用户名: 密码: 验证码:
调节转运蛋白AtNRT1.1、AtNRT2.1及PdAMT1.1基因表达对拟南芥和杨树氮素吸收的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素营养是调节植物生长发育的主要外界环境因子之一。而硝酸盐(NO3-)和铵盐(NH4+)是植物根部从土壤中吸收和利用氮素的两种主要的稳定形态的氮源。目前研究证明,植物对NH4+、N03的吸收利用受氮素转运蛋白家族中的多个基因调控。其中,NRT1.1、NRT2.1是NO3-转运系统中的关键基因,而AMT1.1基因是NH4+转运系统中的关键基因。通过调节这些关键转运基因的表达可以提高植物氮素吸收效率。
     本研究分别以乙烯调节、生长素调节及转基因技术这三种手段来调节氮素转运蛋白AtNRT2.1、AtNRT1.1和PdAMT1.1基因的表达水平,从而来影响拟南芥和杨树的氮素营养吸收效率。
     在乙烯调节方面,作者运用气相色谱法、扫描离子选择电极法(SIET)、实时荧光定量法(qRT-PCR)、GUS染色法等技术来检测拟南芥AtNRT2.1基因在NO3-吸收途径与乙烯合成及信号转导通路的互作网络中的地位。结果发现:拟南芥(Col-0)植株在低NO3-浓度(LN)处理下乙烯合成量有显著增加,并且乙烯信号通路中的关键因子CTR1、 EIN3和EIL1基因表达量受到调节,在乙烯报告基因株系Col-0/EBS:GUS、 ein3-leil1-1/EBS:GUS和ctr1-1/EBS:GUS中的EBS:GUS活性均有显著增加。LN处理可以诱导AtNRT2.1基因表达,从而增加高亲和的NO3-吸收速率。通过对比NO3-转运蛋白突变体nrt1.1、nrt2.1与Col-0株系中的乙烯合成量及EBS:GUS活性差异,证实了LN处理诱导的AtNRT2.1基因上调可以促进乙烯合成、增强乙烯信号通路强度;同时,乙烯又可负调控AtNRT2.1基因表达,降低高亲和的NO3-吸收速率。综上所述,我们揭示了在LN处理下,AtNRT2.1基因表达与乙烯合成及信号转导途径间存在一个负反馈调节环,这样在外界NO3-缺乏胁迫下的NO3-吸收就可以达到一个内部相对平衡的状态。
     在生长素调节方面,为研究生长素信号对植物NO3-营养吸收的调控作用,作者采用SIET技术和qRT-PCR技术,测定拟南芥野生型Col-0、生长素过表达突变体yuc1-D以及生长素通路缺失突变体axr1-12三种株系初始根中NO3-吸收速率以及AtNRT1.1基因表达量的差异;并进一步检测Col-0株系以及NO3-转运蛋白突变体nrt1.1株系在正常条件(CK)或施加外源IAA及生长素极性运输抑制剂2,3,5-三碘苯甲酸(TIBA)处理下的NO3-流速和AtNRT1.1基因表达量的差异。结果表明yuc1-D株系的N03-吸收速率以及AtNRT1.1基因表达量相比Col-0株系均有大幅增加,而axr1=12株系的N03-吸收速率以及AtNRT1.1基因表达量相比Col-0株系显著降低;在Col-0株系中施加外源IAA对N03-吸收速率以及AtNRT1.1基因表达量有明显促进作用,而施加TIBA的效果反之,说明生长素对硝酸盐吸收有增强效应。而nrtl.1株系在CK、IAA.TIBA处理下N03-吸收速率差异较Col-0株系不明显,揭示了AtNRT1.1基因在生长素促进N03-吸收的调控途径中所起的重要作用。
     在转基因方面,作者从欧美杨NE-19中筛选并克隆了高亲和NH4+转运蛋白家族中的关键基因PdAMT1.1。经测序及蛋白结构分析发现,该基因片段大小为1,495bp,共编码498个氨基酸,包含9个跨膜蛋白结构域和1个保守结构域。组织特异性分析表明PdAMT1.1在根中的表达量要明显高于于芽、叶及茎中的表达量。通过亚细胞定位分析表明其定位于膜系统中。在模式植物拟南芥中过表达PdAMT1.1基因,发现在氮缺乏条件下,转基因株系OxPdAMT1.1的叶而积、株高等生理表型及NH4+吸收效率要明显高于其它株系,突变体amt1.1的表型及NH4+吸收效率最弱,而突变体回补株系amt1.1/PdAMT1.1的表型及NH4+吸收功能基本与Col-0及转空载体Col-O/V株系持平。从而验证了PdAMT1.1基因在促进植物生长、提高NH4+吸收效率方面发挥重要作用。然后我们通过叶盘侵染法进一步将PdAMT1.1基因转化进三倍体毛白杨中。通过氯酚红法检测、GUS检测、PCR检测等一系列手段,验证已获得6个转PdAMT1.1基因株系及3个转空载体株系。对缺氮处理下三倍体毛白杨的野生型WT、转空载体WT/V及过表达株系OxPdAMT1.1进行表型和功能分析,结果证明过表达株系OxPdAMT1.1表型及NH4+吸收效率均明显优于WT和WT/V株系。从而验证了通过转基因手段使得PdAMT1.1基因超量表达,可以获得能高效吸收利用氮素营养的杨树新品种。
Nitrogen availability is a major environmental factor that regulates plant growth and development. Nitrate (NO3-) and ammonium (NH4+) represent the most readily available forms of nitrogen for root absorption from the soil. Based on recent studies, there are many genes from different nitrogen transporter families responsible for NH4+and NO3-absorption. NRT1.1and NRT2.1are two crucial genes in NO3-transport system, and AMT1.1is a key gene in NH4+transport system. Regulating the expression of these genes could improve the efficiency of nitrogen absorption in plants.
     We regulated the expression of nitrogen transporter genes AtNRT2.1, AtNRT1.1and PdAMT1.1by ethylene mediation, auxin mediation and transgenic technology, respectively, to improve the efficiency of nitrogen absorption in Arabidopsis and poplar.
     Gas chromatography, scanning ion-selective electrode (SIET), quantitative real-time PCR (qRT-PCR) and GUS reporter assay techniques were used to explore the molecular interaction between AtNRT2.1transcript levels and the ethylene signaling pathway under nitrate deficiency. We reported a low nitrate (LN) treatment-induced rapid burst of ethylene production and regulated expression of ethylene signalling components CTR1, EIN3and EIL1in wild-type Arabidopsis thaliana (Col-0) seedlings, and enhanced ethylene response reporter EBS:GUS activity in both Col-0and the ethylene mutants ein3-leill-1and ctr1-1. LN treatment also caused up-regulation of AtNRT2.1expression, which was responsible for an enhanced high-affinity nitrate uptake. Comparison of ethylene production and EBS:GUS activity between mi1.1, nrt2.1mutants and Col-0indicated that this up-regulation of AtNRT2.1expression caused a positive effect on ethylene biosynthesis and signaling under LN treatment. On the other hand, ethylene downregulated AtNRT2.1expression and reduced the high-affinity nitrate uptake. Together, these findings uncover a negative feedback loop between AtNRT2.1expression and ethylene biosynthesis and signalling under nitrate deficiency, which may contribute to finely tuning of plant nitrate acquisition during exploring dynamic soil conditions.
     In order to study the modulating effect of auxin signaling on nitrate uptake in plants, SIET and qRT-PCR techniques were used to determine the net plasma membrane NO3-fluxes and the expression of nitrate transporter AtNRT1.1in primary roots of wild-type Arabidopsis Col-0, auxin-overproducing mutant yucl-D, and auxin-insensitive mutant axrl-12. Moreover, we examined the net plasma membrane NO3-fluxes and the expression of AtNRT1.1in primary roots of Col-0and dual-affinity nitrate transporter mutant nrtl.l seedlings under the normal condition (CK), the treatment with exogenous IAA, or the treatment with the auxin efflux inhibitor2.3.5-triidobenzoid acid (TIBA). The nitrate uptake and the transcript level of AtNRT1.1in yucl-D seedlings were remarkably enhanced, whereas those in axrl-12seedlings declined compared with Col-0seedlings. The exogenous IAA treatment enhanced the nitrate uptake and the transcript level of AtNRT1.1in Col-0seedlings, while the TIBA treatment had an opposite effect. Furthermore, the differences of the nitrate uptake and the expression of AtNRT1.1in nrt1.1seedlings among CK, IAA and TIBA treatments were insignificant compared with Col-0seedlings, revealing the important role that AtNRT1.1gene played in nitrate uptake pathway response to auxin.
     We cloned a key gene for the high-affinity NH4+uptake, PdAMT1.1, from Populus nigra×(Populus deltoides×Populus nigra). After genetic sequencing and protein structure analysis, we found the PdAMT1.1cDNA is1,495bp in length and encodes498amino acids. PdAMT1.1protein encodes9transmembrane domains and one conserved domain. The tissue-specific expression analysis indicates PdAMT1.1was expressed more highly in roots than in stems, buds and leaves. The subcellular localization analysis indicates PdAMT1.1localized in membrane system. Transgenic Arabidopsis plants that constitutively expressed the PdAMT1.1gene were constructed. We found under nitrogen deficiency conditions, the physiological phenotypes such as leaf areas and plant height, and the NH4+influxes in transgenic OxPdAMT1.1seedlings were much better than other seedlings, while those in amtl.l seedlings were most inferior. The complemented line amt1.1/PdAMT1.1demonstrated similar phenotype and NH4+uptake efficiency as wild type Col-0seedlings and the empty vector transgenic line Col-O/V. These results suggest that PdAMTI.l gene plays an important role in plant growth and NH4+absorption. Then we transformed PdAMT1.1gene into triploid white poplar by leaf disk method. Six transgenic OxPdAMT1.1lines and three empty vector transgenic lines were checked by Chlorophenol-Red assay, GUS assay and PCR analysis. To study the biological functions of triploid white poplar wild type seedlings WT, the empty vector transgenic line WT/V and transgenic OxPdAMT1.1seedlings, we found OxPdAMT1.1seedlings have much better phenotypes and NH4+uptake efficiency than WT and WT/V seedlings. Thus we proved the overexpression of PdAMT1.1gene by transgenic technology could generate new poplar species which have high nitrogen absorption efficiency.
引文
1.陈洪伟,康向阳,李艳华,张平冬.花粉管通道法导入外源DNA技术及其在林木育种中的应用[J].分子植物育种,2006,4(6):127-132.
    2.郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统优化的研究[J].植物学报,1999,41(7):936-940.
    3.李长缨,简元才.花粉管通道法在植物遗传转化中的应用[J].生物学杂志,2000,17(1):9-10.
    4.李磊,罗杰,李红.毛果杨全基因组铵转运蛋白家族成员及其序列分析[J].西北农林科技大学学报:自然科学版,201 1,39(2):133-142.
    5.李树军.浅析氮肥在农业生产中的作用及当前存在的问题[J].黑龙江农业科学,2010,(1):41-44.
    6.李宪利,高东升,顾曼如,耿莉.铵态和硝态氮对苹果植株SOD和POD活性的影响[J].植物生理学通讯,1997,33(4):254-256.
    7.李英华,朴建华,陈小萍,卓勤,毛德倩,杨丽琛.转基因大米的免疫毒理学评价[J].中国公)共卫生,2004,20(4):404-406.
    8.李韵珠,陆锦文,罗远培.十集水和养分的有效利用[M].北京:北京农业大学出版社,1994:139-148.
    9.彭福田,姜远茂,顾曼如,束怀瑞.氮素对苹果果实内源激素变化动态与发育进程的影响[J].植物营养与肥料学报,2003,9(2):208-213.
    10.史正军,樊小林.作物对氮素养分高效吸收的根系形态学研究进展[J].广西农业生物科学,2003,22(3):225-229.
    11.宋志忠,杨顺瑛,金曼,苏彦华.杨树基因组.AMT转运蛋白的生物信息学特性[J].基因组学与应用生物学,2011,30(6):641-648.
    12.王友冰,余兴龙.基因枪技术发展综述[J].现代科学仪器,2003,(3):30-34.
    13.谢志良,田长彦,卞卫国,曾凡江.施氮对棉花苗期根系分布和养分吸收的影响[J].干旱区研究,2010,(3):374-379.
    14.杨彩云,尹伟伦,夏新莉.甘露糖正向筛选体系的建立及在拟南芥遗传转化中的应用[J].分子植物育种,2009,7(6):1120-1129.
    15.杨奇志,赵琦,孔建强,李高岩.基因枪技术在农作物基因转化中的应用和进展[J].生物技术通报,2003,(6):14-17.
    16.姚冉,石美丽,潘沈元,沈桂芳,张志芳.农杆菌介导的植物遗传转化研究进展[J].生物技术进展,2011,1(4):260-265.
    17.于显枫,郭天文,张仁陟,张绪成,马一凡,赵记军.水氮互作对春小麦叶片气体交换和叶绿素荧光参数的作用机制[J].西北农业学报,2008,17(3):117-123.
    18.张礼中,毛知耘译Lauchli A., Bieleski R.L著.植物的无机营养[M].北京市:农业出版社,1992:190.
    19.赵首萍,赵学强,施卫明.不同铵硝比例对水稻铵吸收代谢基因表达的影响[J].土壤学报,2006,43(3):436-442.
    20. Alonso J.M., Stepanova A.N., Solano R., Wisman E., Ferrari S., Ausubel F.M. & Ecker J.R. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(5):2992-2997.
    21. An F., Zhao Q., Ji Y., et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis [J]. The Plant Cell,2010,22(7):2384-2401.
    22. Araki R. & Hasegawa H. Expression of rice gene involved in high-affinity nitrate transport during the period of nitrate induction [J]. Breeding Science,2006,56(3):295-302.
    23. Ballester A., Cervera M. & Pen A.L. Evaluation of selection strategies alternative to nptin Ⅱ genetic transformation of citrus [J]. Plant Cell Reports,2008,27(6):1005-1015.
    24. Becker T.W., Perrot-Rechenmann C., Suzuki A. & Hirel B. Subcellular and immunocytochemical localization of the enzymes involved in ammonia assimilation in mesophyll and bundle-sheath cells of maize leaves [J]. Planta,1993,191(1):129-136.
    25. Benkova E., Michniewicz M., Sauer M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation [J]. Cell,2003,115(5):591-602.
    26. Beusichem M.L., Vankirkby E.A. & Baas R. Influence of nitrate and ammonium nutrition on the uptake, assimilation and distribution of nutrients in Ricimus communis [J]. Plant Physiology,1988, 86(3):914-921.
    27. Birnbaum K., Shasha D.E., Wang J.Y., Jung J.W., Lambert G.M., Galbraith D.W. & Benfey P.N. A gene expression map of the Arabidopsis root [J]. Science,2003,302(5652):1956-1960.
    28. Bleecker A.B & Kende H. Ethylene:a gaseous signal molecule in plants [J]. Annual Review of Cell and Developmental Biology,2000,16(1):1-18.
    29. Borch K., Bouma T.J., Lynch J.P. & Brown K.M. Ethylene:a regulator of root architectural responses to soil phosphorus availability [J]. Plant, Cell & Environment,1999,22(4):425-431.
    30. Caba J.M., Centeno M.L., Fernandez B., et al. Inoculation and nitrate alter phytohormone levels in soybean roots:differences between a supernodulating mutant and the wild type [J]. Planta,2000, 211(1):98-104.
    31. Cerezo M., Tillard P., Filleur S., Munos S., Daniel-Vedele F. & Gojon A. Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis [J]. Plant Physiology,2001,127(1):262-271.
    32. Chao Q., Rothenberg M., Solano R., Roman G., Terzaghi W. & Ecker J.R. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J]. Cell,1997,89(7):1133-1144.
    33. Chen J.G., Cheng S.H., Cao W.X., et al. Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat [J]. Journal of Plant Nutrition,1998,21(1): 87-97.
    34. Chow B. & Mccourt P. Plant hormone receptors:perception is everything [J]. Genes and Development,2006,20(15):1998-2008.
    35. Clark K.L., Larsen P.B., Wang X. & Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETRI and ERS ethylene receptors [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(9):5401-5406.
    36. Cooke J.E.K., Brown K.A., Wu R. & Davis J.M. Gene expression associated with N-induced shifts in resource allocation in poplar [J]. Plant Cell & Environment,2003,26(5):757-770.
    37. Crawford N.M. & Glass A.D.M. Molecular and physiological aspects of nitrate uptake in plants [J]. Trends in Plant Science,1998,3(10):389-395.
    38. Daniel-Vedele F., Filleur S. & Caboche M. Nitrate transport:a key step in nitrate assimilation [J]. Current Opinion in Plant Biology,1998,1(3):235-239.
    39. Davies P.J. Plant hormones:physiology, biochemistry and molecular biology [M].2nd ed. Boston: Kluwer Academic Publishers,1995:39-65.
    40. Degenhardt J., Poppe A., Montag J. & Szankowski 1. The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants [J]. Plant Cell Reports,2006,25(11):1149-1156.
    41. Dharmasiri N., Dharmasiri S. & Estelle M. The F-box protein TIR1 is an auxin receptor [J]. Nature, 2005,435(26):441-445.
    42. Doddema H., Hofstra J.J. & Feenstra W.J. Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. Ⅰ. Effect of nitrogen source during growth on uptake of nitrate and chlorate [J]. Physiologia Plantarum,1989,43(4):343-350.
    43. Doddema H. & Telkamp G.P. Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. Ⅱ. Kinetics [J]. Physiologia Plantarum,1979,45(3):332-338.
    44. Engineer C.B. & Kranz R.G. Reciprocal leaf and root expression of AtAMT1.1 and root architectural changes in response to nitrogen starvation [J]. Plant Physiology,2007,143(1):236-250.
    45. Eriksson M.E., Israelsson M., Olsson O. & Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length [J]. Nature Biotechnology,2000,18(7):784-788.
    46. Evans R.J. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.) [J]. Plant Physiology,1983,72(2):297-302.
    47. Estelle M.A. & Somerville C. Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology [J]. Molecular Genetics and Genomics,1987,206(2):200-206.
    48. Fang Y Y, Babourina O, Rengel Z, et al. Ammonium and nitrate uptake by the floating plant Landoltia punctata [J]. Annals of botany,2007,99(2):365-370.
    49. Filleur S. & Daniel-Vedele F. Expression analysis of a highaffinity nitrate transporter isolated from Arabidopsis thaliana by differential display [J]. Planta,1999,207(3):461-469.
    50. Filleur S., Dorbe M.F., Cerezo M., Orsel M., Granier F., Gojon A. & Daniel-Vedele F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake [J]. FEBS Letters, 2001,489(2-3):220-224.
    51. Forde B.G. Nitrate transporters in plants:structure, function and regulation [J]. Biochemica et Biophysca Acta,2000,1465(1-2):219-235.
    52. Frederic E.P., Janice E.C. & John J.M. Short-term effects of nitrogen availability on wood formation and fibre properties in hybrid poplar [J]. Trees-structure and function,2007,21(2):249-259.
    53. Galvan A. & Fernandez E. Eukaryotic nitrate and nitrite transporters [J]. Cellular and Molecular Life Sciences,2001,58(2):225-233.
    54. Gao Z.Y., Chen Y.F., Randlett M.D., Zhao X.C., Findell J.L., Kieber J.J. & Schaller G.E. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes [J]. Journal of Biological Chemistry,2003, 278(36):34725-34732.
    55. Garcia M C & Lamattia L. Nitric oxide and abscisic acid cross talk in guard cells [J]. Plant Physiology,2002,128(3):790-792.
    56. Gazzarrini S., Lejay L., Gojon A., Ninnemann O., Frommer W.B. & Wiren N.V. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots [J]. The Plant Cell,1999,11(5):937-947.
    57. Glass A.D.M., Britto D.T., Kaiser B.N., Kinghorn J.R., Kronzucker H.J., Kumar A., Okamoto M., Rawat S., Siddiqi M.Y. & Unkles S.E. The regulation of nitrate and ammonium transport systems in plants [J]. Journal of Experimental Botany,2002,53(370):855-864.
    58. Godwin I. & Todd G. The effect of Acetosyringone and PH on Agrobacterium-mediated transformation vary according to plant species [J]. Plant Cell Reports,1991,9(12):671-675.
    59. Guo F. Q., Wang R.C. & Crawford N. M. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1(CHL1) is regulated by auxin in both shoots and roots [J]. Journal of Experimental Botany,2002,53(370):835-844.
    60. Guo F.Q., Young J. & Crawford N. M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis [J]. The Plant Cell,2003, 15(1):107-117.
    61. Guo H.W. & Ecker J.R. The ethylene signaling pathway:new insights [J]. Current Opinion in Plant Biology,2004,7(1):40-49.
    62. Hawkins B.J. & Robbins S. pH affects ammonium, nitrate and proton fluxes in the apical region of conifer and soybean roots [J]. Physiologia Plantarum,2010,138(2):238-247.
    63. He C.J., Morgan P.W. & Drew M.C. Enhanced sensitivity to ethylene in nitrogen-or phosphate-starved roots of Zea mays L. during aerenchyma formation [J]. Plant Physiology,1992, 98(1):137-142.
    64. Huang N.C., Chiang C.S., Crawford N.M. & Tsay Y.I. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots [J]. The Plant Cell,1996,8(12):2183-2191.
    65. James D., Uratsu S., Cheng J., el al. Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple [J]. Plant Cell Reports, 1993,12(10):559-563.
    66. Javelle A., Lupo D., Ripoche P., Fulford T., Merrick M. & Winkler F.K. Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB [J]. Proceedings of the National Academy of Sciences of the United States of America,2008, 105(13):5040-5045.
    67. Jefferson R.A., Kavanagh T.A. & Bevan M.W. GUS fusions:betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants [J]. The EMBO Journal,1987,6(13):3901-3907.
    68. Jeyanny V., Ab Rasip A.G., Rasidah K.W. & Zuhaidi Y.A. Effects of macronutrient deficiencies on the growth and vigour of khaya ivorensis seedlings [J]. Journal of tropical forest science,2009, 21(2):73-80.
    69. Joersbo M., Petersen S.G.& Okkels S.G. Parameters interacting with mannose selection employed for the production of transgenic transgenic sugar beet [J]. Physiologia Plantarum,1999,105(1): 109-115.
    70. Johnson P.R. & Ecker J.R. The ethylene gas signal transduction pathway:a molecular perspective [J]. Annual Review of Genetics,1998,32(1):227-254.
    71. Jung J.-Y., Shin R. & Schachtman D.P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis [J]. The Plant Cell,2009,21(2):607-621.
    72. Kaiser B.N., Rawat S.R., Siddiqi M.Y., Masle J. & Glass A.D.M. Functional analysis of an Arabidopsis T-DNA"knockout" of the high-affinity NH4+ transporter AtAMT1:1 [J]. Plant Physiology,2002,130(3):1263-1275.
    73. Kepinski S. & Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor [J]. Nature,2005, 435(7041):446-451.
    74. Kieber J.J., Rothenberg M., Roman G., Feldmann K.A. & Ecker J.R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases [J]. Cell,1993,72(3):427-441.
    75. Krouk G, Lacombe B., Bielach A., et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants [J]. Developmental Cell,2010,18(6):927-937.
    76. Kuhtreiber W. M. & Jaffe L. F. Detection of extracellular Calcium gradients with a calcium specific vibrating electrode [J]. Journal of Cell Biology,1990,110(5):1565-1573.
    77. Kulka R.G. Hormonal control of root development on epiphyllous plantlets of Bryophyllwn (Kalanchoe) marnierianum:role of auxin and ethylene [J]. Journal of Experimental Botany,2008, 59(9):2361-2370.
    78. Kumar A., Silim S.N., Okamoto M., Siddiqi M.Y. & Glass A.D. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa ssp. Indica [J]. Plant, Cell & Environment,2003,26(6):907-914.
    79. Kunkel J.G., Lin L.Y., Xu Y, Prado A.M.M., FeijU J.A. Cell Biology of Plant and Fungal Tip Growth, A. Geitmann et al. (Eds.) [M]. NATO Science Series I:Life and Behavioural Sciences, IOS Press,2001:81-94.
    80. Lauter F.R., Ninnemann O., Bucher M., Riesmeier J.W. & Frommet W.B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(15): 8139-8144.
    81. Leblanc A., Renault H., Lecourt J., Etienne P., Deleu C. & Le Deunff E. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 transporter gene expression in oilseed rape [J]. Plant Physiology,2008,146(4):1928-1940.
    82. Lee B.T. & Matheson N.K. Phosphomannoisomerase and phosphoglucoisomerase in seeds of Cassia coluteoides and some other legumes that synthesize galactomannan [J]. Phytochemistry, 1984,23(5):983-987.
    83. Lejay L., Gansel X., Cerezo M., Tillard P., Muller C., Krapp A., von Wiren N., Daniel-Vedele F. & Gojon A. Regulation of root ion transporters by photosynthesis:functional importance and relation with hexokinase [J]. The Plant Cell,2003,15(9):2218-2232.
    84. Li D.D., Song S.Y., Xia X.L. & Yin W.L. Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar [J]. Plant Cell Tissue and Organ Culture,2012, 109 (3):477-489.
    85. Lincoln C., Britton J.H. & Estelle M. Growth and development of the axrl mutants of Arabidopsis [J]. The Plant Cell,1990,2(11):1071-1080.
    86. Li Q., Li B.H., Kronzucher H.J., et al. Root growth inhibition by NF4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPaes activity [J]. Plant, Cell & Environment, 2010,33(9):1529-1542.
    87. Liu J.X., An X., Cheng L., et al. Auxin transport in maize roots in response to localized nitrate supply [J]. Annals of Botany,2010,106(6):1019-1026.
    88. Liu K. H., Huang C.Y. & Tsay Y. F. CHL1 is a dual affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake [J]. The Plant Cell,1999,11(5):865-874.
    89. Liu K. H. & Tsay Y. F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation [J]. The Europe Molecular Biology Organization Journal, 2003,22(5):1005-1013.
    90. Liu P.W., Ivanov 1.1., Filleur S., et al. Nitrogen regulation of root branching [J]. Annals of Botany, 2006,97(5):875-881.
    91. Li W., Wang Y., Okamoto M., Crawford N.M., Siddiqi M.Y. & Glass A.D.M. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster [J]. Plant Physiology, 2007,143(1):425-433.
    92. Li X.D., Lupo D., Zheng L. & Winkler F. Structural and functional insights into the AmtB/Mep/Rh protein family [J]. Transfusion Clinique et Biologique,2006,13(1-2):65-69.
    93. Lopez-Bucio J., Cruz-Ramirez A. & Herrera-Estrella L. The role of nutrient availability in regulating root architecture [J]. Current Opinion in Plant Biology,2003,6(3):280-287.
    94. Loque D., Lalonde S., Looger L.L. & von Wiren N., Frommer W.B. A cytosolic tram-activation domain essential for ammonium uptake [J]. Nature,2007,446(7132):195-198.
    95. Loque D. & von Wiren N. Regulatory levels for the transport of ammonium in plant roots [J]. Journal of Experimental Botany,2004,55(401):1293-1305.
    96. Loque D., Yuan L., Kojima S., Gojon A, Wirth J., Gazzarrini S., Ishiyama K., Takahashi H.& von Wiren N. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogendeficient Arabidopsis roots [J]. The Plant Journal,2006,48(4): 522-534.
    97. Ludwig-Muller J., Vertocnik A. & Town C.D. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments [J]. Journal of Experimental Botany,2005,56(418): 2095-2105.
    98. Ludewig U. Ion transport versus gas conduction:function of AMT/Rh-type proteins [J]. Transfusion Clinique et Biologique,2006,13(1-2):111-116.
    99. Ludewig U., Wilken S. & Wu B. Homo-and hetero-oligomerization of ammonium transporter NH4+ uniporters [J]. Journal of Biological Chemistry,2003,278(46):45603-45610.
    100. Ma H.S., Liang D., Shuai P., Xia X.L. & Yin W.L. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana [J]. Journal of Experimental Botany,2010,61 (14):4011-4019.
    101. Marini A.M. & Andre B. In vivo N-glycosylation of the Mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus [J]. Molecular Microbiology, 2000,38(3):552-564.
    102. Marini A.M., Vissers S., Urrestarazu A. & Andre B. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae [J]. The EMBO Journal,1994, 13(15):3456-3463.
    103. Martin Y., Navarro F.J. & Siverio J.M. Functional characterization of the Arabidopsis thaliana nitrate transporter CHL1 in the yeast Hansenula polymorpha [J]. Plant Molecular Biology,2008, 68(3):215-224.
    104. Nazoa P., Vidmar J. J., Tranbarger T.J., Mouline K., Damiani I., Tillard P., Zhuo D., Glass A.D.M. & Touraine B. Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and develop-mental stage [J]. Plant Molecular Biology,2003, 52(3):689-703.
    105. Neuhauser B., Dynowski M., Mayer M. & Ludewig U. Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails [J]. Plant Physiology,2007,143(4): 1651-1659.
    106. Newman LA. Ion transport in roots:Measurement of fluxes using ion-selective microelectrodes to characterize transporter fuction [J]. Plant Cell & Environment,2001,24(1):1-14.
    107. Nicolescu C, Sandre C, Jouanin L., et al. Genetic engineering of phenolic metabolism in poplar in relation with resistance against pathogens [J]. Acta Botanica Gallica,1996,143(6):539-546.
    108. Nilsson O., Moritz T., Sundberg B., Sandberg G. & Olsson O. Expression of the Agrobacterium rhizogenes rolC Gene in a Deciduous Forest Tree Alters Growth and Development and Leads to Stem Fasciation [J]. Plant Physiology,1996,112(2):493-502.
    109. Ninnemann O., Jauniaux J.C. & Frommer W.B. Identification of a high-affinity ammonium transporter from plants [J]. The EMBO Journal,1994,13(15):3464-3471.
    110. Okamoto M., Vidmar J.J. & Glass A.D.M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:responses to nitrate provision [J]. Plant and Cell Physiology,2003,44(3): 304-317.
    111. Orsel M., Chopin F., Leleu O., Smith S.J., Krapp A., Daniel-Vedele F.& Miller A.J. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction [J]. Plant Physiology,2006,142(3):1304-1317.
    112. Orsel M., Eulenburg K., Krapp A. & Daniel-Vedele F. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration [J]. Planta,2004, 219(4):714-721.
    113. Pao S.S., Paulsen I.T. & Saier M.H. Major facilitator superfamily [J]. Microbiology and Molecular Biology Reviews,1998,62(1):1-34.
    114. Pavlikova D., Neuberg M., Zizkova E., et al. Interactions between nitrogen nutrition and phytohormone levels in Festulolium plants [J]. Plant Soil and Environment,2012,58(8):367-372.
    115. Pearson J. & Stewart G.R. The deposition of atmospheric ammonia and its effects on plants [J]. New Phytologist,1993,125(2):283-305.
    116. Rawat S.R., Silim S.N., Kronzucker H.J., Siddiqi M.Y. & Glass A.D. AtAMTl gene expression and NH4+uptake in roots of Arabidopsis thaliana:evidence for regulation by root glutamine levels [J]. The Plant Journal,1999,19(2):143-152.
    117. Reinhardt D. Vascular patterning:more than just auxin [J]? Current Biology,2003,13(12): 485-487.
    118. Remans T., Nacry P., Pervent M., Filleur S., Diatloff E., Mounier E., Tillard P., Forde B.G. & Gojon A. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches [J]. Proceedings of the National Academy of Sciences,2006a, 103(50):19206-19211.
    119. Remans T, Nacry P., Pervent M. & Gojon A. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis [J]. Plant Physiology,2006b,140(3):909-921.
    120. Romera F.J., Alcantara E. & De La Guardia M.D. Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants [J]. Annals of Botany,1999,83(1):51-55.
    121. Schmelz E.A., Alborn H.T., Engelberth J. & Tumlinson J.H. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize [J]. Plant Physiology,2003,133(1):295-306.
    122. Schmid M., Davison T.S., Henz S.R., Pape U.J., Demar M., Vingron M., Scholkopf B., Weigel D. & Lohmann J.U. A gene expression map of Arabidopsis thaliana development [J]. Nature Genetics, 2005,37(5):501-506.
    123. Schmidt W. From faith to fate:ethylene signaling in morphogenic responses to P and Fe deficiency [J]. Journal of Plant Nutrition and Soil Science,2001,164(2):147-154.
    124. Seith B., George E., Marschner H., Wallenda T, Schaeffer C., Einig W., Wingler A. & Hampp R. Effects of varied soil nitrogen supply on Norway spruce (Picea abies Karst) Shoot and root growth and nutrient uptake [J]. Plant and Soil,1996,184(2):291-298.
    125. Shelden M.C., Dong B., de Bruxelles G.L., Trevaskis B., Whelan J., Ryan P.R., Howitt S.M. & Udvardi M.K. Arabidopsis ammonium transporters, AtAMT1;1 and AtAMTl;2, have different biochemical properties and functional roles [J]. Plant and Soil,2001,231(1):151-160.
    126. Shin R. & Schachtman D.P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(23):8827-8832.
    127. Sonoda Y., Ikeda A., Saiki S., von Wiren N., Yamaya T. & Yamaguchi J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice [J]. Plant and Cell Physiology,2003,44(7):726-734.
    128. Stanturf J.A., Stone Ek J.R. & Kittrick M. Effects of added nitrogen on growth of hardwood trees in southern New York [J]. Canadian Journal of Forest Research,1989,19(2):279-284.
    129. Steiner H.Y., Naider F. & Becker J.M. The PTR family:a new group of peptide transporters [J]. Molecular Microbiology,1995,16(5):825-834.
    130. Stepanova A.N., Hoyt J.M., Hamilton A.A. & Alonso J.M. A link between ethylene and auxin uncovered by the characterization of two rootspecific ethylene-insensitive mutants in Arabidopsis [J]. The Plant Cell,2005,17(8):2230-2242.
    131. Stepanova A.N., Yun J., Likhacheva A.V. & Alonso J.M. Multilevel interactions between ethylene and auxin in Arabidopsis roots [J]. The Plant Cell,2007,19(7):2169-2185.
    132. Suenaga A., Moriya K., Sonoda Y., Ikeda A., Von Wiren N., Hayakawa T., Yamaguchi J. & Yamaya T. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants [J]. Plant and Cell Physiology,2003,44 (2):206-211.
    133. Sun J., Chen S., Dai S., et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species [J]. Plant Physiology,2009,149(2):1141-1153.
    134. Suzuki, A., Kuromori, T., Shinozaki, K. & Takahashi, H. Regulation of NRT2.1 nitrate transporter by auxin response factor in Arabidopsis [Z]. The Proceedings of the International Plant Nutrition Colloquium XVI, UC Davis:Department of Plant Sciences, UC Davis,2009,1134-1136.
    135. Tamaki V. & Mercier H. Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus) [J]. Plant Physiology,2007,164(11):1543-1547.
    136. Tian Q.-Y., Sun P. & Zhang W.H. Ethylene is involved in nitratedependent root growth and branching in Arabidopsis thaliana [J]. New Phytologist,2009,184(4):918-931.
    137. Tong Y., Zhou J.J., Li Z. & Miller A.J. A two-component high affinity nitrate uptake system in barley [J]. The Plant Journal,2005,41(3):442-450.
    138. Touraine B. & Glass A.D.M. NO3- and ClO3- fluxes in the chll-5 mutant of Arabidopsis thaliana: does the CHL1-5 gene encode a low-affinity NO3- transporter [J]? Plant Physiology,1997,114(1): 137-144.
    139. Tsay Y.F., Chiu C.C., Tsai C.B., Ho C.H. & Hsu P.K. Nitrate transporters and peptide transporters [J]. FEBS Letters,2007,581(12):2290-2300.
    140. Tsay Y. F., Schroeder J. I., Feldmann K. A. & Crawford N. M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter [J]. Cell,1993,72(5):705-713.
    141. Vidmar J.J., Zhuo D., Siddiqi M.Y., Schjoerring J.K., Touraine B. & Glass A.D.M. Regulation of HvNRT2 expression and high-affinity nitrate influx in roots of Hordeum vulgare by ammonium and amino acids [J]. Plant Physiology,2000,123(1):307-318.
    142. Vitousek P.M. & Howarth R.W. Nitrogen limitation on land and in the sea:How can it occur [J]? Biogeochemistry,1991,13(2):87-115.
    143. Von Wiren N., Gazzarrini S., Gojon A. & Frommer W.B. The molecular physiology of ammonium uptake and retrieval [J]. Current Opinion in Plant Biology,2000,3(3):254-261.
    144. Walch L.P. & Forde B.G. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture [J]. The Plant Journal,2008,54(5):820-828.
    145. Wang A.S., Evans R.A., Altendorf P.R., Hanten J.A., Doyle M.C. & Rosichan J.L. A mannose selection system for production of fertile transgenic maize plants from protoplasts [J]. Plant Cell Reports,2000,19(7):654-660.
    146. Wang R., Liu D. & Crawford N.M. The Arabidopsis CHL1 protein plays a major role in high affinity nitrate uptake [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(25):15134-15139.
    147. Weisser P., Kramer R. & Sprenger G.A. Expression of the Escherichia coli pmi gene, encoding phosphomannoseisomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker [J]. Applied and Environmental Microbiology,1996,62(11):4155-4161.
    148. Williams L. & Miller A. Transporters responsible for the uptake and partitioning of nitrogenous solutes [J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52(1): 659-688.
    149. Wright M., Dawson J., Dunder E., Suttie J., Reed J., Kramer C., Chang Y., Novitzky R., Wang H. & Artim-Moore L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker [J]. Plant Cell Reports,2001,20(5):429-436.
    150. Xing H.T., Guo P., Xia X.L. & Yin W.L. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use effciency in Arabidopsis [J]. Planta,2011,234(2):229-241.
    151. Yuan L., Loque D., Kojima S., Rauch S., Ishiyama K., Inoue E., Takahashi H. & von Wiren N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMTl-type transporters [J]. The Plant Cell,2007, 19(8):2636-2652.
    152. Zaid H., El Morabet R., Diem H.G. & Arahou M. Does ethylene mediate cluster root formation under iron deficiency [J]? Annals of Botany,2003,92(5):673-677.
    153. Zeliha I., Tijen O., Ahu A., et al. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar [J]. Plant Biotechnology,1999,16(5):381-387.
    154. Zhang H.C., Yin W.L. & Xia X.L. Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low-K+ stress [J]. Plant Cell Reports, 2010,29(9):1007-1012.
    155. Zhang Y.J., Lynch J.P. & Brown K.M. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development [J]. Journal of Experimental Botany,2003,54(391): 2351-2361.
    156. Zhao YD., Christensen S.K., Fankhauser C., et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis [J]. Science,2001,291(5502):306-309.
    157. Zhou J.J., Fernandez E., Galvan A. & Miller A.J. A high affinity nitrate transport system from Chlamydomonas requires two gene products [J]. FEBS Letters,2000,466(2-3):225-227.
    158. Zhuo D., Okamoto M., Vidmar J.J. & Glass A.D. Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana [J]. The Plant Journal:For Cell and Molecular Biology,1999,17(5):563-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700