用户名: 密码: 验证码:
PSA-ANFIS方法及其在矿山岩土工程灾害预测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用自适应神经模糊推理系统(ANFIS)研究采矿工程中巷道和采场失稳、露天矿边坡滑坡、开采地面沉陷以及导水裂隙扩展淹井这四大岩土工程灾害时所遇到的最大难题是,ANFIS的训练参数和模型结构的确定具有人为性、随意性和无规则性,这使得它的收敛需要经过长时间的反复调试才可能实现,而且难以收敛到所要求的精度。针对这些问题,本文首次采用正交试验设计法和模式搜索算法研究了ANFIS的训练参数和模型结构的优化方法,提出和建立了基于模式搜索算法的自适应神经模糊推理方法(PSA-ANFIS),并进一步采用这一方法研究了采矿工程中上述四大岩土工程灾害的预测问题,取得了如下研究成果:
     (1)采用一多峰函数进行离散,构建了训练数据对、检测数据对和预测数据对,首次采用正交试验设计法、模式搜索算法和自适应神经模糊推理系统,建立了PSA-ANFIS方法。
     (2)采用同一多峰函数,对ANFIS和PSA-ANFIS进行了比较研究,结果表明,无论是在拟合精度和预测精度上,还是在训练参数的调整、模型结构的建立和训练过程上,PSA-ANFIS均优于ANFIS。
     (3)采用一标准弹塑性问题进行解析计算,构建了训练数据对、检测数据对和预测数据对,采用正交试验设计法、模式搜索算法和自适应神经模糊推理系统,建立了围岩力学参数位移反分析的PSA-ANFIS方法,并将其应用于湘西金矿老采区围岩力学参数的反演,进而采用反演结果建立数值计算模型,对采场围岩的变形进行了模拟计算,与此同时,还对采场围岩的变形进行了监测,结果表明,模拟计算结果与监测结果吻合较好,从而验证了这种围岩力学参数位移反分析新方法的工程适用性。
     (4)搜集了大量圆弧滑动边坡工程实例,构建了训练数据对、检测数据对和预测数据对,采用正交试验设计法、模式搜索算法和自适应神经模糊推理系统,建立了圆弧滑动边坡稳定性预测的PSA-ANFIS方法,并将这一方法应用于前河露天矿1号滑坡的稳定性预测,预测结果与边坡的实际稳定状态吻合良好。
     (5)搜集了大量开采地面沉陷工程实例,构建了训练数据对、检测数据对和预测数据对,采用正交试验设计法、模式搜索算法和自适应神经模糊推理系统,建立了开采地面沉陷预测的PSA-ANFIS方法,并采用这一方法,对新汶矿业集团翟镇煤矿一采区西翼二层煤采区地面沉陷进行了预测,预测结果与实测结果吻合良好。
     (6)搜集了大量导水裂隙带发育高度工程实例,构建了训练数据对、检测数据对和预测数据对,采用正交试验设计法、模式搜索算法和自适应神经模糊推理系统,建立了导水裂隙带发育高度预测的PSA-ANFIS方法,并应用这一方法对水口山矿务局康家湾铅锌金矿水体下Ⅲ-1采场的导水裂隙带发育高度进行了预测,同时还对其进行了实测,结果表明,预测结果与实测结果吻合较好。进而根据预测结果,为Ⅲ-1采场设计了上向水平分层胶结充填采矿法,且已实现了采场的安全回采,取得了巨大的经济效益和社会效益。
     研究ANFIS的训练参数和模型结构的优化方法,是人工智能领域的一个前沿研究课题。本文率先采用正交试验设计法和模式搜索算法实现了对ANFIS的训练参数和模型结构的优化,建立了基于模式搜索算法的自适应神经模糊推理方法,丰富和发展了ANFIS的理论和方法。不仅如此,本文还将这一方法应用于采矿工程中四大灾害预测问题的研究,丰富和发展了它们的研究方法和预测理论。
The most difficult problem to analyse and precdict the four geotechnical engineering disasters in mining engineering by using the adaptive neuro-fuzzy inference system (ANFIS), the failure of tunnuls and stopes, the slope failure of open-pit mine, the mining induced surface subsidence and the underground flooding by extension of transmissive fractured belt, is that the setting of the training parameters and model of ANFIS has many disadvantages of artificiality, randomness and unregularity. Therefore, the convergence process of training ANFIS is lengthy and trivial and repetitive. For this reason, this thesis studied the approach for setting the training parameters and model of ANFIS by using the orthogonal test design method and the pattern search algorithm(PSA), and put forward and established the approach for adaptive neuro-fuzzy inference system based on pattern search algorithm (PSA-ANFIS). Furthermore, PSA-ANFIS was used to establish the analysis and precdiction approaches for the four geotechnical engineering disasters in mining engineering. And the following achievements have been abtained.
     (1) The data pairs for training, data pairs for checking and data pairs for prediction were built by using a multi-peaks function. The PSA-ANFIS was established by using the orthogonal test design method and PSA and ANFIS.
     (2) A comparison study was conducted of the training process and the fitting and predicting capability of the PSA-ANFIS and the ANFIS by using the same multi-Peaks function. The results show that the PSA-ANFIS is far superior to the ANFIS in its parameters adjustment and model establishment and training process, and that is an excellent approach.
     (3) The data pairs for training, data pairs for checking and data pairs for prediction were built by analytical calculation of a prescribed elasto-plastic problem. A PSA-ANFIS based approach for back analysis of displacements for the mechanical parameters of rock mass was established by using the orthogonal test design method and PSA and ANFIS. The approach has been used to inverse the mechanical parameters of the rock mass surrounding the mining stopes in Xiangxi Gold Mine in Hunan Province. The inversion results were used to build the numerical calculation model to simulate and calculate the deformation of the rock mass and assess the stability of the stopes. At the same time, in-situ measurements were carried out for the deformation of the rock mass. It has been proved that the in-situ measurements are in good agreement with the simulation results and that the new approach is suitable for back analysis of displacements.
     (4) Based on quite a few cases of circular failure slopes, the data pairs for training, data pairs for checking and data pairs for prediction were built, and the PSA-ANFIS based approach for predicting the stability of circular failure slopes was established by using the orthogonal test design method and PSA and ANFIS. And the approach was used to predict the stability of No.1 circular failure slope in Qianhe open-pit mine. The prediction result is in good agreement with the practical state.
     (5) Based on quite a few cases of mining induced surface subsidence, the data pairs for training, data pairs for checking and data pairs for prediction were built, and the PSA-ANFIS based approach for mining induced surface subsidence was established by using the orthogonal test design method and PSA and ANFIS. And the approach was used to predict the mining induce subsidence in the west side of No.1 mining area in coal layer.2 in Zhaizhen coal mine of Xiwen Mining Group. The prediction results are in good agreement with the practical measurement results.
     (6) Based on quite a few cases of the height of the transmissive fractured belt, the data pairs for training, data pairs for checking and data pairs for prediction were built, and the PSA-ANFIS based approach for the height of the transmissive fractured belt was established by using the orthogonal test design method and PSA and ANFIS. And the predicting approach was used to predict the height of the transmissive fractured belt for No.Ⅲ-1 mining panel at Kangjiawan lead, zinc and gold mine in the Bureau of Mines of Shuikoushan. At the same time, the in-situ measurement is done, and the research result shows that the predicting result is in good agreement with the measurement result in-situ. Finally, in order to mine No.Ⅲ-1 ore body safely, a mining system of upward slicing and filling with cemented tailings was designed. The system was used to mine the ore body safely and great economic benefits were obtained.
     It is a new research subject in the domain of artificial intelligence to study the optimization method on setting the training parameters and model of ANFIS. This thesis accomplished this research by using the orthogonal test design method and PSA, and established the PSA-ANFIS. It is the enrichment and development of the ANFIS theory. Furthermore, the PSA-ANFIS was used to study the application of the prediction problems on the four geotechnical engineering disasters in mining engineering. This enriches and develops the research method and prediction theory of the four prediction problems.
引文
[1]王思敬等.中国岩石力学与工程世纪成就[M].南京:河海大学出版社,2004
    [2]国岩石力学与工程学会地面岩石工程专业委员会中国地质学会工程地质专业委员会编.中国典型滑坡[M].北京:科学出版社,1988
    [3]陈祖煜.土质边坡稳定分析-原理、方法、程序[M].北京:中国水利水电出版社,2003
    [4]丁德馨.弹塑性位移反分析的智能化方法及其在地下工程中的应用[D].上海:同济大学,2000
    [5]张志军.位移反分析的自适应神经模糊推理方法及其应用研究[D].湖南衡阳:南华大学,2003
    [6]Barton N,Lien R,Lunde J.Engineering Classification of Rock Masses for the Design of Tunnel Support[J].Rock Mechanics.1974,6(4):183-236
    [7]Bieniawski Z T.Rock Mass classification in rock engineering[C].Proc.Symp.Exploration for Rock Engineering,Balkema,Cape Town,1976
    [8]Bieniawski Z T.Determining rock mass deformability:experience from case histories[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1978,15(3):237-247\
    [9]Bieniawski Z T.Engineering rock mass classification[M].Wiley,New York,1989
    [10]Serafim J L,Pereira J P.Considerations of the geomechanical classification of Bieniawski[C].Proc.Int.Symp.on Engineering Geology and Underground Construction,Lisbon,1983
    [11]Peng S S.Coal mine ground control.John Wiley and Sons[M],New York,1978
    [12]Trueman R.An evaluation of strata support techniques in dual life gateroads[D].PhD Thesis,University of Wales,1988
    [13]Mohammad N,Reddish D J.The relation between in situ and laboratory rock properties used in numerical modelling[J].Int.J.Rock Mech.Min.Sci & Geomech.Abstr.1997,34(2):289-297
    [14]沈明荣.岩体力学[M].上海:同济大学,2000
    [15]徐建立.关于龙滩水电站坝址的岩石力学参数选择[J].岩石力学.17,1987,1c
    [16]岩土工程手册编写委员会.岩土工程手册[M].北京:中国建筑工业出版社,1994
    [17]刘允芳.水压致裂法三维地应力测量.岩石力学与工程学报[J].1991,10(3):246-256
    [18]孙钧,候学渊.地下结构[M].北京:科学出版社,1991
    [19]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996
    [20]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996
    [21]王芝银.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488-498
    [22]Kavanagh K T,Clough R W.Finite element application in the characterization of elastic solids[J].Int.J.Solids structures,1972,7:11-23
    [23]Kirsten H A D.Determination of rock mass elastic moduli by back analysis of deformation measurement[C].Proc.Symp.on Expliration for Rock Eng.Johannesburg,1976,1154-1160
    [24]Maier G,Jurina L,Podolak K.On model identification problems in rock mechanics[C].Proc.Symp.On the Geotechnics of Structurally Complex Formations.Capri.1977.1154-1160
    [25]Gioda G.Indirect identification of the average elastic characteristics of rock masses[C].Proc.Int.Conf.on structural Foundations on Rock.Sydney,1980,1:65-73
    [26]Gioda G.Some remarks on back analysis and characerization problems[C].Proc.5th Int.Conf.on Num.Meth.in Geom.Nagoya,1985,1:47-61
    [27]Gioda G.Jurina G.Numerical identification of soil strcture interaction pressures[J].Int.J.for Num.& Anal.Meth.in Geomech,1981,5:33-56
    [28]Sakurai S,Abe S.A design approach to dimensioning underground openings[C].Proc.3th Int.Conf.Numerical Methods in Geomechanics.Aachen,1979,649-661
    [29]Sakurai S,Takeeuchi K.Back analysis of measured displacement of tunnel[J].Rock Mech.and Rock Eng.1983,16(3):173-180
    [30]Arai R.An inverse ploblem approach to the prediction of Multi-dimensional consolidation behavior[J].Soil and Foundatons.1984,24(1):95-108
    [31]杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用[J].地下工程,1981,No.2
    [32]杨志法,刘竹华.地下工程有限元图谱的根据及其应用[J].地下工程,1982,No.2
    [33]杨志法,张连弟.用优选法进行非线性问题位移反分析原理和方法[J].工程地质力学研究,北京:科学出版社,1985,43-49
    [34]杨志法等.有限元法图谱[M].北京:科学出版社,1988,15-42
    [35]王芝银,刘怀恒.弹塑性有限元分析及其在岩石力学与工程中的应用[J].西安矿业学院学报,1985(1):62-73
    [36]杨林德等.初始地应力位移反分析的有限单元法[J].同济大学学报,1985(4),15-20
    [37]郑颖人,张德微,高效伟.弹塑性问题反演计算的边界元法[C].中国土木学会第三届年会论文集,上海:同济大学出版社,1986,377-386
    [38]李云鹏,王芝银.粘弹性位移反分析的边界元法[J].西安矿业学院学报,1989,9(1):17-24
    [39]吕爱钟.地下巷道弹性位移反分析各种优化方法的探讨[J].岩土力学,1996,17(2):29-34
    [40]Yamashita,Y.,Fujiwara,T.,Hirashima,K.Back analysis of isotropic elastic ground with two neighboring arbitrary shaped tunnels without lining supports[J].J.Soc.Mater.Sci.Jpn.,1994,43(493):1366-1372.
    [41]Jang J.B.Back analysis of underground structures by the coupled method of finite elements-boundary elements[D].Ph.D.thesis,Yonsei University,Korea,1996.
    [42]Ohkami T.,Swoboda G..Parameter identi(?)cation of viscoelastic materials[J].Computers and Geotechnics,1999,24:279-295
    [43]Lee Chung-In,Song Jae-Joon.Rock engineering in underground energy storage in Korea[J].Tunnelling and Underground Space Technology,2003,Vol.18:467-483
    [44]Deng Desheng,Nguyen-Minh Duc.Identication of rock mass properties in elasto-plasticity[J].Computers and Geotechnics,2003,30:27-40
    [45]Fakhimi A.,Salehi D.,Mojtabai N..Numerical back analysis for estimation of soil parameters in the Resalat Tunnel project[J].Tunnelling and Underground Space Technology,2004,Vol.19:57-67
    [46]Jeon Y.S.,Yang H.S..Development of A Back Analysis Algorithm Using FLAC[J].SINOROCK2004 Symposium—Int.J.Rock Mech.Min.Sci.,2004,Vol.41,No.3,pp:2A 22
    [47]冯夏庭.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,1999,18(5):529-533
    [48]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000
    [49]王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000,19(增2):979-982
    [50]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报,2001,23(1):120-122
    [51]Feng,Xia-Ting;Zhang,Zhiqiang;Sheng,Qian.Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method[J].International Journal of Rock Mechanics and Mining Sciences,2000,Vol.37,No.7,pp:1039-1054
    [52]Deng,J.H.,Lee,C.F.Displacement back analysis for a steep slope at the Three Gorges Project site[J].International Journal of Rock Mechanics and Mining Sciences.Vol.38,No.2,2001,pp:259-268
    [53]邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩石边坡位移反分析中的应用,岩石力学与工程学报,2001,20(1):1-5
    [54]Shang Y.J.,Cai J.G.,Hao W.D.,X.Y.Wu,S.H.Li.Intelligent back analysis of displacements using precedent type analysis for tunneling[J].Tunnelling and Underground Space Technology,2002,Vol.17:381-389
    [55]丁德馨,张志军,孙钧.弹塑性位移反分析的遗传算法研究[J].工程力学,2003,20(6):1-5
    [56]Ding De-xin,Zhang Zhi-jun.Artificial Neural Network Based Inverse Design Method for Circular Sliding Slopes[J].中南大学学报(英文版),2004.3,11(1):89-92
    [57]丁德馨,张志军.位移反分析的自适应神经模糊推理方法[J].岩石力学与工程学报,2004,23(18):3087-3092
    [58]丁德馨 张志军.位移反分析的自适应神经模糊推理方法在湘西金矿的应用[J].岩土工程学报,2005,27(10):202-206
    [59]赵洪波,冯夏庭.位移反分析的进化支持向量机研究[J].岩石力学与工程学报,2003,22(10):1618-1622
    [60]赵洪波,冯夏庭.非线性位移时间序列预测的进化支持向量机方法及应用[J].岩土工程学报,2003,25(4):468-471
    [61]郝哲,刘斌.基于差分法及神经网络的硐室围岩力学参数反分析[J].岩土力学,2003,24(S2):77-80
    [62]许传华,任青文,周庆华.基于支持向量机和模拟退火算法的位移反分析[J].岩 石力学与工程学报,2005,24(22):4136-4138
    [63]高玮,冯夏庭.基于免疫连续蚁群算法的岩土工程反分析研究[J].岩石力学与工程学报,2005,24(23):4266-4271
    [64]张丙印,袁会娜,李全明.基于神经网络和演化算法的土石坝位移反演分析[J].岩土力学,2005,26(04):547-552
    [65]梁桂兰,徐卫亚.位移反分析的APSO-WNN模型研究及应用[J].岩石力学与工程学报,2007,26(6):1251-1257
    [66]Petterson K E.Kajraseti Goteborg des 5te Mars 1916.Teknishe Tidskrift[c],1916,46:289
    [67]Fellenius W.Erdstatische Berechnungen[M].Berlin:Ernst,1927
    [68]Fellenius W.Calculation of stability of earth dams[C].In:Transactions of the 2nd Congress on Large Dams.Washington D C,1936,4:445-462
    [69]Bishop A W.The use of the slip circle in the stability analysis of slopes[J].Geotechnique,1955,5:7-17
    [70]Bishop A W,Morgenstern N R.Stability coefficients for earth slope[J].Geotechnique,1960,10(4)
    [71]Morgenstem N R,Price V E.The analysis of the stability of general slip surfaces[J].Geotechnique,1965,15(1):79-93
    [72]Spencer E A.Method of analysis the stability of embankments assuming parallel imerslice forces[J].Geotechnique,1967,17(1):11-26
    [73]Janbu K N.Slope Stability Computation,Embankment Dam Engineering[M].York:John Wiley and Sons,1973
    [74]Sarma K S.Stability analysis of embankments and slopes[J].J-Geotech ASCE,1979,105(GT12):1511-1524
    [75]Fredlund D G,Krahn J.Comparison of slope stability methods of analysis[J].Canadian Geotechnical Journal,1977,14:429-439
    [76]张天宝.土坡稳定分析中条分法的解析计算[J].成都工学院学报,1987,1:97-122
    [77]Chen Z Y,Morgenstem N R.Extensions to the generalized metnod of slices for stability analysis[J].Canadian Geotechnical Journal,1983,20:104-119
    [78]Celestino T B,Duncan J M.Simplified search for noncircular slip surface[C].In Proceedings,10th International Conference on Soil Mechanics and Foundation Engineering,Stockholm.1981,3:391-394
    [79]Nguyen V U.Determination of critical slope failure surface[J].ASCE Journal of the Geotechnical Engineering Mechanics Division,1985,105:238-250
    [80]Chen Z Y,Shao C.Evaluation of minimum factor of safety in slope stability analysis[J].Canadian Geotechnical Journal,1988,25:735-748
    [81]刘志斌,郭增涛.用变尺度法求解圆弧滑坡的最危险滑面[J].阜新矿业学院学报,1988.(4):23-29
    [82]周继瑶,岳祖润.边坡稳定分析的单纯形法及应用[J].石家庄铁道学院学报,1996,9(3):49-56
    [83]Kim J Y,Lee S R.An improved search strategy for the critical slip surface using finite element stress fields[J].Computers and Geotechnics,1997,21(4):295-313
    [84]黄文东.极限平衡条分法中边坡潜在滑动面搜索方法的改进[J].世界采矿快报,1999,15(9):42-44
    [85]兰波 汪国华.路基边坡稳定计算及图形处理技术[J].重庆交通学院学报,1999,18(1):121-126
    [86]马忠政 祁红卫 侯学渊.边坡稳定验算中全面搜索的一种新方法[J].岩土力学,2000,21(3):256-259
    [87]赵宇.土体边坡稳定性力学分析和K值检算方法[J].东北公路,2000,23(4):46-50
    [88]朱向荣,朱益军,姚昕亮.基于坡面网格全局搜索土坡临界滑动面的优化技术[J].岩土力学,2006,27(2):252-256
    [89]Hoek E,Bray J W著.岩石边坡工程[M].卢世宗译.北京:冶金工业出版社,1983,159-182
    [90]武汉水利电力学院编.土力学及岩石力学[M].北京:水利出版社,1982.新版:161-165
    [91]陆亦庄.土坡稳定分析瑞典法最危险圆弧圆心轨迹的探求[J].路基工程,1997,No.2
    [92]Sokolovski V V.Statics of soil media[M].Translated by Jones,D H and Schofield A N.1960,Butterworth,London,1954
    [93]Fang H Y,Hirst T J.Application of plasticity theory to slope stability problems[J].Highway Research Record No.233,1970:26-38
    [94]Booker J R,Davis E H.A note on plasticity solutions for the stability of slopes in homogeneous clays[J]. Geotechnique, 1972, 22: 509-513
    [95] Graham J. plasticity solutions to stability problems in sand[J]. Canadian Geotechnical Journal, 1973,11:238-247
    [96] Finn W. Application of limit plasticity in soil mechanics[J]. ASCE Journal of the Soil Mechanics and Foundations Division, 1967, 89(SM5): 101-119
    [97] Chen W F, Snitbahn N S. On slip surface and slope stability analysis[J]. Soils and Foundations, 1975,15:41-49
    [98] Karal K. Application of energy method[J]. ASCE Journal of the Engineering Mechanics Divesion, 1977a, 103(GT5):318-397
    [99] Karal K. Energy method for soil stability analysis[J]. ASCE Journal of the Engineering Mechanics Divesion, 1977b, 103(GT5):431-455
    [100] Izbicki R J. Limit plasticity approach to slope stability problems[J]. ASCE Journal of the Engineering Mechanics. 1981,107(GT12): 228-233
    [101] Chen W F, Chan S W. Upper bound limit analysis of the stability of a seismic-infirmed earth slope[C]. In Proceedings of an International Symposium on Geotechnical Aspects of Mass and Material Transportation, Bangkok, 1984: 373-428
    [102] Leshchinsky D, Baker R, Silver M L. Three-dimensional analysis of slope stability[J]. International Journal for Numerical and Analytical Method in Geomechanics, 1985, 9: 199-233
    [103] Arai K, Nakagawa M. A new limit equilibrium analysis of slope stability based on lower-bound theorem[J]. Soils and Foundations, 1988,28(1): 1-15
    [104] Annapa Reddy Siva Reddy, Narayana Rao Lakshmana Rao Peshve. A new method for stability of slopes[J]. Japanese Society of Soil Mechanics and Foundation Engineering, 1990,30:167-171
    [105] Donald I, Chen Z Y. Slope stability analysis by an upper bound plasticity method[J]. Canadian Geotechnical Journal, 1997. 34: 853-862
    
    [106] 熊凯.基于平动加转动运动场的边坡稳定极限分析法[D].杭州:浙江大学,2006
    
    [107] Fremond M, Salencon J. Limit analysis by finite element methods[C]. Proc. Of Symposium on the Role of Plasticity in Soil Mechanics, Cambridge, 1973: 297-309
    
    [108] Turgeman S, Pastor J. Limit analysis: a linear formulation of the kinematic approach for axisymmetric mechanic problems[J]. Int. J. Numer. Anal. Methods Geomech, 1982, 6(1):109-128
    [109]Tamura T,Kobayashi S,Sumi T.Limit analysis of soil structure by rigid plastic finite element method[J].Soils and Foundations,1984,24(1):34-42
    [110]王汉辉 王均星.边坡稳定的有限元塑性极限分析[J]岩土力学,2003,24(5):733-738
    [111]王均星 王汉辉.土坡稳定的有限元塑性极限分析上限法研究[J]岩石力学与工程学报,2004,23(11):1867-1873
    [112]Lysmer J.Limit analysis of plane problems in soil mechanics[C].Proc.ASCE,1970,96(SM4):1311-1334
    [113]Pastor J,Turgeman S.Limit analysis in axisymmetrical problems:numerical determination of complete statical solutions[J].Int.J.Mech.Sci,1982,24(2);95-117
    [114]Arai K,Tagyo K.Limit analysis of geotechnical problems by applying lower-bound theorem[J].Soils and Foundations,1985b,25(4):37-48
    [115]王均星(2005)[J]
    [116]Naylor D L,Finite elements and slope stability[J].In Numerical Methods in Geomechanics,D Reidel Publishing Company,J B Martins(eds),1982:229-244
    [117]Matsui T,San K C.Finite element slope stability analysis by shear strength reduction technique[J].Soils and Foundations,!992,32:59-70
    [118]Zou J Z,Williams D J,Xiong W L.Search for critical slope surfaces based on finite element method[J].Geotechnique,1995,32:233-246
    [119]Farias M M,Naylor D J.Safety analysis using finite elements[J].Computers and Geotechnics,1998,22(2):165-181
    [120]康亚明.基于重度增加法的边坡稳定性三维有限元分析[J].建筑科学与工程学报,2006,23(4):49-53
    [121]Gussman P.Kinematic elements for soils and rocks[C].In Proceedings of the 4th International Conference on Numerical Methods in Geomechanics,Edmonton,Alta,1982:47-52
    [122]Michalowski R L.Slope stability analysis:a kinematical approach[J].Geotechnique,1995,45(2):283-293
    [123]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980
    [124]Law K T,Lumb P.A limit equilibrium analysis of progressive failure in the stability of slopes[J].Can.Geot.J.,1978,15:113-122
    [125]Chugh A K.Variable factor of safty in slope stability analysis[J].Geotechnique,1986,36(1):57-64
    [126]Srbulov M M.A simple method for the analysis of stability of slopes in brittle soil[J].Soils and Foundations,1995,35(4):123-127
    [127]Yamagami T,Takimazaka Z,Jiang J.Progressive failure analysis of slopes Based on LEM[J].In:preformace and evaluation of Soil Slopes under Earthquake and Rainstorm,Dalian,1988:35-48
    [128]N K Sah,P R Sheorey,L N Upadhyaya.Maximum Likelihood Estimation of Slope Stability[J].Int.J.Rock Mech.Sci.& Geomech.Abstr.Vol.31,No.1,pp.47-53,1994
    [129]刘志斌 王志宏 曹兰柱.边坡稳定系数迭代求解的实用方法[J].阜新矿业学院学报,1997,16(6):641-644
    [130]肖专文,张奇志,梁力,林韵梅.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20(1):44-46
    [131]莫海鸿,刘少跃.应用模式搜索法寻找最危险滑动圆弧[J].岩土工程学报,1999,21(6):696-699
    [132]陈昌富.仿生算法及其在边坡和基坑工程中的应用[D].长沙:湖南大学,2001
    [133]陈昌富.露天采矿边坡临界滑动面搜索蚁群算法研究[J].湘潭矿业学院学报,2002,17(1):62-64
    [134]弥宏亮.遗传算法在确定边坡稳定最小安全系数中的应用[J].岩土工程学报,2003,25(6):671-675
    [135]李守巨.基于模拟退火算法的边坡最小安全系数全局搜索方法[J].岩石力学与工程学报,2003,22(2):236-240
    [136]王成华.基于应力场的土坡临界滑动面的蚂蚁算法搜索技术[J].岩石力学与工程学报,2003,22(5):813-819
    [137]李亮,迟世春.基于蚁群算法的复合形法及其在边坡稳定分析中的应用[J].岩土工程学报,2004,26(5):691-696
    [138]吴银龙.GIS技术支持下基于遗传算法的边坡稳定性分析评价系统[D].长安大学,2005
    [139]易小明,万文.边坡稳定性分析的混合型快速模拟退火算法和改进的遗传算法研究[J].公路学报,2006,23(2):18-23
    [140]李泽,王均星.基于非线性规划的岩质边坡有限元塑性极限分析下限法研究[J].岩石力学与工程学报,2007,26(4):747-753
    [141]李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(5):490-495
    [142]许传华.边坡稳定性的ISODATA模糊聚类分析[J].金属矿山,2000,12(12):24-26
    [143]刘沐宇.基于模糊相似优先的边坡稳定性评价范例推理方法[J].岩石力学与工程学报,2002,21(8):1188-1193
    [144]王旭华.边坡稳定性评价的多层模糊模式识别方法[J].辽宁工程技术大学学报(自然科学版),2006,25(6):855-857
    [145]朱先锋.昔格达地层开挖边坡稳定性模糊聚类分析[J].铁道勘测与设计,2006(5):29-34
    [146]冯夏庭.边坡稳定性的神经网络估计[J].工程地质学报,1995,3(4):54-61
    [147]丁德馨,张志军.圆弧滑动边坡反演设计的自适应神经模糊推理方法研究[J].岩土工程学报,2004,26(2):202-206
    [148]刘沐宇.基于范例推理的边坡稳定性智能评价方法研究[J].岩石力学与工程学报,2002,21(7):1105-1106
    [149]李梅.基于案例推理的边坡稳定性评价系统及应用[J].武汉理工大学学报,2006,28(6):53-56,61
    [150]A.J.Hargraves.Subsidence.in mines[M].N.S.W,1973
    [151]戴华阳,王金庄,催继宪等.地表移动与变形极值问题综合评述[J].矿山测量,2000(2):23-25
    [152]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991
    [153]邓喀中,马伟民.开采沉陷中的层面滑移三维模型[J].岩土工程学报,1997,19(5):960-964
    [154]煤炭科学院北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981
    [155]中国矿业学院.煤矿岩层与地表移动[M].北京:煤炭工业出版社,1984
    [156]丁德馨.地下采场围岩刚度与强度参数的正交反演方法[J].中国矿业,1998,7(6):47-50
    [157]崔希民,缪协兴.浅议矿山开采沉陷学研究内容之延拓[J].矿山压力与顶板管理,2000(4):80-82
    [158]李永树.任意分布形式矿层开采地表移动预报方法[J].煤炭学报,1995(6):619-624
    [159]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    [160]杨伦,于广明,张玉卓等.节理对开采沉陷的影响规律研究[J].岩土工程学报,1998,20(6):1114-1117
    [161]于广明.分形及损伤力学在开采沉陷中的应用研究[D].北京:中国矿业大学北京研究生部,1997
    [162]丁德馨,毕忠伟,王卫华.开采地面沉陷预测的神经网络方法研究[J].南华大学学报,2003,16(3):1-5
    [163]麻凤海,梁冰.非线性理论在开采沉陷中的应用[J].中国安全科学学报,1998,8(4):17-20
    [164]范学理,麻凤海,王永嘉.利用神经网络预测开采引起地表沉陷[J].阜新矿业学院学报,1995,14(3):68-73
    [165]邹友峰.开采沉陷预计参数的确定方法[J].焦作工学院学报,2001,20(4):44-48
    [166]丁德馨,张志军,毕忠伟.开采地面沉陷预测的自适应神经模糊推理方法研究[J].中国工程科学,2007,9(1):33-38
    [167]杜福荣.浅埋煤层的覆岩破坏及地表移动规律的研究[D].辽宁工程技术大学,2002.10
    [168]过江,彭续承.我国金属矿床水下开采的科技现状及发展趋势[J].有色矿冶,1997.1:5-6
    [169]Wu Lixin,Hou Enke,Tang Chunan,et al.Geological data organization for FEM based on 3D geoscience modeling[J].The International Archives of Photogrammetry and Remote Sensing,2001,34(2W2):323-325
    [170]Wu Lixin,Hou Enke,Niu Benxuan,et al.A new method for mining influence based on fine geological structures[A].Xie Heping.Computer Applications in the Mining Industry[C].Rotterdam:Balkema,2001.731-734.
    [171]WaterLoo Hydrogeologic Inc.User's Manual of Visual Mod2flow[Z],1996.
    [172]Three-Dimensional Structure of the Ground Fissure Zone in the Area of Datong Railwany Bureau and Its Origin Xu Xiwei et l:Seismol.Geol.,16(4),1994,pp.355-364
    [173]邹海,桂和荣,陈兆炎.导水裂隙带高度预测途径探讨[J].江苏地质,1997, 21(2):98-102
    [174]Ding Dexin,Zhang Zhijun.Using ANFIS to Predict the Thickness of Transmissive Fractured Belt above Underground Mining Stope.GeoShanghai International Conference 2006,Shanghai Tongji University,2006.6
    [175]陈佩佩.基于人工神经网络技术的综放导水断裂带高度预计[J].煤炭学报,2005,30(4):438-442
    [176]李士勇.模糊控制、神经控制和智能控制论[M].哈尔宾:哈尔宾工业大学出版社,1998
    [177]张智星,孙春在,(日)水谷英二,张平安,高春华等译.神经-模糊和软计算[M].西安:西安交通大学出版社,2000
    [178]闻新,周露,李东江,贝超.MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2001
    [179]楼顺天,胡昌华.基于MATLAB的系统分析与设计-模糊系统[M].西安:西安电子科技大学出版社,2001
    [180]吴晓莉,林哲辉.MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002
    [181]Fuzzy Logic Toolbox for use with MATLAB[Z],User's Guide(Version 2).1995-1998
    [182]楼顺天,陈生潭,雷虎民.MATLAB 5.x程序设计语言[M].西安:西安电子科技大学出版社,2000
    [183]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005
    [184]湘西金矿地测科.湘西金矿老采区244矿块地质.湘西金矿,1990
    [185]Brown E T.Rock characterization,testing and monitoring - ISRM suggested methods.Pergamon,Oxford,1981
    [186]Hoke E,Brown E T.Practical estimates of rock mass strength.Int.J.Rock Mech.Min.Sci.& GAbstr.1997,34(8)
    [187]杨立根.湘西金矿316号采场安全监测及顶板稳定性分析[J].长沙矿山研究院,1992
    [188]丁德馨.湘西金矿极不稳固顶板稳定性控制研究[J].衡阳工学院学报,1994,8(1):1-3
    [189]Ding Dexin,Zhang Zhijun.A New Approach for Predicting Mining Induced Surface Subsidence[J].Journal of Central South University(中南大学学报(英文版)),2006.8,Vol.13.No.4:438-444
    [190]毕忠伟.开采地面沉陷预测的模糊神经网络方法研究[D].衡阳:南华大学,2003
    [191]侯长祥.覆岩岩性对地表移动变形的影响[J].湘潭矿业学院学报,1999,14(2):20-24
    [192]梁明,王成绪.厚黄土覆盖山区开采沉陷预计[J].煤田地质与勘探,2001,29(2):44-47
    [193]王金庄,李永树,周雄等.巨厚松散层下采煤地表移动规律的研究[J].煤炭学报,1997,22(1):18-21
    [194]顾少华,石世章.建筑物下大采宽条带开采的地表移动特征[J].煤炭科学技术,1997,25(9):10-12
    [195]李凤明.厚冲积层采矿条件岩层移动角量参数特点[J].煤矿开采,1996,22(3):28-30
    [196]马超,何万龙,康建荣.采煤塌陷区塌陷面积的预测方法与分析[J].矿山测量,1999,(1):16-20
    [197]赵阳升.有限元在采矿工程中的应用[M].北京;煤炭工业出版社,1994
    [198]颜荣贵.山丘矿区地表公民建筑的开挖灾变与治理对策[J].江西有色金属,1999,(2):1-6
    [199]谢和平,周宏伟,王金安等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401
    [200]中国矿业大学,阜新矿业学院,焦作矿业学院.煤矿岩层与地表移动[M].北京:煤炭工业出版社,1985
    [201]王国艳,刘杰,陈才菁.井下开采后地表移动规律分析研究[J].山东煤炭科技,2000,(S1):148-149
    [202]秦文露,曹书良.翟镇煤矿煤巷围岩分类及分析[J].山东矿业学院学报(自然科学版),1999,18(3):16-18
    [203]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003
    [204]王云刚.导水裂隙带发育高度预测的自适应神经模糊推理方法及其在康家湾铅锌金矿的应用[D].衡阳:南华大学,2005
    [205]冶金矿山设计参考资料编辑组.冶金矿山设计参考资料[M].北京:冶金工业出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700