用户名: 密码: 验证码:
黄海物理环境对浮游植物水华影响的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄海为半封闭陆架浅海,位于中国大陆和朝鲜半岛之间。黄海被确定为是世界50个“大海洋生态系统”之一,是重要的渔场。浮游植物水华是一段时期内浮游植物种群快速、显著增加的过程,每年春秋两次水华是中纬度海域浮游植物年循坏的普遍规律,其对整个海域的初级生产力水平和各生源要素循环等均有重要影响。本文的主要目标是利用一个三维生态模型模拟黄海浮游植物生物的季节变化规律,分析黄海浮游植物水华的特征,讨论环境因子的改变对春季浮游植物水华的影响作用。
     首先根据2007年4月黄海水华航次的观测资料,分析讨论了浮游植物水华过程中各要素的变化特征及快速衰退的主导因素。春季水华过程中,水体中较高的营养盐浓度不会对浮游植物的生长起限制作用。结合卫星遥感资料图片分析,浮游植物水华的空间变化过程为:首先发生于黄海近岸水域,进而扩展至黄海中部海域,中部海域的水华衰退后,近岸水域生物量又有小的峰值。水华期间,浮游植物呈“斑块”状分布。通过对连续站的分析发现,水平平流作用是水柱内浮游植物生物量快速减少的主导因素。
     建立了一个与黄海环流、混合过程耦合的三维生态模型对黄海浮游植物的水华过程进行了模拟。模型包括硅藻、鞭毛藻两种浮游植物、氮、磷、硅三种营养盐等状态变量,以反映浮游植物生长过程中的群落演替及不同营养盐对不同种群地限制作用。黄海浮游植物系统各生态变量1994年季节变化的模拟结果表明,黄海浮游植物的年变化呈现“双峰”结构,即每年出现春季、秋季两次水华,秋季水华的强度与范围都较春季水华的弱。浮游植物春季水华一般发生在3月份,4月份为水华强盛期,后由于上层水体中营养盐的消耗及跃层的形成而衰退,5月份水华基本消失。模拟的营养盐与浮游植物的季节变化与实测值较符合,较好的反映了黄海浮游植物生态系统的变化规律。
     模拟的浮游植物春季水华空间变化舰律为与卫星资料的结果一致,同样体现了近岸水域-中部海域-近岸海域的演变过程。浮游机物的分布同样也呈“斑块”状分布,尺度为十几至几十公里,这主要是由于流场的辐聚辐散造成的。“斑块”尺度、位置及“斑块”浓度大小在短时间内的快速变化主要是由水体的平流作用引起的。
     通过对环境因子的分析得:2月份,浮游植物的生长主要受到光强的限制;3月份主要受温度的影响。光强增强能够引起浮游植物水华时间提前,持续时间增加。温度通过对生长率的影响作用进而影响了浮游植物的生长,温度的增加或减小能使水华时间提前或推迟,水华持续时间也略有相应的增加或减小。强混合作用使水体的稳定性变差,延迟了浮游植物水华的发生。悬浮颗粒物使得水体中光强衰减加快,能显著影响浮游植物水华的发生时间及水华强度。初级生产力和浮游植物(硅藻和鞭毛藻)的群落结构也会发生相应的改变。
The Yellow Sea is semi-enclosed shelf sea located between the mainland of China and the Korea Peninsula.It is one of the world's 50 so-called 'large marine ecosystems' and one of the most important fishing areas.An algal bloom is defined as a relatively rapid increase in the biomass of phytoplankton in an aquatic system.The twice bloom in spring and autumn every year is common for mid-latitude phytoplankton annual cycle.Phytoplankton bloom has great effect on the primary production level and biological variable cycle of the whole area region.The main purpose of this paper is 1) to simulate the seasonal variation of phytoplankton by using a three-dimension biological dynamic model,2) to analyze the characteristic phytoplankton bloom in the Yellow Sea,3) to discuss the variations of phytoplankton spring bloom which affected by the change of environment factors.
     Based on the observation data which were obtained from bloom cruise on April, 2007 in the Yellow Sea,analyze and discuss the characteristics of different biological variables during the bloom process and the reason for rapidly decrease of the bloom. During the bloom process,the nutrient concentration doesn't restrict the phytoplankton growth.Combined with the remote sensing data,the spatial variation of the phytoplankton bloom appears in shore region at first.Then it extends to the central part of the Yellow Sea.After the central region bloom declined,the chlorophyll concentration has another small peak in the shore region again.The distribution of the phytoplankton bloom reveals the patchiness characteristic which has a wide range of spatial and temporal scales.The horizontal convection is speculated to be responsible for the abrupt decrease in the concentration of chlorophyll at anchor station.
     A three-dimension biological model is established to simulate the phytoplankton bloom process in the Yellow Sea.The model has two groups of phytoplankton(diatom, flagerlate) and three kinds of nutrients.It could reveal the succession between the two groups during the bloom and the different restriction effect on the two groups from different nutrient.The results are similar to the observation data.The model could reveal the seasonal variation of phytoplankton well.
     From the simulation results,the phytoplankton concentration has two peaks every year in the Yellow Sea.The bloom appears in spring and autumn separately.The intensity and range of the autumn bloom is weaker and smaller than the spring bloom's.In general the spring bloom happens in March,strengthens in April and decreases in May due to the consumption of the nutrient.
     The spatial variation of the phytoplankton bloom process from simulated data coincides with the result from remote sensing data.The distribution of the phytoplankton also has the patchiness characteristic.The spatial scale is ten to tens of kilometers.It is mainly affected by the convergence and divergence of the current field.The horizontal convection is responsible for the rapidly variations of the patch scale,location and concentration.
     Through analyzing the environment variation,the growth of phytoplankton is mainly restricted by the solar radiation in February.The water temperature has effect on the phytoplankton growth in March.In spring,intensified the radiation could make the bloom happen in advance and the lasting time increase.The temperature could affect the phytoplankton growth through the relationship between the temperature and growth rate.The increase or decrease of the temperature could lead the bloom to happen in advance or delay.The lasting time of the phytoplankton bloom also increases or decreases a little correspondingly.The intensified mixing effect could weaken the water stabilization,therefore the happening time of the bloom will be delayed.The suspended particulate matter could intensify the diffusion the radiation in water column and change the bloom timing and range obviously.The primary production and the phytoplankton community will change correspondingly.
引文
[1]陈长胜.海洋生态系统动力学与模型.北京:2003,高等教育出版社.
    [2]冯士筰,李风岐,李少菁.海洋科学导论.北京:1999,高等教育出版社.
    [3]海洋图集编委会.渤海、黄海、东海海洋图集(化学).北京:1991,海洋出版社.
    [4]海洋图集编委会.渤海、黄海、东海海洋图集(生物).北京:1991,海洋出版社.
    [5]韩希福,王荣.海洋浮游动物对浮游植物水华的摄食与调控作用.海洋科学,200l,25(10):3-33.
    [6]赫崇本,汪园祥,雷宗友,等.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼,1959,2(1):11-15.
    [7]胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析.海洋学报,2004,26(6):74-88.
    [8]胡好国.南黄海浮游生态年循环:[硕士学位论文].青岛:国家海洋局第一海洋研究所.,2003.
    [9]金显仕,赵宪勇,孟田湘,崔毅.黄、渤海生物资源与栖息环境.北京:科学出版社,2005.77-80.
    [10]李杰.黄海冷水团新生产力及微食物环作用年变化特祉的模拟分析:[硕士学位论文].青岛:中国海洋大学,2005.
    [11]刘桂梅,孙松,王辉.海洋生态系统动力学模型及其研究进展.地球科学进展,2003,18(3):427-432.
    [12]刘素美,张经,陈洪涛.黄海和尔海生源要素的化学海洋学.海洋环境科学,2000,19(1):68-74.
    [13]孟凡,丘建文,吴宝铃.黄海大海洋生态系的浮游动物.黄渤海海洋,1993,11(3),30-37.
    [14]宁修仁,史君贤,蔡昱明,等.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,2004,26(6):96-106.
    [15]潘科,黄凌风,郭丰,等.夏季黄海、东海鞭毛虫的丰度与悬浮颗粒物的关系.海洋学报,2005,27(6):107-115.
    [16]沈国英,施并章.海洋生态学.1999,厦门大学出版社.
    [17]苏纪兰,黄大吉.黄海冷水团的环流结构.海洋与湖沼增刊,1995,26(5):1-7.
    [18]孙湘平.中国近海区域海洋.北京:2006,海洋出版社.
    [19]唐启升,苏纪兰.中国海洋生态系统动力学研究(Ⅰ)关键科学问题与研究发展战略.北京:2000,科学出版社.
    [20]汤毓祥,邹娥梅,李兴宰,等.初春南黄海水文特征及环流状况的分析.海洋学报,1999,21(5):1-11.
    [21]田恬,魏皓,苏建等.黄海氮磷营养盐的循环和收支研究.海洋科学进展,2003,21(1):1-11.
    [22]王保栋,王桂云,刘峰.南黄海春季海水化学要素的分布特征.海洋环境科学,1998,17(3):45-50.
    [23]王保栋,王桂云,郑吕洙等.南黄海营养盐的平面分布特性及其横向输运规律.海洋学报,1999,21(6):124-129.
    [24]王保栋.南黄海营养盐的币直分布特性及其垂向输运规律.海洋环境科学,1999,18(1):13-18.
    [25]王保栋,单宝田,战闫,等.黄海生源要素的生物地球化学研究评述.黄渤海海洋,2001,19(2):113-115.
    [26]王保栋,单宝田,战闫,等.黄、渤海无机氮的收支模式初探.海洋科学,2002,26(2):33-36.
    [27]王保栋.黄海和东海营养盐分布及其对浮游植物的限制.应用生态学报,2003,14(7):1122-1126.
    [28]王俊.黄海春季浮游植物的调查研究.海洋水产研究,200l,22(1):56-61.
    [29]王俊.黄海秋、冬季浮游植物的调查研究.海洋水产研究,2003,24(1):15-23.
    [30]王小东,孙军,刘尔艳,等.海洋中型浮游动物的选择性摄食对浮游植物群落的控制.海洋科学进展,2005,23:524-535.
    [31]魏皓,王磊,林以安,等.黄海中部营养盐的贳跃层输运.海洋科学进展,2002,20(3):15-20.
    [32]魏皓,赵亮,冯士筰.渤海浮游植物生物量与初级生产力变化的三维模拟.海洋学报,2003,25(增2):66-72.
    [33]魏皓,赵亮,冯士筰.渤海碳循环与浮游植物动力学过程研究.海洋学报,2003,25(增2):151-156.
    [34]魏皓,赵亮,刘广山,等.浅海底边界动力过程与物质交换研究.地球科学进展,2006,21(11):1180-1184.
    [35]魏皓,赵亮,武建平.浮游植物动力学模型及其在海域富营养化研究中的应用.地球科学进展,2001,16(2):220-225.
    [36]吴增茂,俞光耀.海洋生态系统动力学模型的基本特征及其研究进展.地球科学进展,1996,11(1):13-18.
    [37]吴增茂,俞光耀,娄安刚.浅海环境物理学与生物学过程相互作用研究.青岛海洋大学学报,1996,26(2):165-171.
    [38]吴增茂,俞光耀,张志南,陆贤昆,高山红,张新玲.胶州湾北部水层生态动力学模刑与模拟Ⅱ.胶州湾北部水层生态动力学的模拟研究.青岛海洋大学学报,1999,29(3):429-435.
    [39]吴增茂,翟雪梅,张志南,俞光耀,张新玲,高山红.胶州湾北部水层-底栖耦合生态系统的动力数值模拟分析.海洋与湖沼,2001,32(6):588-597.
    [40]夏洁,高会旺.南黄海东部海域浮游生态系统要素季节变化的模拟研究.安全与环境学报,2006,6(4):59-65.
    [41]徐永福,J.S.A.Green.模拟浮游生物的季节变化.生态学报,1995,15(3):245-250.
    [42]俞光耀,吴增茂,张志南,陆贤昆,奚盘根,娄安刚,张新玲.胶州湾北部水层生态动力学模刑与模拟Ⅰ.胶州湾北部水层生态动力学模拟.青岛海洋大学学报,1999,29(3):421-428.
    [43]张经主编,中国主要河口的生物地球化学研究-化学物质的迁移与环境,1996,海洋出版社,北京.
    [44]张书文,夏长水,袁业立.黄海冷水团水域物理-生态耦合数值模式研究.自然科学进展,2002,12(3):315-319.
    [45]张新玲,郭心顺,吴增茂.渤海海面太阳辐照度的观测分析与计算方法研究.海洋学报,2001,23(2):46-51.
    [46]张运林,秦伯强,陈伟民,等.不同风浪条件下太湖梅梁湾光合有效辐射的衰减.应用生态学报,2005,16(6):1133-1137.
    [47]张志南,周红等.生物海洋学导论.青岛:青岛海洋大学出版社:,2000.89-90.
    [48]赵亮,魏皓,冯士筰.渤海氮膦营养盐的循环和收支.环境科学,2002,23(1):78-81.
    [49]赵亮.渤海浮游植物生态动力学模型研究:[博士学位论文].青岛:中国海洋大学,2002.
    [50]朱明远,毛兴华,吕瑞华.黄海海区的叶绿素a和初级生产力.黄渤海海洋,1993,11(3):38-51.
    [51]邹娥梅,郭炳火,汤毓祥,等.1996年春季南黄海:水文特征和水团分析.海洋学报,2000,22(1):17-26.
    [52]Abraham,E.R.The generation of plankton patchiness by turbulent stirring.Nature,1998,391(5):577-580.
    [53]Anderson L.A.,Robinson A.R.,Lozano C.J.Physical and biological modeling in the Gulf Stream region:Ⅰ.Data assimilation methodology.Deep-Sea Research Ⅰ,2000,47:1787-1827.
    [54]Anderson L.A.,Robinson A.R.Physical and biological modeling in the Gulf Stream region Part Ⅱ.Physical and biological processes.Deep-Sea Research Ⅰ,2001,48:1139-1168.
    [55]Babin M.,Stramski D.,Ferrari G.M.,Claustre H.,Bricaud A.,Obolensky G.,Hoepfner N.Variations in the light absorption coefficients of phytoplankton,nonalgal particles,and dissolved organic matter in coastal waters around Europe.Journal of Geophysical Research,2003,108(4):1-20.
    [56]Beardsley R.C.,Limeburner R.,Yu H.Discharge of the Changjiang(Yangtze River) into the East China Sea.Continental Shelf Research,1985,4:57-76.
    [57]Carlos A.A.Carbonel H.,Jean Louis Valentin.Numerical modelling of phytoplankton bloom in the upwelling ecosystem of Cabo Frio(Brazil.Ecological Modeling,1999,116:135-148.
    [58]Cerco F.C.,Cole T.Three-dimensional Eutrophication model of Chesapeake Bay.JEnvir Engin,1993,119(6):1006-1025.
    [59]Cerco EC.Simulation of Long-term Trends in Chespeake Bay Eutrophication.JEnvir Engin,1995,121(4):298-310.
    [60]Cui M.C.,Wang R.,Hu D.X.,Yuan Y.C.Simple Ecosystem Model of the central part of The East China Sea in spring.Chinese.Journal of Oceanology and Limnology,1997,15(1):80-87.
    [61]Franks,P.J.S.Spatial patterns in dense algal blooms.Limnology and Oceanography,1997,42(5,part 2):1297-1305.
    [62]Fransz H.G.,Mommaerts J.P.,Radach G.Ecological modeling of the North Sea.Netherlands Journal of Sea Research,1991,28(1/2):67-140.
    [63] Haren H. V., Mills D. K., Wetsteyn P. M. J. Detailed observations of the phytoplankton spring bloom in the stratifying central North Sea. Journal of Marine Research, 1998, 56: 655-680.
    [64] Hillmer, I., Imber J. Influence of advection on scales of ecological studies in a coastal equilibrium flow. Continental Shelf Research, 2007, 27, 134- 153.
    
    [65] Holliday N.P., Waniek J.J., Davidson R., Wilson D., Brown L., Sanders R., Pollard R.T., Allen J.T. Large-scale physical controls on phytoplankton growth in the Irmingre Sea Part 1: Hydrographic zones, mixing and Stratification. Journal of Marine System, 2006, 59: 201 - 218.
    [66] Horwood J. W. Algal production in the west-central North Sea. Journal of Plankton Research, 1982,4(1): 103-124.
    [67] Howarth M.J., Simpson J. H., Sundermann J., Haren H. van. Processes of Vertical Exchange in Shelf Sea (PROVESS). Journal of Sea Research, 2002, 47: 199-208.
    [68] Jae-Young Lee, Tett P., Jones K., Jones S., Luyten P., Smith C., Wild-Allen K. The PROWQM physical-biological model with benthic-pelagic coupling applied to the northern North Sea. Journal of Sea Research, 2002, 48: 287-331.
    
    [69] Jago C.F., Latter R.J., McCandliss R.R., Hearn M.R., Howarth M.J., Jones S.E. Resuspension of benthic fluff bytidal currents in deep stratified waters, northern North Sea. Journal of Sea Research, 2002, 48: 259-269.
    
    [70] Jones S.E., Jago C.F., Bale A J., Chapman D., Howland R.J.M., Jackson J. Aggregation and resuspension of suspended particulate matter at a seasonally stratified site in the southern North Sea: physical and biological controls. Continental Shelf Research, 1998, 18: 1283- 1309.
    
    [71] Kelly-Gerreyn B. A.. Anderson T. R., Holt J. T., et al. Phytoplankton community structure at contrasting sites in the Irsh Sea: a modeling investigation. Estuarine, Coastal and Shelf Science, 2004, 59:363-383.
    [72] Lalli, C.M., Parsons T.R.. Biological oceanography: an introduction. Butterworth Heinemann, Oxford. 1997, 103 pp.
    
    [73] Lars Chresten, Lund-Hansen. Diffuse attenuation coefficients Kd (PAR) at the estuarine North Sea-Baltic Sea transition: time-series, partitioning, absorption, and scattering. Estuarine, Coastal and Shelf Science, 2004, 61: 251 -259.
    [74] Lenhart H., Radach G., Ruardij P. The effects of river input on the ecosystem dynamics in the continental coastal zone of the North Sea using ERSEM. Journal of Sea Research, 1997, 38: 249-274.
    [75] Liu S. M., Zhang J., Chen S. Z. Chen H.T., Hong G. H., Wei H., Wu Q. M. Inventory of nutrient compounds in the Yellow Sea. Continental Shelf Research, 2003, 23: 1161 - 1174.
    [76] McCandliss R.R., Jones S.E., Hearn M., Latter R., Jago C.F. Dynamics of suspended particles in coastal waters (southern North Sea) during a spring bloom. Journal of Sea Research, 2002, 47: 285-302.
    [77] Mccgullicuddy Jr D.J., McCarthy J.J., Robinson A.R. Coupled physical and biological modeling of the spring bloom in the North Atlantic ( I ): model formulation and one dimensional bloom processes. Deep-Sea Research I , 1995, 42(8): 1313-1357.
    [78] Mccgullicuddy Jr D.J., Robinson A.R, McCarthy J.J. Coupled physical and biological modeling of the spring bloom in the North Atlantic(II): three dimensional bloom and post- bloom processes. Deep-Sea Research I , 1995,42(8): 1359-1398.
    [79] Morten D. Skogen, Andreas Moll. Interannual variability of the North Sea primary production: comparison from two model studies. Continental Shelf Research, 2000, 20(2): 129-151.
    [80] Morten D. Skogen. Andreas Moll. Importance of ocean circulation in ecological modeling: An example from the North Sea. Journal of Marine Systems, 2005, 57: 289-300.
    [81] Paerl H. W. Enhancement of marine primary production by nitrogen enriched acid rain. Nature, 1985, 315: 747-749.
    [82] Radach G., Moll A. Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea. Progress in Oceanography, 1993, 31(4): 339-419.
    [83] Rees A.P., Joint I., Donald K..M. Early spring bloom phytoplankton-nutrient dynamics at the Celtic Sea Shelf Edge. Deep-Sea Research I , 1999,46: 483-510.
    [84] Reid P. C., Lancelot C., Gieskes W. W. C., et al. Phytoplankton of the North-Sea and its dynamics - a review. Nertherlands Journal of Sea Research, 1990, 26: 295-331.
    [85] Riley G. A. Factors controlling phytoplankton populations on Georges Bank. Journal of Marine Research, 1946, 6(1): 54-73.
    
    [86] Riley G.A., Stommel H., Bumpus D.F. Quantitative ecology of the plankton of the Western North Atlantic. Bull Bingham Oceanogr Coll, 1949, 12: 1 - 169.
    [87] Riley G. A. The relationship of vertical turbulence and spring diatom flowerings. Journal of Marine Research, 1942, 5(1): 67-87.
    [88] Schrum C.. Alekseeva I., John M. St. Development of coupled physical- biological ecosystem model ECOSMO Part 1: Model description and validation for the North Sea. Journal of Marine System, 2006, in press.
    [89] Skogen M.D., Svendsen E., Berntsen J., Aksnes D.L., Ulvestad K..B. Modeling the primary production in the North Sea using a coupled three-dimensional physical-chemical-biological ocean model. Estuarine, Coastal and Shelf Science, 1995, 41: 545-565.
    [90] Tian T., Wei H., Su J., Chung C. Simulations of Annual Cycles of Phytoplankton Production and the Utilization of Nitrogen in the Yellow Sea. Journal of Oceanography, 2005, 61: 343- 357.
    [91] Varela R.A., Cruzado A., Gabaldon J.E. Modelling primaryproduction in the North Sea using the European Regional Seas Ecosystem Model. Netherlands Journal of Sea Research, 1995, 33(3/4): 337-361.
    [92] Waniek J. J. The role of physical forcing in initiation of spring blooms in the northeast Atlantic. Journal of Marine System, 2003, 39: 57-82.
    [93] Waniek J.J., Holliday N.P. Large-scale physical controls on phytoplankton growth in the Irmingre Sea Part II: Model study of the physical and meteorological preconditioning. Journal of Marine System, 2006, 59: 219-237.
    [94] Wei H., Jun S., Moll A., Zhao L. Phytoplankton dynamics in the Bohai Sea-observation and modeling. Journal of Marine Systems, 2004, 44(3-4): 233-251.
    [95] Wild-Allen K., Lane A., Tett P. Phytoplankton, sediment and optical observation in Netherlands coastal water in spring. Journal of Sea Resreach, 2002, 47: 303-315.
    [96] Whitney F.A., Crawford W.R., Harrison P.J. Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE Pacfic. Deep-Sea Research II, 2005, 52: 681-706.
    [97] Xinyu Guo, Hisashi Hukuda, Yasumasa Miyazawa, Toshio Yamagata. A Triply Nested Ocean Model for Simulating the Kuroshio-Roles of Horizontal Resolution on JEBAR. Journal of Physical Oceanography, 2002, 33: 146-169.
    [98] Zhao L., Wei H, Feng S. Z. Annual cycle and budgets of nutrients in the Bohai Sea. Journal of Ocean University of Qingdao(EngIish Edition), 2002, 1(1): 29-37.
    
    [99] Zhao L., Wei H. The Influence of Physical Factors on the Variation of Phytoplankton and Nutrients in the Bohai Sea. Journal of Oceanography, 2005, 61: 335--342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700