用户名: 密码: 验证码:
忍冬属植物对岩溶环境的适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国家为修复和保护脆弱的西南岩溶生态环境,多次开展岩溶生态重建示范工程,并在不少地区把忍冬属植物(俗称金银花)作为重要先锋植物进行推广,来扼制石漠化趋势,以实现石漠化生态治理与建设和金银花产业的持续性发展。关于忍冬属植物在岩溶环境中的适应机制研究一直滞后于国家发展目标。本文通过野外观测和室内栽培实验相结合的方式来研究生长在广西弄拉岩溶观测站中的忍冬属植物的生物地球化学特征,来探讨其对岩溶环境的适应机制,进而为研究岩溶植物适生机制和发展金银花产业提供理论支撑。本文研究结果表明:
     1)研究区石灰土壤的不同层次,土壤元素有效态和有效率顺序基本为Ca>Mg>Cu>Mn>K>Na>P>B>SiO2>Zn>Fe。因生长在该区的两种忍冬属植物受生境生物地球化学特征的影响,其叶细胞中的元素含量均表现出Ca多Mg少(相关系数-0.056,P<0.05),并且P在叶细胞内的含量仅次于Ca的现象(相关系数0.868,P<0.01)。在蒸腾拉力作用下进入忍冬属植物体内的钙不但通过积累效应造成Ca在叶细胞中含量较高,与土壤中该元素的含量呈现出正相关性,而且还通过元素间的拮抗作用或协同作用影响其它元素在植物叶细胞内的含量,进而影响忍冬属植物的质量及有效成分的积累。由于钙元素在植物体内过多积累会干扰其磷酸代谢体系,因此,忍冬属植物为解除钙盐毒害,通过叶上的泌钙腺体来排除体内多余的钙以适应岩溶环境。
     2)忍冬属植物为适应岩溶干旱环境,其叶在形态结构上表观出一系列旱生植物结构特点。研究表明:上表皮具有众多的沟槽状凹陷结构,该结构的存在使植物与外界水分交换速率减慢。气孔仅存在下表皮,气孔密度高达328个/mm2以上,并被茂密的表皮毛所遮挡,小而数目众多的气孔能够使忍冬属植物保持高光合速率,而光合速率的提高是其抵抗干旱的重要因素之一,而且还能在水分紧张时抑制蒸腾作用;茂密的表皮毛则能使植物的气孔处于一个相对密闭的环境,进而抑制蒸腾速率。此外,忍冬属植物具有的异面叶和发达的机械组织可以提高水分输送效率。
     3)通过盆栽实验研究了忍冬属植物在添加15 mmol/L和30 mmol/L CaCl2后在光合生理生化上对岩溶干旱作出的响应机制。结果表明在岩溶干旱过程中,忍冬属植物通过利用土壤中的钙来抑制气孔导度、减慢蒸腾速率以及提高水分利用效率和光合速率来适应岩溶干旱环境。在外源钙浓度为15 mmol/L时忍冬属植物的光合作用均能得到显著提高,而过高的外源钙则对部分忍冬属植物造成伤害。外源钙浓度为15 mmol/L时,忍冬属植物光合速率增速结果为:华南忍冬>忍冬>灰毡忍冬>蒙花二号>蒙花一号>金银花。忍冬属植物在此时的光合生理特征与其叶绿素升幅、脯氨酸含量、CAT活性提高强度上具有正相关性,而与可溶性糖、丙二醛含量成负相关性,从而说明其在抵御岩溶干旱能力上的差异。通过该实验可以看出岩溶土壤钙离子的存在能够增加忍冬属植物干旱抵御能力,进而适应岩溶环境。
     4)通过激光共聚焦显微镜成像技术,进一步认识到维持忍冬属植物生命活动的钙离子在其细胞内分布状况以及钙元素过多时的腺体分泌方式。钙离子主要分布在叶绿体上,与植物光系统II ( PS II)上存在许多钙结合位点以及Ca2+是PS II功能表达的必需协同因子相关;而钙离子腺体的存在通过调节渗透平衡,提高其抗旱性。该结果可以说明岩溶区植物为适应干旱、强光环境而具有光合速率高、生物量大特点,以及岩溶区适宜种植利用茎、叶为目的的植物。
     5)通过聚类分析和遗传距离对比发现本文所选用的材料具有丰富遗传多样性,能够代表不同区域环境特征。而钙调素基因的差异则影响其对岩溶环境的适应能力。
     综上所述,生长在岩溶区的忍冬属植物为适应岩溶干旱环境不但在形态上具有一定的适应特征,而且还能通过调节渗透压、改变光合速率、维持叶绿体质膜系统和结构的稳定以及提高酶保护系统活性。而上述一系列岩溶逆境适应机制是在以Ca-CAM为核心的信号转导过程中实现的。
The karst system in southwestern China is fragile and has the special particularities, such as calcium-rich and water leakage. Rock desertification occurs there under the impact of anthropogenic activities. In order to harness the rock desertification at karst area in southwest China, our government carried out many rehabilitation projects and called on the local people to plant perennial Flos Lonicerae. Perennial Flos Lonicerae is not only adaptable to karst environment, but also can be as medical herb due to its flower containing many kinds of officinal ingredients. In the past, many distinguished rehabilitation results are got, but the relationship between Flos Lonicerae and the karst environment and the ecology adaptation character of Flos Lonicerae is not clear due to lack of experimental data. Then, Flos Lonicerae is selected as intermedia in this paper to research the mechanism of cross-adaptation to water stress in plants at karst area in southwestern China and understand the structural and functional responses of plant to environmental stress. The research mainly includes the relationship between the elements character of Flos Lonicerae and the karst biogeochemistry, the drought-resistant mechanisms of Flos Lonicerae on their leaf-structure, the photosynthetic physiological ecology of Flos Lonicerae, the distribution character of Ca2+ in the cell of Flos Lonicerae and the modulation of calcium.
     1) In order to study the characteristics of element values in the cell of plants and soils and their relationship, which to evaluate the biogeochemical effect of soil on the element contents in the cells of plants in the same environment of southwestern China, the soil samples were collected for analysis and the weight and atom percent of elements (WT% and AT%) in the leaves of two different species of Flos Lonicerae was analyzed by the electron probe. From the results of soil analysis, it can be seen that though the total element values in soil of different layers were arranged in SiO2>Fe>Ca>Mg>K>Na>Mn>P>Zn>B>Cu, the nutrient element contents in the soil were determined by the liable content of elements, which were arranged in Ca>Mg>Cu>Mn> K>Na> P>B>SiO2> Zn>Fe. That is to say, the karst environment is composed of soluble rock, soil scarcity and calcium-rich. Moreover, the migratory velocity and availability of elements were also determined by their coefficient variability. According to statistical results, Ca, Mn and P in the soil have high coefficient variability, which reflects its background of karst soil. The content of Ca is higher while the content of Mg is lowest in the cell of two different species of Flos Lonicerae (r=-0.156,P<0.05) and the content of P in the cell is inferior to Ca (r=0.868,P<0.01). By studying the relationship of soil and the plants, it can be seen that the above result perhaps is caused by the character of local biogeochemistry. Ca is mainly absorbed by plant with the help of transpiration and accumulated in the cell, which becomes the highest element in the cell. Under the accumulation of Ca in cell of plant, it will affect the absorbency and the content of other elements in the cell of Flos Lonicerae. As a result, the content of other elements in the Flos Lonicerae appears different by synergistic action and antagonistic action, which affects its quality and officinal value.
     2) The leaf epidermis of Lonicera japonica Thunb. and Lonicera confusa in the genus of Flos Lonicerae were mainly observed by scanning electron microscopes (SEM) to study the characteristics of stomata, trichomes and dermal cell, etc.. The results showed that stoma exists only on the lower epidermis and its distribution is irregular, and leaf epidermis consist of epidermis cells, stoma complexes and bushy trichomes including glandular hair and non-glandular hair. On the upper epidermis, anticlinal wall caves in sinuous groove to countercheck the transpiration. Evidences from leaf morphological structures serve as another proof on drought-resistant mechanisms. Some strumaes distributing regularly are hypothesized as oxalic calcium on the lower epidermis under laser scanning confocal microscopy (LSCM) with Fluo-3/AM, which can increase their endurance to drought stress. Therefore, the above characteristics of Flos Lonicerae can reduce the loss of water and make Japanese honeysuckle and Wild Honeysuckle adapt to the droughty environment at karst area in southwest China. However, there are some differences of the two species.
     3) During the drought stress and the rewatering process, Flos Lonicerae can increase the content of MDA, proline, soluble sugar and chlorophyll and improve the activity of peroxide enzyme. With the soil losing water, the modulation of Flos Lonicerae decreases. However, when soil pre-treatment with the suitable Ca2+ concentration (about 15mmol/L) during drought stress could increase peroxide enzyme activity and soluble sugar content,alleviate cell membrane leakage and chlorophyll decomposition.Then , Flos Lonicerae have the low transpiration and high photosynthesis at this kind of soil pre-treatment, which shows the positive correlation with the chlorophyll, proline content and the activity of peroxide enzyme and the negative correlation with MDA, soluble sugar contents.
     4) By studying the distribution of Ca2+ in the cell of Flos Lonicerae, it can be seen that Ca2+ mainly appears in chlorophyll pigments and connects with PS II, which can explain the plant at karst area with high photosynthesis characters.
     5) By analysis the genetic relationship between the genotypes of Flos Lonicerae and their relatives based on RAPD distances, it can be seen that the experimental plants can stand by their original environment. Moreover, by comparing the cDNA of CaM from Flos Lonicerae, it shows that the difference of CaM leads to their different acclimation.
     From the above results , it can be seen that in order to adapt the karst environment, Flos Lonicerae have the drought leaf-structure, the high photosynthetic physiological character and the osmotic modulation, which can adjust by the Ca-CaM.
引文
[1]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆科学技术出版社, 1988:1-353.
    [2] Yuan Daoxian. On the karst ecosystem [J]. ACTA Geologica Sinica, 2001, 75(3): 336-338.
    [3] Yuan Daoxian, Li Bin and Liu Zaihua. Karst in China [J]. Episodes, 1995, 18(1-2): 62–65.
    [4]曹建华,袁道先,刘再华等.受地质条件制约的中国西南岩溶生态系统[M].北京:地质出版社, 2005:1-100 .
    [5]唐健生,夏日元.南方岩溶石山区资源环境特征与生态环境治理对策探讨[J].中国岩溶,2001,20 (2):140-148.
    [6]李彬.中国南方岩溶区环境脆弱性及其经济发展滞后原因浅析[J].中国岩溶,1995,14(3):209-215.
    [7]何师意,冉景丞,袁道先等.不同岩溶环境系统的水文和生态效应研究[J].地球学报, 2001, 22(3):265-270.
    [8]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展, 2003, 18(1):37-44.
    [9]王世杰,季宏军,欧阳自远等.碳酸盐岩风化成土的初步研究[J].中国科学(D辑), 1999,29(5):441-449.
    [10]任海,彭少麟.恢复生态学导论[M].北京:科学出版社, 2002:3-46.
    [11]任海.喀斯特山地生态系统石漠化过程及其恢复研究综述[J].热带地理, 2005, 25(3):195-200.
    [12] Beadle C L. Growth analysis [A]. In: Hall E O, eds. Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual [C]. London: Chapman & Hall, 1993: 36-46.
    [13] Kriedemann P E, Barrs P E. Citrus orchards [A]. Water deficits and plant growth(Vol. VI) [C]. Academic press, 1981: 305-417.
    [14]李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变化[J].植物生理学报, 1988, 14(3):217-222.
    [15] Borowitzka L J. The microflora adaptations to life in extremely saline lake [J]. Hydrobiologia, 1981, 81: 33-46.
    [16] Turner N C.Adaptation to water deficits:A changing perspective [J].Aust J plant Physiol, 1986, 13: 175-190.
    [17] Zhu J K.Salt and drought stress signal transduction in plants [J].Annu Rev Plant Biol, 2002, 53: 247-273.
    [18] Chaves M M, Pereira J S,Maroeo J. Understanding plant response to drought from genes to the whole plant [J].Funct plant Biol, 2003, 89: 907-9l6.
    [19] Seki M, Karnei A, Yamaguchi-Shinozaki K, et al. Molecular responses to drought, salinity and frost:common and different paths for plant protection [J].Current Opinion in Biotechnology, 2003, 14: 194-199.
    [20]张泓,陈丽春,胡正海.骆驼蓬营养器官的旱生结构[J].植物生态学报与地植物学学报, 1992, 16(3):243-248.
    [21]赵雪宇,张学英.轻度水分胁迫下草莓叶片渗透性、弹性及冠层结构变化[J].北方园艺, 1995, 103(4):56-57.
    [22]曲桂敏,李兴国,赵飞等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报, 1999, 26(3):147-151.
    [23]周苏玫,马元喜.干旱胁迫对冬小麦根系生长及营养代谢的影响[J].华北农学报, 2000, 15(2):57-62.
    [24]肖玲,赵先贵.干旱条件下根系的形态解剖学研究[J].细胞植物学报, 1995, 15(2):117-119.
    [25] Loler. Growth and quality of apples as affected by different irrigation treatments [J]. Hort. Sci, 1985, 60: 176-181.
    [26] Schulze E D. Soil water deficits and atmospheric humidity as environmental signal[A]. In : Smith J A C, Griffiths H. Water deficits [C]. Bios. Scientific Publisher, 1993: 129-145.
    [27] Nishiyama Y, Yamamoto H, Allakhverdiev S I, et a1.Oxidative stress inhibits the repair of photo damage to the photosynthetic machinery [J].EMB0J, 200l, 20: 5587-5594.
    [28] Hincha D K, Hagemann M.Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and Microorganisms [J]. Biochem J, 2004, 383: 277-283.
    [29]粱慧敏,夏阳,王太明.植物抗寒冻、抗旱、耐盐基因工程研究进展[J].草业学报, 2003, 12(3):l-7.
    [30] Smimoff N, Curnbes Q J. Hydroxyl radical scavenging activity of compatible solutes [J]. Phytochemistry, 1989, 28: l057-1060.
    [31]刘国花,韩素英,齐力旺.植物抗旱耐盐基因工程研究及应用前景[J].世界农业, 2003, 7:44-46.
    [32] Lopez C M L, Takahashi H, Yamazaki S.Plant-Water Relations of Kidney Bean Plants Treated with NaCl and Folliarly Applied Glycinebetaine [J].Journal Agronomy & Crop Science, 2002, 188: 73-80.
    [33] Altschller M, Mascarenhsa J P. Transcription and translation of heat shock and normal proteins in seedings and developing seeds of soybean exposed to a gradual temperature increase [J]. Plant Mol Biol, 1985, 5: 291-297.
    [34] Minhsiln H. A class of soybean low molecular weight heat shock proteins [J]. Plant Physiol, 1992, 99:1279-1284.
    [35] Slsan E F. Heat shock proteins expression in thermotolerant and thermosensitive lines of cotton [J]. Plans Cell Report, 1989, 8: 37-40.
    [36]张立军.小麦幼苗干旱逆境蛋白与抗旱性关系的研究[J].沈阳农业大学学报, 1998, 29(2):106-109.
    [37]陈忠,苏维埃.豌豆热激蛋白Hpc60对酶的高温保护功能及其机理[J].科学通报, 1999, 44(20):2171-2175.
    [38] Dure L III, Crouch M, Harada J, et al. Common amino acid sequence domains among the LEA proteins of higher plants [J]. Plant Mol Biol, 1989, 12: 475-486.
    [39]黄上志,王冬梅,卢春斌等.萌发中花生胚轴的耐下性与热稳定蛋白[J].植物生理学报, 1999, 25:193-198.
    [40] Pnueli L, Abu-Abeid M, Zamir D, et al. The MADS boxgene family development in tomato: temporalexptession during floral development. conserved secondary structures and homology with homeotic genes from Antirrhimum and Arabidopsis [J]. Plant .J, 1991, 1: 255.
    [41]陈志辉,张良诚.水分胁迫对柑桔光合作用的影响[J].浙江农业大学学报, 1992, 18(2):60-66.
    [42]贾虎森,李德全,韩亚琴.土壤干旱胁迫下钙处理对杧果幼苗光合作用的影响[J].果树科学, 2000, 17(1):52-56.
    [43]陈军,戴俊英.干旱对不同耐性玉米品种光合作用及产量的影响[J].作物学报, 1996, 22:752-762.
    [44]倪书邦,刘建福,李道高等.澳洲坚果花期水分胁迫效应的研究[J].西南农业大学学报, 2002, 24(1):34-37.
    [45] Muraoka H, Tang Y, Terashima I, et al. Contribution of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light [J]. Plant Cell Environ, 2000, 23: 235-250.
    [46]石岩,林琪.水分胁迫对冬小麦生长发育和产量形成的影响[J].莱阳农学院学报, 1995, 12( 4):247-251.
    [47] Ohashi Y, Saneoka H, Fujita K. Effect of water stress on growth, photosynthesis, andphotoassimilate translocationin soybean and tropical pasture legume siratro [J]. Soil Sci Plant, 2000, 46: 417-425.
    [48] Jiag Y, Huang B.Drought and heat stress injury to two cool season turfgrasses inrelation to antioxidant metabolism and lipid peroxidation [J].Crop Sci, 2001, 41: 436-442.
    [49]王霞,侯平,尹林克等.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J].干旱区研究, 2002, 19(3):17-20.
    [50] Ktamer G F,Norman H A, Krizek D T, et al.Influence of UV-B radiation on polyalrdnes, lipid peroxidatlon and membrane lipid in cueumber [J]. Phytoehemistry, 1991, 30: 210l-2108.
    [51] Liu H P,Liu J,Zhang Y Y, et al.Relationship between ATPase activity and conjugated polyamines in mitochondrial membrane from wheat seedling roots under osmotic stress [J]. J. Environ. Sci., 2004, 16(5): 712-716.
    [52] Liu H P,Liu Y L,Yu B J. Polyamines conjugated to tonoplast vesicles from wheat seedling roots enhanced osmotic stress tolerance via maintenance of the H+-ATPase and H+-PPase activities [J].J. Plant Growth Regad., 2004, 23(2): 156-165.
    [53] Liu H P, Yu B J, Zhang W H, et al. Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noneovalently conjugated polyamines in plasma membrane from wheat seedling roots [J]. Plant Sci., 2005, 168(6): 1599-1607.
    [54]刘怀攀,于丙军,刘友良.小麦幼苗根系核蛋白体上结合态多胺与渗透胁迫关系[J].中国科学(C辑), 2005, 35(4):304-309.
    [55] Rock C D,Ng P P F.Dominant wilty mutants of Zea mays (Poaceae) are not impaired in abscisic acid perception or metabolism [J]. Am J Bot, 1999, 86: 1796-1800.
    [56] Leckie C P.Mcainsh M R,Auen G J,et a1.Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose [J].Proc Natl Acad Sci USA, 1998, 95(26):5837-5842.
    [57] Jackson G E,lrvine J,Grace J,et a1. Abscisic acid concentrations and fluxes in drought conifer samplings [J]. Plant Cell & Environ, 1995, l8: 13-22.
    [58] Heckenbeger U, Schurr U,Sehulze E D. Stomatal response to ABA fed into the xylem of intact Heliarthus annuus (L) [J].Plant J Exp Boi, 1996, 47: 1405-1412.
    [59] Cramer G R. Is an increase in ABA concentration the cause of growth inhibition in salt-stressed plants? [J]. Plant Physiol, 1994, 105: 107.
    [60] Dodd I C, Davies W J . The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone [J]. J Exp Bot, 1996, 45: 1471-1478.
    [61] Gowing D J G,Jones H G,Davies W J. Xylem-transported abscisic acid:the relative importance of its mass and its concentration in the control of stomatal aperture [J]. Plant Cell & Environ, 1992, 16: 453-459.
    [62] Puliga S, Vazzana C, Davies W J. Control of leaf growth of Mediterranean forages by chemical and hydraulic signals [J].J Exp Bot, 1996, 47: 529-537.
    [63]袁朝兴,丁静.水分胁迫对棉花叶片IAA含量,IAA氧化酶和过氧化物酶活性的影响[J].植物生理学报, 1990, 16(2):179-181.
    [64]马宗仁,刘荣堂主编.牧草抗旱生理学[M].兰州:兰州大学出版社, 1993: 322-355.
    [65]聂朝相,马宗仁.植物在水分胁迫下脯氨酸积累的研究III:外源脱落酸、细胞分裂素与脯氨酸积累和叶气孔变化的关系[J].兰州大学学报(自然科学版), 1994, 30(1):96-99.
    [66] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response [J]. Plant Physiol, 1997, 115: 327-334.
    [67] Stock A M, Robinson V L,Goudreau P N. Two-component signal transduction [J]. Annu Rev Biochem, 2000, 69: l83-2l5.
    [68] Wurgler Murphy S M, Saito H. Two-component signal transducers and MAPK cascades [J]. Trends Biochem Sci, l997, 22: l72-l76.
    [69] Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Two-component systems in plant signal transduction [J]. Trends Plant Sci, 2000, 5: 67-74.
    [70] Chang C, Stewart R C. The two component system, regulation of diverse signalingpathways in prokaryotes and eukaryotes [J]. Plant Physiol, 1998, 1l7: 723-73l.
    [71]李功藩,吴亚君,刘冬,等.光系统Ⅱ颗粒的多肽组成分析和重组后的放氧活性[J].植物生理学报, 1987, 13(4):351-358.
    [72] Imgram J,Bartels D.The molecular basic of dehydration tolerance in plants [J]. Anou Rev Plant Physiol Plant Mol Biol, 1996, 47: 377-403.
    [73] Chandler P M.Gene expression regulated by ABA and its relation to stress tolerance [J]. Aonu Rev Plant Physiol Plant Mol Biol, 1994, 45: 113-141.
    [74] Jones R G, Lunt O R. The function of calcium in plants [J]. Bot Rev, 1967, 33: 407.
    [75] Monk L S,Davies H V.Antioxidant status of the potato tuber and Ca deficience as a physiological stress [J]. Physiol Plant, 1989, 75: 411.
    [76]宋广运,陈惠民.钙对棉花胚根抗冷性的影响[J].中国农业科学, 1986, 2:23-26.
    [77]商振清,李广敏,佟代言.钙处理提高小麦抗旱性机理初探[J].河北农业大学学报, 1989, 12(3):16-19.
    [78] Arorar,Palta J P.In vivo perturbation of membrane-associated calcium by freeze- thaw stress in onion bulb ceils [J].Plant Physiol, 1988, 87: 622-628.
    [79] Cooke A, Cookson A, Ealnshaw M J. The mechanism of action of calciumin in the inhibition of high temperature-induced leakage of belacyanin from beet root discs [J]. New Phytol, 1986, 102: 491-497.
    [80] Cramer G R, Lauchli A, Polito V S. Displacement of Ca by Na form plasmalemma of rot cells: A primary response to salt stress [J]. Plant Physiol, 1985, 79: 207-211.
    [81] Murphy T M.Ca dependence and Na interference of ultraviolet radiation-induced K efflux from rose cells [J]. Cell, 1988, 74: 537-543.
    [82]袁清昌,许长成,邹琦.钙信使系统在百草枯诱导小麦幼苗膜脂过氧化中的作用[J].植物生理学通讯, 1996, 32(1):13-16.
    [83]程林梅.钙处理对土壤干旱下棉花幼苗生理生化指标的影响[J].植物学通报,1998, 15(6):70-72.
    [84] Xu H, Heath M C. Role of calcium in signal transductiuon during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus [J]. Plant Cell, 1998, 10: 585-597.
    [85]赵可夫,卢元芳,衣建龙等.Ca对小麦幼苗降低盐害效应的研究[J].植物学报, 1993, 35(1):51-56.
    [86]卢少云,黎用朝,郭振飞等.钙提高水稻幼苗抗旱性的研究[J].中国水稻科学, 1999, 13(3):161-164.
    [87]晏斌,戴秋杰,刘晓忠等.钙提高水稻耐盐性的研究[J].作物学报, 1995,21:55-57.
    [88]李美如,刘鸿先,王以柔等.钙对水稻幼苗抗冷性的影响[J].植物生理学报, 1996, 22(4):379-384.
    [89]郭礼坤.逆境成苗生态生理研究(2)-干旱条件下药剂处理种子对提高糜子成苗的作用[J].中国科学院西北水土保持研究所集刊,1988,8:26-31.
    [90]山仑,郭礼坤,徐萌等.干旱条件下钙与赤霉素混合处理种子的生理效应及增产效果[J].干旱地区农业研究,1994,12(1):85-91.
    [91]高向阳,杨根平,许志强等.水分胁迫下钙对大豆叶片膜脂过氧化程度的影响[J].华南农业大学学报,1999,20(3):67-71.
    [92] Chowdhury S R, Choudhu M A.Effects of calciuraions on responses of two jute species under water-deficit stress [J].Physiol Plant, 1986, 68: 86-92.
    [93] Sabehat A, Weiss D, Luries S. Heat-shock proteins and cross-tolerance in plant [J]. Physiol Plant, 1998, 103: 437-441.
    [94] Bowler C, Fluhr R. The role of calcium and activated oxygen assign as signals for controlling cross-adaptation [J]. Trends Plant Sci, 2000, 5: 241-246.
    [95] Ludlow M M. Strategies of response to water stress [A]. In:Kreeb K H, Richter H, Hinckley T M, eds. Structural and Functional Responses to Environmental Stressed [C]. The Hague, The Netherlands: SPB Acad Pub, 1989: 269-281.
    [96] Bowler C, Fluhr R. The role calcium and activated oxygen as signals for controlling cross-adaptation [J]. Trends Plant Sci, 2000, 5: 241-246.
    [97]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社, 1998: 721-824.
    [98] Levitt J. Response of plants to environmental stress [A]. Vo1.Chilling,freezing and high temperature stress [C]. 2nd edn. Academic Press, London, NewYork, 1980: 22.
    [99] Ludlow M M. Strategies of response to water stress[A]. In: Kreeb K H, Richter H, Hinckley T M, eds. Structural and Functional Responses to Environmental Stressed [C]. The Hague, The Netherlands: SPB Acad Publ, 1989: 269-281.
    [100] Sabehat A, Weiss D, Curie S.Heat-shock proteins and cross-tolerance in plant [J]. Physiol Plant, 1998, 103: 437-441.
    [101] Ming Gong, Bo chen, Zhang-guang Li, et al. Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2 [J].Plant Physoil, 2001, 158: 1125-1130.
    [102] Javier P D,Jose U, Manuel S D. Chilling of drought-hardened and no-hardened plants of different chilling-sensitive maise lines-changes in water relations and ABA contents [J]. Plant Sci, 1997, 122: 71-79.
    [103] Arora R, Pitchay D S,Bearce B C. Water-stress-induced heat to1erance in geranium leaf tissues: A possible linkage through stress proteins? [J]. Physiol Plant, 1998, 103: 4-34.
    [104] Ryu S B, Costa A, Xin Z G, et al. Induction of cold hardness by salt stress involves synthesis of cold and acid-responsive proteins in potato (Solanum commersonii Dun) [J]. Plant cell Physiol, l995, 36: 1245-1251.
    [105] Kell E, Steffen K L.Increased chilling tolerance and altered carbon metabolium in tomato leaves following application of mechanical stress [J]. Physiol Plant, 1995, 93: 519-525.
    [106] Caldwell C R.Modification of the cellular heat sensitivity cucumber by growth under supplemental ultraviolet-B radiation [J].Plant Physiol, l994, 104: 395-399.
    [107]曾韶西,王以柔,李美如.不同胁迫预处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报, 1997, 39 (4):308-314.
    [108] Tianbao Wang and Poovaiah B W. Calcium/calmodulin-mediated signal network in plants [J]. Trends in Plant Science, 2003, 18(10): 505-512.
    [109] Daisuke Takezawa and Anzu Minami. Calmodulin-binding proteins in bryophytes: identification of abscisic acid-, cold-, and osmotic stress-induced genes encoding novel membrane-bound transporter-like proteins [J]. BBRC, 2004, 317: 428-436.
    [110] Knight H, Brandt S, Knight M R. A history of stress alters drought calcium signaling pathways in Arabidopsis [J]. Plant J, 1998, 16: 681-687.
    [111] Kitagawa Y, Yoshizaki K. Water stress-induced chilling tolerance in rice:putative relationship between chilling tolerance and Ca2+ flux [J]. Plant Sci, 1998, 137(1): 73-85.
    [112] Larkindale J, Knight M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid [J]. Plant physiol, 2002, 128: 682-695.
    [113] RenèM, Karin Visser, Mei Wang. Effects of modulation of calcium leaves and calcium fluxes on ABA-induced gene expression in barley aleurone [J]. Plant Science, 1996, 117: 75-82.
    [114] Li Zhijun. Changes in theremotolerance of photosynthetic apparatus in cucumber leaves in response to water stress and exogenous ABA treatments [J]. J of the Japanese Soc for Hort Sci, 1996, 65(3): 587-594.
    [115] Abdel B R. Calcium channels and membrane disorders induced by drought stress in Vicia afba plants supplemented with calcium [J]. ACTA Physiol Plant, 1998, 20(2): 149-153.
    [116]洪法水,周谋文,董振吉.钙和聚乙二醇浸种对小麦幼苗干旱胁迫的缓解效应[J].植物生理学通讯, 1995, 31(3):202.
    [117] Wang Hengbin, Zhang Shuqiu, et al. Involvement of Ca2+/CaM in the signal transduction of acetylcholine regulating stomatal movement [J]. Chinese Science Bulletin, 2003, 48(4): 351-354.
    [118] Ludlow M M, Sommer K J, Flouer D J, et al. Influence of root signals resulting from soil dehydration and high soil strength on the growth of crop plants [J]. Current Topics Plant Biochem Physiol, 1989, 8: 81-89.
    [119]陈文孝,上本俊平.关于蔬菜钙吸收的研究:在营养生长和生殖生长过程中白菜对钙的吸收和生长意义[J].园艺学会杂志, 1976, 45(1):33-42.
    [120]杨盛昌,谢潮添,陈文列.红树植物白骨壤叶片衰老过程中叶肉细胞Ca2+水平的变化[J].台湾海峡, 2003, 5:145-150.
    [121]唐道城.土壤水分胁迫对白芥根系发育的影响[J].中国油料作学报, 2001, 23 (2):23-25.
    [122]沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版杜, 2001:271-322.
    [123]候学煌.中国植被地理及优势植物化学成分[M].北京:科学出版社, 1982: 316-321.
    [124]李绪谦,蒋惠中,赵晓波.吉林省中部土壤资源形成机制与地质环境的关系[J].长春科技大学学报, 2001, 31(1):78-83.
    [125]中华人民共和国国家药典委员会.中华人民共和国药典.一部[M].北京:化学工业出版社, 2000:177.
    [126]中国药材公司.中国中药资源志要[M].北京:科学出版社, 1994:1-2028.
    [127] Li Qiang, Deng Yan, Yu Longjiang, et al. Leaf epidermal characters of two species of Flos Lonicerae and their ecology adaptation [J]. Journal of forestry research, 2007, 18 (2): 103-108.
    [128] Qiang Li , Hailong Sun , Jun Han , et al. High-resolution study on the hydrochemical variations caused by the dilution of precipitation in the epikarstspring: An example spring of Landiantang at Nongla, Mashan, China [J]. Environmental Geology, 2007. ( DOI: 10.1007/s00254-007-0821-8).
    [129]蒋忠诚.广西弄拉白云岩环境元素的岩溶地球化学迁移[J].中国岩溶, 1997, 16(4):304-312.
    [130]邓艳,蒋忠诚,曹建华等.弄拉典型峰丛岩溶区青冈栎叶片形态特征及对环境的适应[J].广西植物, 2004, 24(4):317-322.
    [131] Chen F, Wu T (eds). Guangdong Plants [M]. Beijing: Science publisher house. 1982. 15-50.
    [132]李学垣.土壤化学及实验指导[M].北京:中国农业出版社, 1997:1-266.
    [133]杜占池,钟华平.川东红池坝地区红三叶和鸭茅人工草地土壤和植物营养元素含量特征的研究[J].植物生态学报, 1998, 22(4):350-355.
    [134]王庆成,程云环.土壤养分空间异质性与植物根系的觅食反应[J].应用生态学报, 2004, 15(6):1063-1068.
    [135]李绪谦,蒋惠中,赵晓波.吉林省中部土壤资源形成机制与地质环境的关系[J].长春科技大学学报, 2001, 31(1):78-83.
    [136]张晓林,和丽忠,陈锦玉等.土壤一烤烟矿质营养元素相互关系的主组分分析[J].土壤学报, 2001, 38(2):193-203.
    [137]廖红,严小龙.高级植物营养学[M].北京:科学出版社, 2003:1-313.
    [138] Du Zhan-chi, Yang Zong-gui. Comparative study on the characteristics of photosynthesis and transpiration in Aneurolepidium Chinense of different soil types [J]. ACTA Botanica Sinica, 1995, 37(1): 66-73.
    [139]李博.生态学[M].北京:高等教育出版社, 2000:10-41.
    [140]杨克敌.微量元素与健康[M].北京:科学出版社, 2003:1-124.
    [141] Wilkinson H P. The plant surface (mainly leaf) [A]. In: Metcalfe C R, Chalk L (eds). Anatomy of the Dicotyledon (2nd ed) [C]. Oxford: Carendon Press, 1979, 1: 97-114, 143-161.
    [142] Baranova M. Historical development of the present classification of morphologicaltype of stomates [J]. The Botanical Review, 1987, 53: 53–79.
    [143] Baranova M. Principles of comparative stomatographic studies of flowering plants [J]. The Botanical Review, 1992, 58: 1–99.
    [144] Stace C A. Cuticular studies as an aid to plant taxonomy [J]. Bulletin of the British Museum (Natural History) Botany, 1965, 4: 1–78.
    [145] Meidner H and Mansfield T A. Physiology of stomata [M]. London: McGraw-Hill, 1968: 1-200.
    [146] Rijkers G T, Justement L B, Griffioen A W, et al. Improvement method for measuring intracellular Ca2+ with fluo-3 [J]. Cytometry, 1990, 11: 923.
    [147]贾敬鸾,陈晓松,陈正华.云杉针叶的扫描电镜观察[J].遗传, 1996, 18(2):25-27.
    [148] Kausch A P, Horner H T. The relationship of air space formation and calcium oxalate crystal development in young leaves of Typha angustifolia (Typhaceae) [J]. Scanning Electron Microscopy, 1981, (1): 263-272.
    [149]张丽军,任茵.葱皮忍冬叶的生药学研究[J].西北药学杂志, 1997, 12(3):114-115.
    [150] Bootman M D, Berridge M J and Roderick H L. Calcium signaling: more messengers, more channels, more complexity [J]. Current Biology, 2002, 12: 563.
    [151] Parekh A B and Putney J W. Store-operated calcium channels [J]. Physiological Reviews, 2005, 85: 757.
    [152] Fahn A. Some anatomical adaptation of desert plant [J]. Phytomophology, 1964, 14: 93-102.
    [153] Johnosn H B. Plant Pubescence: an ecological perpective [J]. Bol. Rev, 1975, 41: 233-258.
    [154]赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报, 1981, 23(4):278-283.
    [155]王耀芝,王勋陵,李蔚.荒漠化草原常见植物叶内部结构的观察[J].兰州大学学报, 1983, 19(3):87-96.
    [156]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报, 1999, 19(6):787-792.
    [157]李正理.旱生植物的形态和结构[J].生物学通报, 1981, 4:9-12.
    [158] Flores Pilar, Castellar Inmaculada, Hellin Pilar, et al. Response of pepper plants to different rates of mineral fertilizers after soil biofumigation and solarization [J]. Journal of Plant Nutrition, 2007, 30(3): 367-379.
    [159]廖红,严小龙.高级植物营养学[M].北京:科学出版社, 2003:1-313.
    [160] Osmand C B. Interaction between irradiance, nitrogen nutrition, and water stress in sun-shade responses of Solanum dulcamara [J]. Oecologia, 1983, 57: 316-321.
    [161] Coombs J, et al edited, Qiu G. W translate. Biology productivity and determine technique of photosynthesis [M]. Beijing: Science press, l986: 63-96.
    [162]王玉辉,周广胜.羊草叶片气孔导度对环境因子的响应模拟[J].植物生态学报, 2000, 24(6):739-743.
    [163]谢田玲,沈禹颖,邵新庆等.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分利用效率[J].生态学报, 2004, 24(8):1678-1685.
    [164] Dawson T E, Ehleringer J R. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo [J]. Eco1, 1993, 74: 798-815.
    [165] Donovan L A, Ehleringer J R. Potential for selection on plants for water-use efficiency as estimated by carbon isotope discrimination [J]. Am J Bot, 1994, 81: 927-935.
    [166]郑海雷,黄子琛.春小麦单叶气孔行为及蒸腾作用的模拟[J].高原气象, 1992, 1( 4):423-430.
    [167]温达志,周国逸.南亚热带酸雨地区陆地生态系统植被,土壤与地表水现状的研究[J].生态学杂志, 2000, 19(5):11-18.
    [168] Jones R G, Lunt O R. The function of calcium in plant [J]. Bot Rew, 1967, 33: 407- 426.
    [169] Farquhar G D and Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, 33: 317-321.
    [170] Farquhar G, Schulze E D & suppers M. Responses to humidity by stomata of Nicotiana glauca and Corylusa avellana are consistent with the optimization of carbon dioxide uptake with respect to water loss [J]. Australian Journal of Plant Physiology, 1980, 7: 315 -327.
    [171]陈福明,陈顺伟.混合液法测定叶绿素含量的研究[J].林业科技通讯, 1984(2):4-8.
    [172]张慧茹.生物化学试验原理和方法[M].银川:宁夏人民出版社, 1999: 143-145.
    [173]邹奇.植物生理学实验指导[M].北京:中国农业出版社, 2000: 54.
    [174]徐晓峰,朱才.小麦叶中脯氨酸测定方法的研究[J].生物技术, 1997, (1):40-42.
    [175]张志良.植物生理学实验指导[M].北京:高等教育出版社, 1990:259-260.
    [176]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社, 1999:1-303.
    [177] Bogorad L and Vasil I K.The photosynthetic apparatus [M].Academic Press Inc,Californi, 1991: 302-321.
    [178]胡颂平,梅捍卫,邹桂花等.正常与水分胁迫下水稻叶片叶绿素含量QTL分析[J].植物生态学报, 2006, 30(3):479-486.
    [179]赵广东,刘世荣,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅰ、叶片养分、叶绿素、可溶性糖和淀粉的变化[J].植物生态学报, 2003, 27(2):228-234.
    [180]高三基,罗俊,陈如凯等.甘蔗品种抗旱性光合生理指标及其综合评价[J].作物学报, 2002, 28(1):94-98.
    [181]王中英.果树抗旱生理[M].北京:农业出版社, 2000:36-42.
    [182] Willemot C. Stimulation of phospholipid biosynthesis during frost hardening if winter wheat [J]. Plant Physiol, 1975, 55: 356-359.
    [183] Helper P K, Wayner O. Calcium and plant development [J]. Ann Rev Plant Physiol, 1985, 36: 397-439.
    [184]武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响[J].华北农学报, 2001, 16(2):87-93.
    [185]冯启理,潘战生.红光和远红光对大豆叶绿体Ca2+-ATPase活性的影响[J].植物生理学通讯, 1991, 27(2):94-96.
    [186] Blackman S A.Maturation proteins and sugars in desiccation tolerance of developing soybean seeds [J].Plant Physiology, 1992, 100: 225-230.
    [187] Dure L.P1ant responses to cellular dehydration during environment stress [J]. Plant Physiology, 1993, 103(10):91-93.
    [188] Stearteta1. The role of proline accumulation in halophytes plants [J].Planta, 1974,120: 279-289.
    [189] Poovaiah B W,Rddy A N.Calium messenger system in plant [J].CRC Crit Rev Plant Sci, 1987, 6(1): 47-103.
    [190] Peng M.Peroxidese-generted hydrogen peroxide as a secures of antifungal activity in vitro and on tobacco leaf disks [J]. Phytopathology, 1992, 82: 696-699.
    [191] Gong M, Chen S, Song Y Q, et al. Effect of calcium and calmodulinon in trinsic heat tolerance in relation to a tioxidant systems in maie seeding [J]. Aust J Plant Physiol, 1997, 24: 371-377.
    [192] Camrnarata K V, Cheniae G. Studies on 17,24 kD depleted photosystem II membranes 1 Eridences for high and low affinity calcium sites in 17, 24kDa depleted PS II membranes from wheat versus spinach [J]. Plant Physiol, 1987, 84: 587-595.
    [193] Ono T A, Inoue Y. Discrete extraction of the Ca atom functional for O2 evolution in higher plant photosystem II by a simple low pH treatment [J]. FEBS Lett, 1988, 227: 147-152.
    [194] Kalosaka K, Beck W F, Brudvig G, et al. Coupling of the PS II reaction center tothe O2-evolving center requires a very high affinity Ca2+ site [A]. In: Baltscheffsky M ed. Current Research in Photosynthesis [C]. Vol. 1. Dordrecht : Kluwer Ademic Publishers, 1990: 709-712.
    [195] Bakou A, Auser C, Dandulakis G, et al. Calcium binding sites(s) of photosystem II as probed by lanthanides [J]. Biochim Biophys Acta, 1992, 1099: 131-136.
    [196] Haber M F, Young E, Fanst M. Effects of PEG-induced water stress on calcium uptake in peach seedlings [J]. J Amer Soc Hart Sci, 1983, 108: 737-740.
    [197] Mason A C. The effect of soil on the mineral composition of apple plants grown in pots [J]. J Hort Sci, 1958, 33: 202-21l.
    [198]徐炳声,王汉津.中国植物志(第72卷)[M].北京:科学出版社, 1988:288.
    [199]蔡伦,张富春,曾幼玲等.新疆盐生植物的钙调蛋白基因克隆与序列分析[J].植物生理学通讯,2005,41(2):163-167.
    [200] Herppich W B, Peckmann K. Influence of drought on mitochondrial activity, photosynthesis, nocturnal acid accumulation and water relations in the CaM plants Prenia sladeniana (ME-type) and Crassula lycopodioides (PEPCK-type) [J]. Annals of Botany, 2000, 86: 611-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700