业应对气候变化作用和意义重大[J].今日国土,2009,(7):13-17.
    [92]李剑泉,李智勇,易浩森.森林与全球气候变化的关系[J].西北林学院学报,2010,25(4):23-28.
    [93]李麟辉,张一平,游广永等.哀牢山亚热带常绿阔叶林光合有效辐射的时空分布[J].生态学杂志,2011,30(11):2394-2399.
    [94刘贤德,牛贇,敬文茂等.祁连山森林内外主要气象因子对比研究[J].干旱区地理,2009,32(1):32-36.
    [95]纪玲玲,郭安红,申双和.RegCM3对三江源地区气候的模拟[J].草业科学,2011,28(03):365-371.
    [96]李怒云,龚亚珍,章升东.林业碳汇项目的三重功能分析[J].世界林业研究,2006,(03):15-19.
    [97]朴世龙,方精云等.The carbon balance of terrestrial ecosystems in China[J].Nature,2009,(458):1009-1013.
    [98]杨胜天,刘昌明,孙睿.近20年来黄河流域植被覆盖变化分析[J].地理学报,2002,57(6):679-684.
    [99]除多.基于NOAA AVHRR NDVI的西藏拉萨地区植被季节变化[J].高原气象,22(10):17-23.
    [100]马正林.《中国城市历史地理》.山东:教育往版社,1998年,16
    [101]侯仁之.城市历史地理的研究与城市规划.地理学报,1979,34(4):315-328
    [102] Batty M F.New ways of looking at cities.Nature,1995,377:574-574
    [103] Makse H H.Modelling urban growth pat2terns.Nature,1995,377:608–612
    [104] Alberta B,Laura B.Remote Sensing and Urban Analysis.Planning Department:University IUAV of Venice,2008,310-315
    [105]王一帆,孔云峰,马海涛.运用GIS进行古代城市结构复原的尝试:以北宋东京城为例.地球信息科学,2007,9(5):43-49
    [106]赖琼.扬州城市空间变迁.湛江师范学院学报,1996,17(4):84-88
    [107]陈敏.历史古都扬州的发展思考.山西建筑,2009,35(6):22-23
    [108]王洪元.隋唐扬州的兴衰与地理条件的变化.和田师范专科学校学报,2008,28(2):198-200
    [109]刘婕.由唐至明运河与扬州城的变迁.华中建筑,2001,19(5):82-85
    [110]洪迈(宋).容斋随笔,卷9扬州之胜.北京:燕山出版社,2008
    [111]陈桥驿.中国运河开发史.北京:中华书局,2008,217-225
    [112]罗宗真.唐代扬州古河道等发现和有关问题的探讨.文物,1980,(3):22-27
    [113]朱江.从文物发现情况来看扬州古代的地理变迁.扬州大学学报,1977,(9):69-76
    [114]朱江.邗城遗址与邗沟流经区域文化遗址的发现.文物,1973,(12):45-54
    [115]陈璧显.中国大运河史.北京:中华书局,2001
    [116]刘枫.清代京杭大运河全图.北京:中国地图出版社,2004
    [117]刘枫.九省运河泉源水利情形图刘枫.北京:中国地图出版社,2006
    [118]南京博物院.扬州古城1978年发掘简报.文物,1979,(9):33-42
    [119]纪仲庆.扬州古城初探.文物,1979,(9):43-56
    [120]王勤金.唐代扬州二十四桥桥址考古勘探调查与研究.南方文物,1995,(3):78-87
    [121]陆朝玑.吴王刘濞城考,雍正江都县志.江苏:古籍出版社,1990
    [122]鲍照.芜城赋.文选卷11.江苏:凤凰出版社,2011
    [123]中国社会科学院考古研究所、南京博物院、扬州是文化局、扬州城考古队,等.扬州城考古工作简报.考古,1990,(1):2-5,20-23
    [124]李裕群.隋唐时代的扬州城.考古,2003,(3):69-76
    [125]张维英.山东莱州湾南岸平原古湖泊消亡原因初探.古地理学报,2003,5(2):224-231
    [126]曹家欣.第四纪地质.北京:商务印书馆,1983,167-168
    [127]刘文淇.扬州水道记.扬州:广陵书社,2008,17-21
    [128]新唐书·五行志.北京中国出版集团:现代教育出版社,2011
    [129]樊宝敏.中国历代森林覆盖率的探讨.北京林业大学,2001,23(4):60-65
    [130]陈桥驿.中国运河开发史[M].北京:中华书局,2008.
    [131]毛锋.空间信息技术在大遗址保护中的应用研究(以京杭大运河为例)技术报告[R].北京:清华大学,2007.
    [132]毛锋.空间信息技术在大遗址保护中的应用研究(以京杭大运河为例)调研报告[R].北京:清华大学,2007.
    [133] ICOMOS.International Canal Monument list.1996.
    [134]俞孔坚,李迪华,李伟.京杭大运河完全价值观[J].地理科学进展,2008,27(02):1-9.
    [135]中华人民共和国环境保护行业标准,HJ/T192-2006,生态环境状况评价技术规范(试行).
    [136]毛锋.空间信息技术在大遗址保护中的应用研究(以京杭大运河为例)价值评价报告[R].北京:清华大学,2007.
    [137]张增祥,彭旭龙,陈晓峰,等.生态环境综合评价与动态监测的空间信息定量分析方法及应用[J].环境科学,1999,24(1):68-72.
    [138]刘洪岐.基于RS和GIS的北京市生态环境评价研究[D].北京:首都师范大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700