用户名: 密码: 验证码:
城市污水处理典型工艺N_2O的释放特征及减排策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市水使用量及污水处理率的不断提高,城市污水处理厂N20的排放量将会不断增大。我国城市污水处理厂N20的研究不仅基础数据缺乏,且没有任何减排方法。本文给出了我国城市污水处理典型工艺N20的排放特征,研究了影响典型工艺N20排放的主要因素,构建出了N20排放量的计算模型,预测了未来10年我国城市污水处理厂N20的排放总量,并分别从国家和城市污水处理厂层面提出了城市污水处理N20的减排策略。
     本文首先采用了静态平衡箱法、气袋法和静态顶空法对典型工艺城市污水处理厂N20的释放强度及水中溶解态N20浓度进行了监测。研究结果表明,受硝化过程DO浓度过低以及反硝化过程DO存在的影响,好氧和缺氧处理单元(阶段)都会产生N20,它们都是控制各工艺N20产生的关键点位;四种典型工艺好氧处理单元(阶段)N20的吨水释放量分别占A2/O工艺的99.14%、A/O工艺的98.6%、氧化沟工艺的86.7%和SBR工艺的99.9%,是各工艺控制N20排放的关键点位。
     本文分别设计了A/O、氧化沟和SBR工艺N20排放的中试试验,通过调节各工艺主要运行参数,研究DO浓度和反硝化过程对进水碳源的利用率的改变对于典型工艺N20产生与排放的影响。研究结果表明,A/O工艺采用合适的好氧池曝气速率、氧化沟工艺采用先反硝化后硝化的运行模式并提高曝气转刷的转动速率、SBR工艺采用先进水搅拌后曝气的运行模式并提高曝气速率,能够有效地控制各工艺硝化过程和反硝化过程的DO浓度并提高反硝化过程对进水碳源的利用率,有利于减少典型工艺N20的产生与排放。
     本文利用基于遗传算法优化的BP人工神经网络建立了N20排放量的预测模型,实现了对2014年至2023年城市污水处理厂N20排放总量的预测。研究结果表明,所建立的GA-BP模型对于污水处理厂N20排放量的预测值与实测值之间的相关系数分别为0.91、0.95、0.98和0.99,可以实现对我国污水处理厂N20排放量的准确预测。预测结果显示,我国污水处理厂N20的排放总量将会从2014年的(1.32~4.67)×104吨增加到2023年的(2.17~7.64)×104吨。
     本文根据我国城市污水处理典型工艺N20排放特征及影响因素的研究结果,分别从国家和城市污水处理厂层面提出了城市污水处理典型工艺N20减排技术策略。国家控制城市污水处理厂N20排放的技术策略包括选取氧化沟工艺作为削减污水处理厂N2O排放的最优工艺以及推荐同步硝化反硝化、短程硝化反硝化、厌氧氨氧化等新工艺处理城市污水等;城市污水处理厂N20减排的技术策略包括合理地提高硝化过程的DO浓度、提高缺氧反硝化工段对进水碳源的利用率等。
As the increase of urban water usage and wastewater treatment efficiency, the emission of N2O from wastewater treatment plants (WWTPs) will get an increase gradually. By now, there is a great defect not only in the basic data but also in N2O reduction method on N2O emission from WWTPs in China. This research has given out the emission characteristics of N2O from urban WWTPs using typical treatment processes, studied the influencing factors on N2O emission from each process, constructed the predicting models of N2O emission from typical processes, forecasted the emission of N2O from all the urban WWTPs in the future10years in China, and proposed the reduction strategies of N2O emission from urban WWTPs, which is suitable for our national conditions. These works can offer a certain data reference for constituting the reduction policy and environmental management for N2O emission from WWTPs in China, and supply some technical support for the diplomatic negotiations and the implementation of international conventions.
     N2O emission from the non-aerated and aerated units and the dissolved N2O concentration in the typical treatment processes were monitored using the static chamber technique, the gas bag technique and the static headspace technique respectively. Results showed that, for the effect of insufficient O2supply during nitrification and O2-inhibition during denitrification, N2O could be produced in both the oxic and the anoxic treatment units (periods), where could be determined as the main control points for N2O production. Because the N2O dissolved in the oxic treatment units (periods) would be stripped out to the atmosphere through aeration in the four typical wastewater treatment processes, the emission of N2O from the A2/0-oxic tank, the A/O-oxic tank, the oxidation ditch tank and the SBR-feeding and aeration period accounted for99.14%of A2/O process,98.6%of A/O process,86.7%of the OD process and99.9%of the SBR process, which showed as the main control points for N2O emission.
     Pilot experiments were designed to study the influence of DO and the utilization efficiency of carbon source in influent during denitrification on N2O emission from A/O, OD and SBR processes through adjusting some critical operating parameters. Results showed that, a proper adjustment of the aeration rate in A/O process, a pre-denitrificaiton operating mode with a higher aeration rate in the OD and SBR processes could lead to a effective control of DO concentration during nitrification and denitrificaiton and enhacing the utilization of influent carbon during denitrification, which were favorable to reduce the production and emission of N2O from different processes.
     A back propogation (BP) artificial neural network basing on the optimization by genetic algorithm was established for the prediction of N2O emission from WWTPs and the emission of N2O from urban WWTPs in China in the future10years (from2014to2023) was predicted. The results showed that, the correlation coefficient (r) between the predicted values got by the GA-BP models and the monitored values of N2O emission from WWTPs were0.91,0.95,0.98and0.99, which indicated that the models constructed in our work could realize an accurate prediction of N2O emission from urban WWTPs in China. The forecasting results showed that, the total emission of N2O would increased from (1.32~4.67)×104ton in2014to that of (2.17~7.64)×104ton in2023as the continuous increase of China's urban sewage treatment.
     According to the research results of N2O emission characteristics and influencing factors in typical urban wastewater treatment processes, technical strategies suitable for our national conditions were proposed to reduce N2O emission from both national and urban WWTPs'aspects. The national technical strategy controlling N2O emission included selecting the OD process as the optimal treatment process and recommending some newer technologies for wastewater treatment, et al. The WWTPs'included raising the DO concentration during nitrification properly and enhancing the utilization efficiency of carbon source in influent during denitrification, et al.
引文
1. 高平平.基于神经网络的污水处理水质预测研究[D].西南交通大学,2004.
    2. 耿军军,王亚宜,张兆祥,等.污水生物脱氮革新工艺中强温室气体N20的产生及微观机理[J].环境科学学报,2010,30(9):1729-1738.
    3. 李莎.城市污水四种典型处理工艺N20排放特征的研究[D].北京林业大学,2012.
    4. 刘秀红,彭永臻,马涛,等.硝化类型对污水脱氮过程中N20产生量的影响[J].中国环境科学,2007,27(5):633-637.
    5. 刘秀红,鞠然,刘立超,等.生活污水短程生物脱氮过程中N20的产生与控制方法[J].中国环境科学,2011,31(1):30-34.
    6. 柳岩.城市污水处理厂污水处理过程中CH4排放规律研究[D].北京林业大学,2013.
    7. 任南琪,马放.水污染控制微生物与原理与应用[M].北京:化学工业出版社,2003.
    8. 尚会来,彭永臻,张静蓉,等.SRT对于污水脱氮过程中N20产生的影响[J].环境科学学报,2009,29(4):754-758.
    9. 孙玮玮,王东启,陈振楼,等.长江三角洲平原河网水体中溶存CH4和N20浓度及其排放通量[J].中国科学,2009,39(2):165-175.
    10.王莎莎,彭永臻,巩有奎,等.不同电子受体低氧条件下生物反硝化过程中氧化亚氮产量[J].水处理技术,2011,37(8):58-60.
    11.易赛莉,雒文生.人工神经网络在UASB反应器处理生活污水中的模拟预测与应用[J].武汉大学学报(工学版),2004,37(1):46-50.
    12.张朝晖,吕锡武.污水生物处理过程中N20的逸出控制[J].给水排水,2004,30(4):32-36.
    13. Aboobakar A, Cartmell E, Stephenson T, et al. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant[J]. Water Research,2012,47(2): 524-534.
    14. Ahn J H, Kim S, Park H, et al. N2O emissions from activated sludge processes,2008-2009:results of a national monitoring survey in the United States[J]. Environmental Science and Technology, 2010,44(12):4505-4511.
    15. Ahn Y H. Sustainable nitrogen elimination biotechnologies:A review[J]. Process Biochemistry, 2006,41(8):1709-1721.
    16. Alinsafi A, Adouani N, Beline F, et al. Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J]. Process Biochemistry,2008,43(6):683-689.
    17. Anderson I C, Levine J S. Relative rates of nitric oxide and nitrous oxide production by nitrifiers,denitrifiers,and nitrate respirers[J]. Applied and Environmental Microbiology,1986,51(5): 938-945.
    18. Anderson I C, Poth M, Homstead J, et al. N2O producing capability of Nitrosomonas europaea, Nitrobacter winogradskyi and Alcaligenes faecalis[J]. Water Science and Technology,1997,36(10): 65-72.
    19. Banihani Q, Sierra-Alvarez R, Field J A. Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested domestic sludges[J]. Biodegradation,2009,20(6): 801-812.
    20. Beline F, Martinez J, Marol C, et al. Application of the 15N technique to determine the contributions of nitrification and denitrification to the flux of nitrous oxide from aerated pig slurry[J]. Water Research,2001,35(11):2774-2778.
    21. Beun J, Dircks K, van Loosdrecht M, et al. Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures[J]. Water Research,2002,36(5):1167-1180.
    22. Bock E, Schmidt I, Stuven R, et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J]. Archives of Microbiology,1995,163(1):16-20.
    23. Bremner J M, Blackmer A M. Terrestrial Nitrification as a source of atmospheric nitrous oxide[M]. Chichester John Wiley and sonsLtd,1981.
    24. Brown K, Tegoni M, Prudencio M, et al. A novel type of catalytic copper cluster in nitrous oxide reductase[J]. Nature Structural and Molecular Biology,2000,7(3):191-195.
    25. Burgess J E, Colliver B B, Stuetz R M, et al. Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure[J]. Journal of Industrial Microbiology and Biotechnology,2002,29(6):309-313.
    26. Burgess J, Stuetz R, Morton S, et al. Dinitrogen oxide detection for process failure early warning systems[J]. Water Science and Technology,2002,45(4-5):247-254.
    27. Butler M, Wang Y, Cartmell E, et al. Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge[J]. Water Research,2009,43(5):1265-1272.
    28. Casciotti K L, Sigman D M, Ward B B. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria[J]. Geomicrobiology Journal,2003,20(4):335-353.
    29. Christensson M, Lie E, Welander T. A comparison between ethanol and methanol as carbon sources for denitrification[J]. Water Science and Technology,1994,30(6):83-90.
    30. Chung Y, Chung M. BNP test to evaluate the influence of C/N ratio on N2O production inbiological denitrification[J]. Water Science and Technology,2000,42(3-4):23-27.
    31. Colliver B, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers[J]. Biotechnology Advances,2000,18(3):219-232.
    32. Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiological Reviews,1996,60(4):609-640.
    33. Corominas L, Flores-Alsina X, Snip L, et al. Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants[J]. Biotechnology and Bioengineering,2012,109(11):2854-2863.
    34. Crutzen P J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere[J]. Annual Review of Earth and Planetary Sciences,1979,7:443-472.
    35. Czepiel P, Crill P, Harriss R. Methane emissions from municipal wastewater treatment processes[J]. Environmental Science and Technology,1993,27(12):2472-2477.
    36. Czepiel P, Crill P, Harriss R. Nitrous oxide emissions from municipal wastewater treatment[J]. Environmental Science and Technology,1995,29(9):2352-2356.
    37. Dean J A. Lange's handbook of chemistry[M]. USA, CD and W Inc,1985.
    38. de Haas D, Hartley K. Greenhouse gas emission from BNR plants:do we have the right focus[C]. In Proceeedings of EPA Workshop:Sewage Management:Risk Assessment and Triple Bottom Line, 2004.
    39. Desloover J, De Clippeleir H, Boeckx P, et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions[J]. Water Research,2011,45(9): 2811-2821.
    40. Desloover J, Vlaeminck S E, Clauwaert P, et al. Strategies to mitigate N2O emissions from biological nitrogen removal systems[J]. Current Opinion in Biotechnology,2012,23(3):474-482.
    41. Diaz-Valbuena L R, Leverenz H L, Cappa C D, et al. Methane.carbon dioxide.and nitrous oxide emissions from septic tank systems[J]. Environmental Science and Technology,2011,45(7): 2741-2747.
    42. EPA. Inventory of US greenhouse gas emissions and sinks:1990-2009[R]. EPA,430-R-11-005, 2011.
    43. Foley J, de Haas D, Hartley K, et al. Comprehensive life cycle inventories of alternative wastewater treatment systems[J]. Water Research,2010,44(5):1654-1666.
    44. Foley J, de Haas D, Yuan Z G, et al. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J]. Water Research,2010,44(3):831-844.
    45. Foley J, Lant P. Fugitive greenhouse gas emissions from wastewater systems[M]. Water Services Association of Australia,2007.
    46. Foley J, Yuan Z G, Keller J, et al. N2O and CH4 emission from wastewater collection and treatment systems[R]. Global Water Research Coalition,2011.
    47. Freitag A, Rudert M, Bock E. Growth of Nitrobacter by dissimilatoric nitrate reduction[J]. FEMS Microbiology Letters,1987,48(1):105-109.
    48. Frijns J, Mulder M, Roorda J. Op weg naar een klimaatneutrale waterketen[R]. STOWA,2008.
    49. Gejlsbjerg B, Frette L, Westermann P. Westermann Dynamics of N2O production from activated sludge[J]. Water Research,1998,32(7):2113-2121.
    50. Goreau T J, Kaplan W A, Wofsy S C, et al. Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen[J]. Applied and Environmental Microbiology,1980,40(3): 526-532.
    51. Granger J, Ward B B. Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria[J]. Limnology and Oceanography,2003,48(1):313-318.
    52. Greenberg E, Becker G. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads[J]. Canadian Journal of Microbiology,1977,23(7):903-907.
    53. Guisasola A, de Haas D, Keller J, et al. Methane formation in sewer systems[J]. Water Research, 2008,42(6):1421-1430.
    54. Gujer W, Henze M, Mino T, et al. Activated sludge model No.3[J]. Water Science and Technology, 1999,39(1):183-193.
    55. Hallin S, Pell M. Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge[J]. Water Research,1998,32(1):13-18.
    56. Hamed M M, Khalafallah M G, Hassanien E A. Prediction of wastewater treatment plant performance using artificial neural networks[J]. Environmental Modelling and Software,2004, 19(10):919-928.
    57. Hanaki K, Hong Z, Matsuo T. Production of nitrous oxide gas during denitrification of wastewater[J]. Water Science and Technology,1992,26(5-6):1027-1036.
    58. Hanaki K, Hong Z, Matsuo T. Nitrous oxide emission during nitrification and denitrification in a full-scale night soil treatment plant[J]. Water Science and Technology,1996,34(1):277-284.
    59. Henze M, Grady Jr C, Gujer W, et al. Activated Sludge Model No.1:IAWPRC Scientific and Technical Report No.1 [R]. London, IAWPRC,1987.
    60. Hiatt W C, Grady C. An updated process model for carbon oxidation,nitrification, and denitrification[J]. Water Environment Research,2008,80(11):2145-2156.
    61. Hooper A. Biochemistry of the nitrifying lithoautotrophic bacteria[J]. Autotrophic Bacteria,1989, 239-265.
    62. Hu Z, Zhang J, Li S, et al. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs)[J]. Journal of Bioscience and Bioengineering,2010, 109(5):487-491.
    63. Hu Z, Zhang J, Li S, et al. Effect of anoxic/aerobic phase fraction on N2O emission in a sequencing batch reactor under low temperature[J]. Bioresource Technology,2011,102(9):5486-5491.
    64. Hynes R K, Knowles R. Production of nitrous oxide by Nitrosomonas europaea:effects of acetylene, pH, and oxygen[J]. Canadian Journal of Microbiology,1984,30(11):1397-1404.
    65. Inamori Y, Wu X L, Mizuochi M. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis[J]. Applied and Environmental Microbiology,1993,59(11):3525-3533.
    66. IPCC. Climate Change,1995-science of climate change, Technical Summary[M]. Cambridge University Press,1996.
    67. IPCC. Module 6-Waste in Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Intergovernmental Panel on Climate Change,1997.
    68. IPCC. Special report on emissions scenarios:a special report of Working Group III of the Intergovernmental Panel on Climate Change[R]. Pacific Northwest National Laboratory, Richland, WA (US), Environmental Molecular Sciences Laboratory (US),2000.
    69. IPCC. Climate change 2001:the scientific basis[M]. Cambridge University Press,2001.
    70. IPCC.2006 IPCC guidelines for national greenhouse gas inventories[R]. Kanagawa, JP:Institute for Global Environmental Strategies,2006.
    71. IPCC. Summary for Policymakers[M]. Cambridge University Press,2007.
    72. Itokawa H, Hanaki K, Matsuo T. Nitrous oxide emission during nitrification and denitrification in a full-scale night soil treatment plant[J]. Water Science and Technology,1996,34(1):277-284.
    73. Itokawa H, Hanaki K, Matsuo T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research,2001,35(3):657-664.
    74. Joss A, Salzgeber D, Eugster J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR[J]. Environmental Science and Technology,2009,43(14): 5301-5306.
    75. J(?)rgensen K S, Jensen H B, Sorensen J. Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations[J]. Canadian Journal of Microbiology,1984,30(8):1073-1078.
    76. Kampschreur M J, van der Star W R, Wielders H A, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment[J]. Water Research,2008,42(3):812-826.
    77. Kampschreur M J, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research,2009a,43(17):4093-4103.
    78. Kampschreur M J, Poldermans R, Kleerebezem R, et al. Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor[J]. Water Science and Technology, 2009b,60(12):3211-3217.
    79. Kester R A, De Boer W, Laanbroek H J. Production of NO and N2O by Pure Cultures of Nitrifying and Denitrifying Bacteria during Changes in Aeration[J]. Applied and Environmental Microbiology, 1997,63(10):3872-3877.
    80. Khalil M A K. Atmospheric methane.Its role in the global environment[M]. Springer,2000.
    81. Khan S T, Hiraishi A. Isolation and characterization of a new poly (3-hydroxybutyrate)-degrading,denitrifying bacterium from activated sludge[J]. FEMS Microbiology Letters,2001, 205(2):253-257.
    82. Kim S W, Miyahara M, Fushinobu S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J]. Bioresource Technology,2010, 101(11):3958-3963.
    83. Kimochi Y, Inamori Y, Mizuochi M, et al. Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration[J]. Journal of Fermentation and Bioengineering,1998,86(2):202-206.
    84. Kishida N, Kim J, Kimochi Y, et al. Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process[J]. Water Science and Technology,2004,49(5-6):359-371.
    85. Knowles R. Denitrification[J]. Microbiological Reviews,1982,46(1):43-70.
    86. Kramlich J C, Linak W P. Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems[J]. Progress in Energy and Combustion Science,1994,20(2):149-202.
    87. Kuba T, Murnleitner E, van Loosdrecht M, et al. A metabolic model for biological phosphorus removal by denitrifying organisms[J]. Biotechnology and Bioengineering,1996,52(6):685-695.
    88. Law Y, Ye L, Pan Y, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2012,367(1593): 1265-1277.
    89. Lema J. Nitrous oxide production under toxic conditions in a denitrifying anoxic filter[J]. Water Research,1998,32(8):2550-2552.
    90. Lemaire R, Meyer R, Taske A, et al. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Biotechnology,2006,122(1):62-72.
    91. Lipschultz F, Zafiriou O, Wofsy S, et al. Production of NO and N2O by soil nitrifying bacteria[J]. Nature,1981,294:641-643.
    92. Liu X H, Peng Y Z, Wu C Y, et al. Nitrification and denitrification in subalpine coniferous forests of different restoration stages in western Sichuan, China[J]. Frontiers of Forestry in China,2007, 2(3):260-265.
    93. Liu X H, Peng Y Z, Wu C Y, et al. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor[J]. Journal of Environmental Sciences, 2008,20(6):641-645.
    94. Lopez-Vazquez C M, Oehmen A, Hooijmans C M, et al. Modeling the PAO-GAO competition: effects of carbon source, pH and temperature[J]. Water Research,2009,43(2):450-462.
    95. Lu H, Chandran K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors[J]. Biotechnology and Bioengineering,2010,106(3):390-398.
    96. Mjalli F S, Al-Asheh S, Alfadala H. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[J]. Journal of Environmental Management, 2007,83(3):329-338.
    97. Montzka S, Reimann S, O'Doherty S, et al. Ozone-depleting substances (ODSs) and related chemicals, in Chapter I in Scientific Assessment of Ozone Depletion:2010[F]. Global Ozone Research and Monitoring Project,Geneva, Switzerland,2011.
    98. Mosier A, Kroeze C, Nevison C, et al. An overview of the revised 1996 IPCC guidelines for national greenhouse gas inventory methodology for nitrous oxide from agriculture[J]. Environmental Science and Policy,1999,2(3):325-333.
    99. Muller E B, Stouthamer A H, van Verseveld H W. Simultaneous NH3 oxidation and N2 production at reduced O2 tensions by sewage sludge subcultured with chemolithotrophic mediumfJ]. Biodegradation,1995,6(4):339-349.
    100.Murnleitner E, Kuba T, van Loosdrecht M, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal[J]. Biotechnology and Bioengineering,1997,54(5): 434-450.
    101.Ni B J, Ruscalleda M, Pellicer-Nacher C, et al. Reply to Comment on "Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrifcation:a simple extension of the general ASM descriptive models"[J]. Environment Science and Technology,2013, 47(20):11910-11911.
    102.Noda N, Kaneko N, Mikami M, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system[J]. Water Science and Technology,2004,48(11):363-370.
    103.Ofiteru I D, Lunn M, Curtis T P, et al. Combined niche and neutral effects in a microbial wastewater treatment community[J]. Proceedings of the National Academy of Sciences,2010, 107(35):15345-15350.
    104.Okayasu Y, Abe I, Matsuo Y. Emission of nitrous oxide from high-rate nitrification and denitrification by mixed liquor circulating process and sequencing batch reactor process[J]. Water Science and Technology,1997,36(12):39-45.
    105. Otte S, Grobben N G, Robertson L A, et al. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions[J]. Applied and Environmental Microbiology,1996,62(7):2421-2426.
    106.Osada T, Kuroda K, Yonaga M. Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process[J]. Water Research,1995,29(6):1607-1608.
    107. Park K Y, Inamori Y, Mizuochi M, et al. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration[J]. Journal of Bioscience and Bioengineering,2000,90(3):247-252.
    108.Pellicer-Nacher C, Sun S, Lackner S, et al. Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal:experimental demonstration [J]. Environmental Science and Technology,2010,44(19):7628-7634.
    109. Peng Y, Chen Y, Peng C, et al. Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater[J]. Water Science and Technology,2004,50(10):35-43.
    110. Poth M, Focht D D.15N kinetic analysis of N2O production by Nitrosomonas europaea:an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology,1985,49(5): 1134-1141.
    111.Poth M. Dinitrogen production from nitrite by a Nitrosomonas isolate[J]. Applied and Environmental Microbiology,1986,52(4):957-959.
    112. Poughon L, Dussap C G, Gros J B. Energy model and metabolic flux analysis for autotrophic nitrifiers[J]. Biotechnology and bioengineering,2001,72(4):416-433.
    113.Prosser I. Autotrophic Nitrification in Bacteria[J]. Advance in Microbial Physiology,1989, (30): 125-181.
    114. Rasmussen T, Berks B C, Sanders-Loehr J, et al. The catalytic center in nitrous oxide reductase, CuZ, is a copper-sulfide cluster[J]. Biochemistry,2000,39(42):12753-12756.
    115.Rassamee V, Sattayatewa C, Pagilla K, et al. Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes[J]. Biotechnology and Bioengineering, 2011,108 (9):2036-2045.
    116. Ravishankara A, Daniel J S, Portmann R W. Nitrous oxide (N2O):The dominant ozone-depleting substance emitted in the 21st century[J]. Science,2009,326(5949):123-125.
    117. Remde A, Conrad R. Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite[J]. Archives of Microbiology,1990,154(2):187-191.
    118. Richardson D, Felgate H, Watmough N, et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle-could enzymic regulation hold the key?[J]. Trends in Biotechnology,2009, 27(7):388-397.
    119. Robertson L A, Dalsgaard T, Revsbech N P, et al. Confirmation of'aerobic denitrification'in batch cultures, using gas chromatography and 15N mass spectrometry[J]. FEMS Microbiology Ecology, 1995,18(2):113-120.
    120. Robertson L A, Cornelisse R, De Vos P, et al. Aerobic denitrification in various heterotrophic nitrifiers[J]. Antonie van Leeuwenhoek,1989,56(4):289-299.
    121. Rosso D, Stenstrom M K. The carbon-sequestration potential of municipal wastewater treatmentfJ]. Chemosphere,2008,70(8):1468-1475.
    122. Ruiz R G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research,2003,37(6):1371-1377.
    123. Schalk-Otte S, Seviour R J, Kuenen J, et al. Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes[J]. Water Research,2000,34(7):2080-2088.
    124. Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha[J]. Archives of Microbiology,1997,167(2-3):106-111.
    125. Schmidt I, Sliekers O, Schmid M, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS microbiology reviews,2003,27(4):481-492.
    126. Schonharting B, Rehner R, Metzger J W, et al. Release of nitrous oxide (N2O) from denitrifying activated sludge caused by H2S-containing wastewater:Quantification and application of a new mathematical model[J]. Water Science and Technology,1998,38(1):237-246.
    127. Schreiber F, Loeffler B, Polerecky L, et al. Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm[J]. The ISME Journal,2009,3(11):1301-1313.
    128. Schulthess R, Kiihni M, Gujer W. Release of nitric and nitrous oxides from denitrifying activated sludge[J]. Water Research,1995,29(1):215-226.
    129. Schulthess R, Gujer W. Release of nitrous oxide (N2O) from denitrifying activated sludge: Verification and application of a mathematical model[J]. Water Research,1996,30(3):521-530.
    130. Sivret E C, Peirson W L, Stuetz R M. Nitrous oxide monitoring for nitrifying activated sludge aeration control:A simulation study[J]. Biotechnology and Bioengineering,2008,101(1): 109-118.
    131.Snowling S, Montieth H, Schraa O, et al. Modeling Greenhouse Gas Emissions from Activated Sludge Processes[J]. Proceedings of the Water Environment Federation, WEFTEC,2006:Session 81 through Session 94,7206-7212.
    132. Sommer J, Ciplak G, Linn A, et al. Quantification of emitted and retained N2O in a municipal wastewater treatment plant with activated sludge and nitrification-denitrification units[J]. Agrobiological Research,1998,51(1):59-73.
    133. Stein L Y. Surveying-producing pathways in bacteria[J]. Methods in Enzymology,2011,486: 131-152.
    134. Sun S C, Cheng X, Li S, et al. N2O emission from full-scale wastewater treatment plants:a comparison of A2O and SBR[J]. Water Science and Technology,2013a,67(9):1887-1893.
    135. Sun S C, Cheng X, Sun D Z. Emission of N2O from a full-scale sequencing batch reactor WWTP characteristics and influencing factors[J]. International Biodeterioration and Biodegradation,2013b, 85:545-549.
    136. Sun S C, Cheng X, Liu Y, et al. Influence of operational modes and aeration rates on N2O emission from urban sewage treatment using a pilot-scale sequencing batch reactor[J]. International Biodeterioration and Biodegradation,2013c,85:539-544.
    137. Sumer E, Weiske A, Benckiser G, et al. Influence of environmental conditions on the amount of N2O released from activated sludge in a domestic waste water treatment plant[J]. Experientia,1995, 51(4):419-422.
    138.Takaya N, Catalan-Sakairi M A B, Sakaguchi Y, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J]. Applied and Environmental Microbiology,2003,69(6): 3152-3157.
    139. Tallec G, Gamier J, Billen G, et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants:effect of oxygenation level[J]. Water Research,2006,40(15):2972-2980.
    140. Tallec G, Gamier J, Billen G, et al. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation[J]. Bioresource Technology, 2008,99(7):2200-2209.
    141. Thorn M, Sorensson F. Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal[J]. Water Research,1996,30(6):1543-1547.
    142.Tsuneo S. Roseobacter litoralis gen.nov.sp.nov.,and Roseobacter denitrificans sp.nov.,aerobic pink-pigmented bacteria which contain bacterilchlorophyll a.Syst[J]. Applied Microbiology,1991, 14:140-145.
    143.Tsuneda S, Mikami M, Kimochi Y, et al. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater[J]. Journal of Hazardous Materials, 2005,119(1):93-98.
    144. van Benthum W, Derissen B, Van Loosdrecht M, et al. Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat[J]. Water Research,1998,32(7):2009-2018.
    145.van Niel E W J, Arts P, Wesselink B, et al. A Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures[J]. FEMS Microbiology Letters,1993,102(2): 109-118.
    146.Vanrolleghem P A, Sin G, Gernaey K V. Transient response of aerobic and anoxic activated sludge activities to sudden substrate concentration changes[J]. Biotechnology and Bioengineering,2004, 86(3):277-290.
    147. Wang J H, Zhang J, Wang J, et al. Nitrous oxide emissions from a typical northern Chinese municipal wastewater treatment plant[J]. Desalination and Water Treatment,2011,32(1-3): 145-152.
    148. Wang J S, Hamburg S P, Pryor D E, et al. Emissions Credits:opportunity to promote integrated nitrogen management in the wastewater sector[J]. Environmental Science and Technology,2011, 45:6239-6246.
    149.Wicht H, Beier M. N2O emission aus nitrifizierenden und denitrifizierenden Klaranlagen[J]. Korrespondenz Abwasser,1995,42(3):404-413.
    150. Wittebolle L, Marzorati M, Clement L, et al. Initial community evenness favours functionality under selective stress[J]. Nature,2009,458(7238):623-626.
    151.Wunderlin P, Mohn J, Joss A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research,2012,46(4): 1027-1037.
    152.Xie T, Wang C W. Impact of different factors on greenhouse gas generation by wastewater treatment plants in China[C]. In Water Resource and Environmental Protection (ISWREP), International Symposium on.2011:IEEE,2011.
    153. Yang Q, Liu X H, Peng C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater:main sources and control method[J]. Environmental Science and Technology, 2009,43(24):9400-9406.
    154.Yu R, Kampschreur M J, van Loosdrecht M C, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia[J]. Environmental Science and Technology,2010,44(4):1313-1319.
    155.Zart D, Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous N2O or NO[J]. Archives of Microbiology,1998,169(4):282-286.
    156.Zeng R J, Yuan Z, Keller J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system[J]. Biotechnology and Bioengineering,2003,81(4): 397-404.
    157. Zheng H, Hanaki K, Matsuo T. Production of nitrous oxide gas during nitrification of wastewater[J]. Water Science and Technology,1994,30(6):133-141.
    158.Zhou Y, Pi J M, Zeng R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science and Technology,2008,42(22):8260-8265.
    159.Zhu X, Chen Y. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid[J]. Environmental Science and Technology,2011,45(6):2137-2143.
    160.Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews,1997,61(4):533-616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700