用户名: 密码: 验证码:
巨厚砾岩与逆冲断层共同诱发冲击失稳机理及防治技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过现场调研、地质建模、理论分析、现场监测、相似模拟及数值模拟实验等多种研究手段的融合,研究出了义马矿区巨厚砾岩与逆冲断层共同作用下冲击地压发生机理,并提出相应的防治技术。论文首先通过地质分析并结合案例研究得出了义马矿区巨厚砾岩与逆冲断层诱发冲击地压的两种作用形式,分别利用三维相似模拟实验和数值模拟分析了采动影响下巨厚砾岩的破坏机理和不同厚度上覆砾岩对于工作面矿压的影响规律,并建立理论模型确定了巨厚砾岩破坏准则。其次,通过对义马矿区的地应力实测数据的分析,运用神经网络法,对义马千秋矿进行了地应力反演,并通过数值模拟分析了工作面回采时断层对工作面的影响规律,揭示了断层对于原岩应力及采动应力的影响规律。再次,通过滑移试验及滑移准则的建立,研究了逆冲断层处巨厚砾岩的滑移条件,并建立逆冲断层滑移引发巨厚砾岩破断的准则。最后,建立义马矿区冲击地压防治体系,并对跃进矿25110工作面进行了防冲支护优化的评价。
According to the fusion of research methods such as field survey, geologicalmodeling, theoretical analysis, field monitoring, similar simulation and numericalsimulation experiment, etc., mechanism of coal bumps occurred under the combinedaction of huge thick conglomerate and thrust fault of Yima mine is analysed and thecorresponding preventing and governing technology are put forward.Firstly, bycombining geological analysis and case studies, the two affect form of coal bumpsinduced by huge thick conglomerate and thrust fault of Yima mine are obtained. Byusing the three dimensional similarity simulation experiment and numericalsimulation. the failure mechanism of huge thick conglomerate influnced by miningand regularity of overlying conglomerate with different thickness influencing themining pressure of working face respectively are analyzed and through building atheoretical model the failure criterion of huge thick conglomerate is established.Secondly, through the actual analysis of measured data of ground stress of Yima minelot and the neural network method, the ground stress inversion in Qianqiu mine ofYima is carried out, and the law of the workface of stress under the action of faults isfound through numerical simulation to reveal the influence that the fault for the stressof primary rock and mining stress.Thirdly, the slip condition of huge thickconglomerate located in the thrust fault had been analyzed in the procedure of slip testand the establishment of the slide rule, and the criterion of fracture of huge thickconglomerate induced by the slip of thrust fault is established.Finally, the coal bumpsprevention and treatment system in Yima mine is established and the evaluation ofanti-bump support optimizing of working face25110of Yuejin mine is evaluated.
引文
[1]姜耀东,赵毅鑫,刘文岗,等.煤岩冲击失稳的机制和试验研究[M].北京:科学出版社,2009.
    [2]潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机制及防治研究[J].岩石力学与工程学报,2003,22(11):1844–1851.
    [3] Salamon M D G. Rockburst hazard and the fight for its alleviation in South African goldmines[C]//Proceedings of Rockbursts Prediction and Control. London:[s. n.],1983:11–36.
    [4]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [5]谭云亮,李芳成,周辉,等.冲击地压声发射前兆模式初步研究[J].岩石力学与工程学报,2000,19(4):425–428.
    [6]尹光志,鲜学福,金立平,等.地应力对冲击地压的影响及冲击危险区域评价的研究[J].煤炭学报,1997,22(2):132-137.
    [7] Galybin A N. A model of mining-induced fault sliding[J]. International Journal of RockMechanics and Mining Sciences and Geomechanics Abstracts,1997,34(3):682.
    [8]潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,20(1):43–48.
    [9]苏承东,李化敏.深埋高应力区巷道冲击地压预测与防治方法研究[J].岩石力学与工程学报,2008,27(s2):3840-3846.
    [10] Andrews D J. Rupture velocity of plane strain shear cracks[J]. Journal of GeophysicalResearch,1976,81(32):5679-5687.
    [11] Ohnaka M.Earthquake source nucleation:A physical model for short-term precursors[J].Tectonophysics,1992,211(1-4):149-178
    [12] Okubo P G,Dieterich J H. Effects of physical fault properties on frictional instabilitiesproduced on simulated faults[J]. Journal of Geophysical Research,1984,89(B7):5817-5827.
    [13] Kanamori H,Stewart G S.Seismological aspects of the Guatemala earthquake of February4,1976[J]. Journal of Geophysical Research,1978,83(B7):3427-3434.
    [14] Dieterich J H.Nucleation and triggering of earthquake slip:effect of periodic stresses[J].Tectonophysics,1987,144(1-3):127-139.
    [15] S. M. Lee,B. S. Park,S. W. Lee. Analysis of rockbursts that have occurred in awaterwaytunnel in korea[J]. Int. J. Rock Mech. Min. Sci.2004,3(41):1-6.
    [16]尹光志,鲜学福,代高飞.岩石非线性理论及其应力:岩石失稳破坏与冲击地压发生机理及预测[M].重庆大学出版社,2004.
    [17]谭云亮.门头沟井田构造应力场与冲击地压的关系[J].山东矿业学院学报,1990,9(3):264-267.
    [18]窦林名,何学秋.冲击地压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [19]赵本均.冲击地压及防治[M].煤炭工业出版社,1995.
    [20]王淑坤.冲击地压机理[J].岩石力学与工程学报.1996年10月第15卷增刊:500-503.
    [21]李新元.“围岩-煤体”系统失稳及冲击地压预测的探讨[J].中国矿业大学学报,2000,29(6):633-636.
    [22]齐庆新,刘天泉,史元伟.冲击地压摩擦滑动失稳机理[J].矿山压力与顶板管理.1995,(4):174-177.
    [23]周晓军,鲜学福.煤矿冲击地压理论与工程应用研究的进展[J].重庆大学学报(自然科学版):1988,21(1):126-132.
    [24]章梦涛等.冲击地压、煤和瓦斯突出的统一失稳理论初探.第二届全国岩石动力学学术会议论文集,1990.
    [25]章梦涛.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(4):25-31.
    [26]尹光志,鲜学福,代高飞.岩石非线性动力学理论及其应用[M].重庆大学出版社,2004.
    [27]史红,姜福兴.采场上覆大厚度坚硬岩层破断规律的力学分析[J].岩石力学与工程学报,2004,23(18):3066-3069.
    [28]余学义,刘智,牛宗涛,等.采场上覆厚硬岩层的结构稳定性分析[J].煤田地质与勘探,2007,35(5):38-41.
    [29]谭吉世,纪洪广,姚志贤.巨厚岩浆岩下开采覆岩移动规律及采场压力变异性分析[J].煤炭技术,2007,26(3):34-36.
    [30]王金安,刘红,纪洪广.地下开采上覆巨厚岩层断裂机制研究[J].岩石力学与工程学报,2009,28(s1):2815-2823.
    [31]王利,张修峰.巨厚覆岩下开采地表沉陷特征及其与采矿灾害的相关性[J].煤炭学报,2009,34(8):1048-1051.
    [32]齐利伟,李宝富,梁向辉,等.上覆巨厚砾岩层失稳诱发重力型冲击地压研究[J].煤,2012,154:1-3.
    [33]窦林名,曹胜根,刘贞堂,等.三河尖煤矿坚硬顶板对冲击矿压的影响分析[J].中国矿业大学学报,2003,32(4):388-392.
    [34]何全洪.砾岩运动与冲击地压的关系探讨[J].矿山压力与顶板管理,2003,20(4):95-99.
    [35]郭惟嘉,孔令海,陈绍杰,等.岩层及地表移动与冲击地压相关性研究[J].岩土力学,2009,30(2):447-451.
    [36]史俊伟,朱学军,孙熙正.巨厚砾岩诱发冲击地压相似材料模拟试验研究[J].中国安全科学学报,2013,23(2):117-122.
    [37]袁瑞甫,焦振华.顶板冲击载荷诱发巷道冲击地压数值模拟研究[J].煤矿冲击地压防治的创新与实践—全国防治煤矿冲击地压高端论坛论文汇编,96-101.2013
    [38]马瑾,马胜利,刘力强,等.交叉断层的交替活动与块体运动的实验研究[J].地震地质,2000,22(1):65~73.
    [39]马胜利,马瑾,刘力强,等.典型构造变形过程中物理场时空演化的实验和理论研究[J].地震,1995,sup:55-65.
    [40]刘力强,马瑾,马胜利.典型构造背景应变场特征及其演化趋势[J].地震地质,1995,4:349-356.
    [41]邓志辉,马胜利,马瑾,刘力强.粘滑失稳及其物理场时空分布的实验研究[J].地震地质,1995,17(4):305-310.
    [42]宋义敏,马少鹏,杨小彬,等.断层粘滑动态变形过程的实验研究[J].地球物理学报,2012,33(1):170-179.
    [43]卓燕群,郭彦双,汲云涛,等.平直走滑断层亚失稳状态的位移协同化特征—基于数字图像相关方法实验研究[J].中国科学:地球科学,2013,43(10):1643-1650.
    [44] Byerlee J. Frictions of rocks[J]. Pageoph.1978,116(1):615-626.
    [45] Dieterich J H. Time dependence in stick-sliding[J],Trans Am. Geophys. Union,1970,51:423.
    [46] Dieterich J H. Time-dependent friction in rock[J]. Journal of Geophysical Research,1972,77:3690-3697.
    [47] Dieterich J H. Time-dependent friction and the mechanics of stick-slip[J]. Pure and AppliedGeophysics,1978,116:790-806.
    [48] Dieterich J H. Modeling of rock friction,1,experimental results and constitutive equations[J].Journal of Geophysical Research,1979,84:2161-2168.
    [49] Ruina A L. Slip instability and state variable friction laws[J]. Journal of GeophysicalResearch,1983,88(10):359-370.
    [50] Rice J R, Ruina A L. Stability of steady state frictional slipping[J]. Journal of AppliedMechanics,1983,50:343-349.
    [51] Dieterich J H, Linker M F. Fault stability under conditions of variable normal stress[J].Geophysical Research Letters,1992,19:16911694.
    [52]王仁,何国琦,殷有泉.华北地区地震迁移规律的数学模拟[J].地震学报,1980,2(1):32-42.
    [53]陈连旺,陆远忠,刘杰,等.1966年邢台地震引起的华北地区应力场动态演化过程的三维粘弹性模拟[J].地震学报,2001,23(5):480-491.
    [54]陈化然,陈连旺,马宏生,等.川滇地区应力场演化与强震间相互作用的三维有限元模拟[J].地震学报,2004,26(6):567-575.
    [55]宋卫华,张宏伟.断层滑动准则和稳定性评价及构造应力场的反演[J].岩石力学与工程学报,2008,27(s2):3740-3745.
    [56]王涛.断层活化诱发煤岩冲击失稳的机理研究[D].北京:中国矿业大学(北京),2012.37(12):2060-2064.
    [57]姜耀东,王涛,赵毅鑫,等.采动影响下断层活化规律的数值模拟研究[J].中国矿业大学学报,2013,42(1):1-5.
    [58]王来贵,潘一山,梁冰,等.矿井不连续面冲击地压发生过程分析[J].中国矿业,1996,25(5):61-64.
    [59]潘一山,王来贵,章梦涛,等.断层冲击地压发生的理论与试验研究[J].岩石力学与工程学报,1998,17(6):642-649.
    [60]姜福兴,刘伟建,叶根喜,等.构造活化的微震监测与数值模拟耦合研究[J].岩石力学与工程学报,2010,29(s2):3590-3597.
    [61]李志华,杨科,华心祝.采动影响下断层滑移失稳的3DEC数值模拟研究[J].煤矿冲击地压防治的创新与实践—全国防治煤矿冲击地压高端论坛论文汇编,107-111.2013
    [62]宋义敏,马少鹏,杨小彬,姜耀东.断层冲击地压失稳瞬态过程的试验研究[J].岩石力学与工程学报,2011,30(4):812-818.
    [63]林远东,涂敏,刘文震,等.基于梯度塑性理论的断层活化机理[J].煤炭学报,2012,
    [64]姜耀东,王涛,宋义敏,等.煤岩组合结构失稳滑动过程的实验研究[J].煤炭学报,2013,38(2):177-182.
    [65]齐庆新,李晓璐,赵善坤.煤矿冲击地压应力控制理论与实践[J].煤炭科学技术,2013,41(6):1-5.
    [66]魏小文,纪洪广,李文.巨厚岩浆岩下部开采时的破坏机理分析[J].中国矿业,2007,16(6):91-93.
    [67]谭辅清,昝东峰,周楠.巨厚砾岩层下工作面过断层覆岩运动规律研究及应用[J].中国煤炭,2013,37(9):48-51.
    [68]孙宗颀,张景和.地应力在地质断层构造发生前后的变化[J].岩石力学与工程学报.2004,23(23):3964-3969.
    [69]孙守增.煤矿开采中的地应力特点及其应用研究[D].山东科技大学,2003.
    [70]郭磊.构造应力场作用方式的模糊综合评判方法研究[D].天津大学,2004.
    [71]欧阳振华,蔡美峰,李长洪.北洺河铁矿地应力与采动应力测量[J].中国矿业.2005,14(12):67-70.
    [72]李英杰,潘一山,章梦涛.高地应力围岩分区碎裂化的时间效应分析和相关参数研究[J].地质力学学报.2006,12(2):252-260.
    [73]岳晓蕾.大岗山地应力反演与工程应用研究[D].山东大学,2006.
    [74]张百红,韩立军.深部地应力实测与巷道稳定性研究[J].徐州工程学院学报.2006(9):41-46.
    [75]陈坤福,靖洪文,韩立军.基于实测地应力的巷道围岩分类[J].采矿与安全工程学报.2007(3):349-352.
    [76]朱伟.徐州矿区深部地应力测量及分布规律研究[J].2007.
    [77]王双红,蔡美峰.各向异性岩体条件下的地应力计算程序[J].勘察科学技术.1998(003):11-14.
    [78]蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场三维反分析[J].河海大学学报(自然科学版).2002(3):52-56.
    [79]周太全,华渊,连俊英.硬质围岩铁路隧道初始地应力数值反演分析[J].江南大学学报.2006(1):104-106.
    [80]戴荣,李仲奎.三维地应力场BP反分析的改进[J].岩石力学与工程学报.2005(1):83-88.
    [81]娄延辉,王桂萱,张国强,等.基于遗传算法结合神经网络的围岩初始地应力反演[Z].中国辽宁大连:2007272-279.
    [82]朱付广,王世杰,胡伟,等.岩体初始地应力场的反演分析方法[J].科技咨询导报.2007(9):213.
    [83]汪吉林,李耀民,姜波.基于构造控制的地应力人工神经网络反演研究[J].中国矿业大学学报.2010(4):520-527.
    [84]刘晋超.基于人工神经网络的地应力场非线性反演[J].科技风.2010(18):206-207.
    [85]陈学华.构造应力型冲击地压发生条件研究[D].辽宁工程技术大学,2004.
    [86]人工神经网络与遗传算法在岩石力学中的应用[J].
    [87]大安山煤矿冲击危险性区划及专家系统的研究[J].
    [88]陈国祥.最大水平应力对冲击矿压的作用机制及其应用研究[D].中国矿业大学,2009.
    [89] Zubelewicz A, Mroz Z. Numerical simulation of rock burst processes treated as problems ofdynamic instability[J]. Rock Mechanics and Rock Engineering.1983,16(4):253-274.
    [90] Mueller W. Numerical simulation of rock bursts[J]. Mining Science and Technology.1991,12(1):27-42.
    [91] Aitmatov I T, Vdovin K D, Kojogulov K C H, et al. State of stress in rock and rock-burstproneness in seismicactive folded areas[C].1987.
    [92]徐涛,唐春安,王述红,等.岩石破裂过程围压效应的数值试验[J].中南大学学报(自然科学版).2004,35(5):840-844.
    [93]朱万成,唐春安,杨天鸿,等.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报.2003,22(1):24-29.
    [94]唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践.1999,21(2):21-24.
    [95]何满潮,姜耀东,赵毅鑫.复合能量转化为中心的冲击地压控制理论//谢和平,彭苏萍,何满潮.深部资源开采基础理论研究与工程实践.北京:科学出版社,2005:205-214
    [96] V. Frid, Electromagnetic radiation method water-infusion control in rockburst-prone strata,Journal of Applied Geophysics, Volume43, Issue1, January2000, Pages5-13
    [97] A Mansurov, Prediction of rockbursts by analysis of induced seismicity data, InternationalJournal of Rock Mechanics and Mining Sciences, Volume38, Issue6, September2001,Pages893-901
    [98] Theodore I. Urbancic and Cezar-Ioan Trifu, Recent advances in seismic monitoringtechnology at Canadian mines, Journal of Applied Geophysics, Volume45, Issue4,December2000, Pages225-237
    [99] S. K. Arora,, Y. A. Willy, C. Srinivasan and S. Benady, Local seismicity due to rockburstsand near-field attenuation of ground motion in the Kolar gold mining region, India,International Journal of Rock Mechanics and Mining Sciences, Volume38, Issue5, July2001, Pages711-719
    [100] Brady B T,Rowell G A. Laboratory investigation of the electrodynamics of rock fracture.Nature,1986,(321):488-492.
    [101] Lockner D. The role of acoustic emission in the study of rock fracture. International Journalof Rock Mechanics and Mining Sciences,1993,30(7):883-899.
    [102] Mansurov V A. Acoustic emission from failure rock behavior. Rock Mechanics and RockEngineering,1994,27(3):173-182.
    [103] Holcomb D J,Costin L S. Detecting damage surface in brittle materials using acousticemission. Journal of Applied Mechanics,1986,53(4):536-544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700