用户名: 密码: 验证码:
基于模块化多电平换流器的直流输电系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模块化多电平换流器(Modular Multilevel Converter, MMC)通过增加桥臂中的级联子模块数目,不仅可以方便地扩展到高压大功率应用领域,而且能够得到较高的输出电平数。与基于传统电压源换流器(Voltage Source Converter, VSC)的换流站相比,MMC换流站由于具有输出波形质量较高,开关频率和开关损耗较低以及可以使用通用电力电子器件等优点。因此,MMC拓扑被认为适合用于柔性直流输电领域。基于模块化多电平换流器的柔性直流输电系统在可再生能源并网、电网互联,海上负荷供电和城市中心供电等方面具有广阔的应用前景。控制策略是MMC-HVDC系统的核心技术之一,本文对MMC-HVDC系统的主要控制策略进行了研究。全文主要内容如下:
     (1).由于MMC-HVDC系统的电平数较高,将最近电平逼近调制策略(Nearest Level Modulation, NLM)引入到MMC-HVDC系统的触发控制中。给出了最近电平逼近调制策略在MMC中的实现算法,推导了NLM策略输出波形的Fourier级数形式的解析表达式,并进行了NLM策略输出波形的基波和谐波特性的理论计算。
     (2).介绍了MMC电容电压平衡的基本原理。指出了在传统的电容电压平衡策略下,子模块投切较频繁,器件开关频率较高,会造成较大的开关损耗。针对传统电容电压平衡策略的问题,提出了一种适合MMC型直流输电系统的电容电压优化平衡策略,将平衡控制的重点放在电容电压越限的子模块上;对电容电压未越限的子模块,优化平衡策略通过引入保持因子使其具有一定的保持原来投切状态的能力,以降低开关器件的开关频率和开关损耗。
     (3).介绍了MMC中子模块的几种常见故障原因,指出了单个子模块故障会引发直流电压和直流电流的振荡,可能导致换流器停运。对级联H桥多电平换流器几种常见的子模块故障冗余控制保护策略进行了比较,在此基础上提出了适合MMC换流站的子模块故障冗余控制保护策略。该方法将少量冗余子模块置于热备用状态,这些热备用冗余子模块能够以较快的速度接入桥臂来替换故障子模块;其余冗余子模块被置于冷备用的闭锁状态,它们的IGBT被置于关断状态。
     (4).根据对称分量法将MMC的通用数学模型分解为包含正序、负序和零序分量的三个子系统,引入了MMC的正序、负序和零序电流控制器,比较了抑制负序电流和抑制直流电压波动的两种外环功率控制器,设计了电网故障期间MMC输送功率的动态限幅控制,可以根据故障的种类和程度调节输送功率的限幅值,防止开关器件过载,所提出的控制策略可以实现在交流电网正常以及故障状态下对MMC-HVDC系统的有效控制。指出了总直流电流在三个相单元之间的分配在交流系统对称状态下是基本均匀的,而在交流系统不对称故障状态下是不均匀的。
     (5).根据MMC换流站的数学模型,分别设计了逆变站向小型无源网络供电的无源逆变直接电压控制器和直接电流控制器。
     直接电压控制策略的电压幅值控制由参考信号的直馈和负反馈PI补偿来实现,频率控制通过给定调制信号频率来实现,保证了较好的供电质量。
     直接电流控制策略根据受端交流系统的数学模型,建立了无源逆变的内环电流和外环电压的双闭环控制系统。通过给定无源逆变的同步相位,保证了供电频率的不变性。直接电流控制策略具有良好的交流电压和交流电流响应特性。
The modular multilevel converter (MMC) is well scalable to high-voltage levels of power transmission based on cascaded connection of multiple sub-modules (SMs) per arm, which also means a high number of output voltage levels. Due to the high-quality output voltage, the low switching losses as well as the use of standard power electronic devices, the MMC topology is considered suitable for high-voltage direct current (HVDC) transmission applications. The MMC based HVDC transmission system has bright prospects in renewable power integration, grid interconnection, power supply to offshore loads, city centre infeed and etc.. The control strategy, which is one of the key technologies in MMC-HVDC transmission system, is studied in this dissertation. The main contents are listed as follows:
     (1). The nearest level modulation (NLM) strategy is introduced to the firing control of the MMC with a high number of voltage levels. The Fourier series representation of the output voltage waveform is derived, by which the fundamental-wave and harmonic components are calculated.
     (2). The capacitor voltage balancing problem of the MMC is investigated. The requirement to reduce the switching frequency of power electronic device is not satisfied with the straightforward capacitor voltage balancing strategy, which results in high switching losses. To solve this problem, an improved capacitor voltage balancing strategy for the MMC is proposed. The improved capacitor voltage balancing strategy focuses on the sub-modules whose capacitor voltage exceeds the limits, while the switching states of the other sub-modules are maintained to some degrees by employing the maintaining factor. Therefore, the switching frequency and the switching loss of power electronic device are reduced.
     (3). The sub-module faults in MMC are analysed, which will cause oscillations in DC voltage and DC current, as well as the outage of the converter. Different redundancy control and protection strategies to deal with the sub-module faults in cascaded H-bridge converter are compared, and then a redundancy control and protection strategy for the sub-module faults in MMC is proposed. In this strategy, one or several redundant sub-modules are arranged in the hot stand-by state, which can be put into operation very quickly, while the others are arranged in the cold stand-by blocking state to protect the IGBTs in them.
     (4). According to the generalized MMC model, the dynamics of the positive-, negative-, and zero-sequence components are derived. Then, a dual current control scheme with positive-and negative-sequence current controllers is applied to MMC. The power controller to eliminate the negative-sequence current components and the other one to eliminate the DC voltage ripples are compared. A zero-sequence current controller is also proposed in addition to the positive-and negative-sequence current controllers. Moreover, the dynamic power limiting control is proposed to regulate the power limitations and protect the power semiconductors under different grid fault conditions. The distribution of DC current to three phase units is equal only in balanced grid conditions, but is not equal in unbalanced grid conditions.
     (5). According to the MMC mathematical model, the direct voltage control and the direct current control are proposed for the control of the MMC-HVDC system connected to small passive networks.
     In the direct voltage control, the amplitude of the AC-bus voltage is regulated by feed-through of the command reference along with a PI feedback compensator. Nominal system frequency of the inverter AC-side is ensured by setting the angular frequency of the modulation signal at the nominal value.
     In the direct current control, a double closed-loop controller containing an inner fast current loop and an outer voltage loop is proposed for the control of the inverter station. The angular frequency of synchronous phase angle provided for the dq transformation of the inverter controllers is set at the nominal value, and thus a constant system frequency of the inverter AC side is ensured.
引文
[1]刘振亚.特高压直流输电理论[M].北京:中国电力出版社,2009.
    [2]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社,1985.
    [3]Nozari F, Patel H S. Power electronics in electric utilities:HVDC power transmission systems[J]. Proceedings of the IEEE,1988,76(4):495-506.
    [4]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [5]李兴源.高压直流输电系统[M].北京:科学出版社,2010.
    [6]韩民晓,文俊,徐永海.高压直流输电原理与运行[M].北京:机械工业出版社,2008.
    [7]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2011.
    [8]舒印彪.中国直流输电的现状及展望[J].高电压技术,2004(11):1-2.
    [9]李立涅.特高压直流输电的技术特点和工程应用[J].电力系统自动化,2005(24):5-6.
    [10]Huang D C, Shu Y B, Ruan J J, et al. Ultra high voltage transmission in china:developments, current status and future prospects[J]. Proceedings of the IEEE,2009,97(3):555-583.
    [11]Hammons T J, Lescale V F, Uecker K, et al. State of the Art in Ultrahigh-Voltage Transmission[J]. Proceedings of the IEEE,2012,100(2):360-390.
    [12]Ooi B T, Wang X. Voltage angle lock loop control of the boost type PWM converter for HVDC application[J]. IEEE Transactions on Power Electronics,1990,5(2):229-235.
    [13]Ooi B T, Wang X. Boost-type PWM HVDC transmission system[J]. IEEE Transactions on Power Delivery,1991,6(4):1557-1563.
    [14]Andersen B R, Xu L, Horton P J, et al. Topologies for VSC transmission[J]. Power Engineering Journal,2002,16(3):142-150.
    [15]CIGRE. VSC Transmission[J].2004.
    [16]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010.
    [17]文俊,张一工,韩民晓,等.轻型直流输电——一种新一代的HVDC技术[J].电网技术,2003(1):47-51.
    [18]李庚银,吕鹏飞,李广凯,等.轻型高压直流输电技术的发展与展望[J].电力系统自动化,2003(4):77-81.
    [19]赵成勇,李金丰,李广凯.基于有功和无功独立调节的VSC-HVDC控制策略[J].电力系统自动化,2005(9):20-24.
    [20]胡兆庆,毛承雄,陆继明,等.一种新型的直流输电技术——HVDC Light[J]电工技术学报,2005(7):12-16.
    [21]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术,2007(1):1-10.
    [22]汤广福,贺之渊,滕乐天,等.电压源换流器高压直流输电技术最新研究进展[J].电网技术,2008(22):39-44.
    [23]Schettler F, Huang H, Christl N. HVDC transmission systems using voltage sourced converters design and applications:Power Engineering Society Summer Meeting,2000. IEEE,2000[C].
    [24]Weimers L. HVDC Light:A New Technology for a Better Environment[J]. IEEE Power Engineering Review,1998,18(8):19-20.
    [25]Flourentzou N, Agelidis V G, Demetriades G D. VSC-Based HVDC Power Transmission Systems:An Overview[J]. IEEE Transactions on Power Electronics,2009,24(3):592-602.
    [26]梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012(4):1-9.
    [27]胡航海,李敬如,杨卫红,等.柔性直流输电技术的发展与展望[J].电力建设,2011(5):62-66.
    [28]徐政等.柔性直流输电系统[M].北京市:机械工业出版社,2012.
    [29]贺益康,潘再平.电力电子技术[M].北京市:科学出版社,2004.
    [30]林渭勋.现代电力电子技术[M].北京市:机械工业出版社,2006.
    [31]ABB. It's time to connect-Technical description of HVDC Light technology[R]. Ludvika, Sweeden:2008.
    [32]Allebrod S, Hamerski R, Marquardt R. New transformerless, scalable Modular Multilevel Converters for HVDC-transmission:Power Electronics Specialists Conference,2008. PESC 2008. IEEE,2008[C].
    [33]Gemmell B, Dorn J, Retzmann D, et al. Prospects of multilevel VSC technologies for power transmission:IEEE/PES Transmission and Distribution Conference and Exposition, 2008[C].
    [34]Dorn J, Huang H, Retzmann D. A new multilevel voltage-sourced converter topology for HVDC applications:CIGRE Symposium, Paris, France,2008[C].
    [35]Kaufmann S, Lang T, Chokhawala R. Innovative press pack modules for high power IGBTs: Power Semiconductor Devices and ICs,2001. ISPSD'01. Proceedings of the 13th International Symposium on,2001 [C].
    [36]Gunturi S, Schneider D. On the operation of a press pack IGBT module under short circuit conditions[J]. IEEE Transactions on Advanced Packaging,2006,29(3):433-440.
    [37]Eriksson K. Operational experience of HVDC LightTM:AC-DC Power Transmission,2001. Seventh International Conference on (Conf. Publ. No.485),2001[C].
    [38]Bopparaju G. VSC based FACTS and HVDC:ABB's experience:Sustainable Energy and Intelligent Systems (SEISCON 2011), International Conference on,2011 [C].
    [39]Jacobson B, Jiang-hafner Y, Rey P, et al. HVDC with voltage source converters and extruded cables for up to ±300kV and 1000MW:CIGRE Session, Paris, France,2006[C].
    [40]潘武略.新型直流输电系统损耗特性及降损措施研究[D].浙江大学电力系统及其自动化,2008.
    [41]潘武略,徐政,张静,等.电压源换流器型直流输电换流器损耗分析[J].中国电机工程学报,2008(21):7-14.
    [42]Nabae A, Takahashi I, Akagi H. A neutral-point-clamped PWM inverter[J]. IEEE Transactions on Industrial Applications,1981,IA-17(5):518-523.
    [43]Liang Y, Nwankpa C O. A power-line conditioner based on flying-capacitor multilevel voltage-source converter with phase-shift SPWM[J]. IEEE Transactions on Industry Applications,2000,36(4):965-971.
    [44]Hagiwara M, Akagi H. PWM control and experiment of modular multilevel converters: Power Electronics Specialists Conference,2008. PESC 2008. IEEE,2008[C].
    [45]Teodorescu R, Blaabjerg F, Pedersen J K, et al. Multilevel inverter by cascading industrial VSI[J]. IEEE Transactions on Industrial Electronics,2002,49(4):832-838.
    [46]Ainsworth J D, Davies M, Fitz P J, et al. Static VAr compensator (STATCOM) based on single-phase chain circuit converters [J]. IEE Proceedings-Generation, Transmission and Distribution,1998,145(4):381-386.
    [47]Hanson D J, Woodhouse M L, Horwill C, et al. STATCOM:a new era of reactive compensation[J]. Power Engineering Journal,2002,16(3):151-160.
    [48]刘文华,宋强,滕乐天,等.基于集成门极换向晶闸管与链式逆变器的±50 Mvar静止同步补偿器[J].中国电机工程学报,2008(15):55-60.
    [49]Qiang S, Wenhua L. Control of a Cascade STATCOM With Star Configuration Under Unbalanced Conditions [J]. IEEE Transactions on Power Electronics,2009,24(1):45-58.
    [50]许树楷,陈名,傅闯,等.南方电网±200Mvar静止同步补偿装置系统调试[J].南方电网技术,2012(2):21-25.
    [51]Marquardt R. Stromrichterschaltungen mit verteilten Energiespeichem German Patent DE 10 103 031/24.01.2001:
    [52]Lesnicar A, Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range:Power Tech Conference Proceedings,2003 IEEE Bologna,2003[C].
    [53]Glinka M. Prototype of multiphase modular-multilevel-converter with 2 MW power rating and 17-level-output-voltage:Power Electronics Specialists Conference,2004. PESC 04. 2004 IEEE 35th Annual,2004[C].
    [54]Glinka M, Marquardt R. A new AC/AC multilevel converter family[J]. IEEE Transactions on Industrial Electronics,2005,52(3):662-669.
    [55]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向[J].高电压技术,2010(12):3070-3077.
    [56]韦延方,卫志农,孙国强,等.适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究进展[J].高电压技术,2012(5):1243-1252.
    [57]Dorn J, Gambach H, Strauss J, et al. Trans Bay Cable-A breakthrough of VSC multilevel converters in HVDC transmission:CIGRE Colloquium, San Francisco, US,2012[C].
    [58]Westerweller T, Friedrich K, Armonies U, et al. Trans bay cable-world's first HVDC system using multilevel voltage-sourced converter:CIGRE Session, Paris, France,2010[C].
    [59]Jacobson B, Karlsson P, Asplund G, et al. VSC-HVDC transmission with cascaded two-level converters:CIGRE Session, Paris, France,2010[C].
    [60]Trainer D R, Davidson C C, Oates C D M, et al. A new hybrid voltage-sourced converter for HVDC power transmission:CIGRE Session, Paris, France,2010[C].
    [61]李广凯,江政昕,赵听,等.电压源换流器高压直流输电的特点与前景[J].南方电网技术,2011(5):13-17.
    [62]刘隽,贺之渊,何维国,等.基于模块化多电平变流器的柔性直流输电技术[J].电力与能源,2011(1):33-38.
    [63]毛颖科,桂顺生,贺之渊,等.基于MMC技术的柔性直流输电系统性能分析[J].华东电力,2011(7):1133-1136.
    [64]韦延方,卫志农,孙国强,等.一种新型的高压直流输电技术——MMC-HVDC[J]电力自动化设备,2012(7):1-9.
    [65]滕松,宋新立,李广凯,等.模块化多电平换流器型高压直流输电综述[J].电网与清洁能源,2012(8):43-50.
    [66]乔卫东,毛颖科.上海柔性直流输电示范工程综述[J].华东电力,2011(7):1137-1140.
    [67]饶宏,黄莹,陈名,等.中海油文昌柔性直流输电系统启停仿真分析[J].南方电网技术,2011(4):5-9.
    [68]许树楷,梁允源,郭自勇.中海油文昌柔性直流输电系统现场试验[J].南方电网技术,2011(4):1-4.
    [69]李程,李剑,崔芳芳.舟山海岛电网规划方案探讨[J].浙江电力,2011(6):4-8.
    [70]葛维春,顾洪群,贺之渊.大连跨海柔性直流输电科技示范工程综述[J].东北电力技术,2012(2):1-4.
    [71]张东辉,冯晓东,孙景强,等.柔性直流输电应用于南方电网的研究[J].南方电网技术,2011(2):1-6.
    [72]Ladenburg J. Stated public preferences for on-land and offshore wind power generation—a review[J]. Wind Energy,2009,12(2):171-181.
    [73]Johansson S G, Asplund G, Jansson E, et al. Power system stability benefits with VSC DC-transmission systems:CIGRE Session, Paris, France,2004[C].
    [74]张静VSC-HVDC控制策略研究[D].浙江大学电力系统及其自动化,2009.
    [75]赵听,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2011(21):48-55.
    [76]李笑倩,宋强,刘文华,等.采用载波移相调制的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2012(9):49-55.
    [77]谭玉茹,苏建徽.基于移相载波的模块化多电平换流器控制方法研究[J].高压电器,2012(8):56-60.
    [78]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制的通用算法[J].电网技术,2011(5):59-64.
    [79]Rohner S, Bernet S, Hiller M, et al. Modulation, Losses, and Semiconductor Requirements of Modular Multilevel Converters[J]. IEEE Transactions on Industrial Electronics, 2010,57(8):2633-2642.
    [80]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化,2010(22):75-79.
    [81]王晓鹏,杨晓峰,范文宝,等.模块组合多电平变换器的脉冲调制方案对比[J].电工技术学报,2011(5):28-33.
    [82]王奎,郑泽东,李永东.基于新型模块化多电平变换器的五电平PWM整流器[J].电工技术学报,2011(5):34-38.
    [83]Ilves K, Antonopoulos A, Norrga S, et al. A New Modulation Method for the Modular Multilevel Converter Allowing Fundamental Switching Frequency [J]. IEEE Transactions on Power Electronics,2012,27(8):3482-3494.
    [84]Zixin L, Ping W, Haibin Z, et al. An Improved Pulse Width Modulation Method for Chopper-Cell-Based Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics,2012,27(8):3472-3481.
    [85]孙世贤,田杰.适合MMC型直流输电的灵活逼近调制策略[J].中国电机工程学报,2012(28):62-67.
    [86]王楚,宋平岗,李云丰.模块化多电平变流器的最近电平逼近调制策略[J].大功率变流技术,2012(4):20-22.
    [87]杨晓峰,林智钦,郑琼林,等.模块组合多电平变换器的方波脉冲循环调制策略[J].中国电机工程学报:录用.
    [88]Adam G P, Anaya-Lara O, Burt G M, et al. Modular multilevel inverter:Pulse width modulation and capacitor balancing technique[J]. Power Electronics, IET, 2010,3(5):702-715.
    [89]Zhang Y, Adam G P, Lim T C, et al. Analysis of modular multilevel converter capacitor voltage balancing based on phase voltage redundant states[J]. IET Power Electronics, 2012,5(6):726-738.
    [90]王奎,郑泽东,李永东.模块化多电平变换器电压平衡控制[J].清华大学学报(自然科学版),2011(7):909-913.
    [91]丁冠军,丁明,汤广福,等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报,2009(30):1-6.
    [92]Hagiwara M, Akagi H. Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics,2009,24(7):1737-1746.
    [93]屠卿瑞,徐政,郑翔,等.一种优化的模块化多电平换流器电压均衡控制方法[J].电工技术学报,2011(5):15-20.
    [94]许建中,赵成勇.模块化多电平换流器电容电压优化平衡控制算法[J].电网技术,2012(6):256-261.
    [95]Wang K, Li Y, Zheng Z, et al. Voltage Balancing and Fluctuation-Suppression Methods of Floating Capacitors in a New Modular Multilevel Converter[J]. IEEE Transactions on Industrial Electronics,2013,60(5):1943-1954.
    [96]李云丰,宋平岗,王楚.模块化多电平换流器电容电压的一种平衡控制方法[J].大功率变流技术,2012(5):23-27.
    [97]董文杰,张兴,刘芳,等.模块化多电平变流器均压策略研究[J].电力电子技术,2012(2):69-71.
    [98]司志磊,张兴,董文杰.模块化多电平换流器闭环均压策略研究[J].电力电子技术,2012(9):58-60.
    [99]李云丰,宋平岗,王楚,等.模块化多电平换流器电容电压排序优化算法研究[J].电气技术,2012(12):8-12.
    [100]中斐斐,施科研,吕栋,等.一种模块化多电平变流器的控制器架构[J].电源学报,2012(3):13-17.
    [101]刘钟淇,宋强,刘文华.基于模块化多电平变流器的轻型直流输电系统[J].电力系统自动化,2010(2):53-58.
    [102]刘钟淇,宋强,刘文华.采用MMC变流器的VSC-HVDC系统故障态研究[J].电力电子技术,2010(9):69-71.
    [103]Saeedifard M, Iravani R. Dynamic Performance of a Modular Multilevel Back-to-Back HVDC System[J]. IEEE Transactions on Power Delivery,2010,25(4):2903-2912.
    [104]赵岩,胡学浩,汤广福,等.模块化多电平变流器HVDC输电系统控制策略[J].中国电机工程学报,2011(25):35-42.
    [105]刘栋,汤广福,郑健超,等.模块化多电平换流器小信号模型及开环响应时间常数分析[J].中国电机工程学报,2012(24):1-8.
    [106]王国强,王志新,李爽.模块化多电平变流器的直接功率控制仿真研究[J].中国电机工程学报,2012(6):64-71.
    [107]曹春刚,赵成勇,陈晓芳MMC-HVDC系统数学模型及其控制策略[J].电力系统及其自动化学报,2012(4):13-18.
    [108]何大清,蔡旭.模块化多电平变流器的限幅控制和混合调制[J].电力自动化设备,2012(4):63-66.
    [109]郭捷,江道灼,周月宾,等.交直流侧电流分别可控的模块化多电平换流器控制方法[J].电力系统自动化,2011(7):42-47.
    [110]Angquist L, Antonopoulos A, Siemaszko D, et al. Open-Loop Control of Modular Multilevel Converters Using Estimation of Stored Energy[J]. IEEE Transactions on Industry Applications,2011,47(6):2516-2524.
    [111]谭玉茹,苏建徽.模块化多电平换流器装置级控制器的设计[J].低压电器,2011(17):28-31.
    [112]郝君伟,肖湘宁,于宝来,等.MMC直流电压控制策略研究[J].现代电力,2013(1):17-21.
    [113]周月宾,江道灼,郭捷,等.交流系统不对称时模块化多电平换流器的控制[J].电网技术:录用.
    [114]Gum T S, Hee-Jin L, Tae S N, et al. Design and Control of a Modular Multilevel HVDC Converter With Redundant Power Modules for Noninterruptible Energy Transfer[J]. Power Delivery, IEEE Transactions on,2012,27(3):1611-1619.
    [115]黄川,王志新,王国强.基于MMC的海上风电场柔性直流输电变流器仿真[J].电力自动化设备,2011(11):23-27.
    [116]赵静,赵成勇,孙一莹,等.模块化多电平直流输电联网风电场时的低电压穿越技术[J].电网技术:录用.
    [117]Qingrui T, Zheng X, Lie X. Reduced Switching-Frequency Modulation and Circulating Current Suppression for Modular Multilevel Converters[J]. IEEE Transactions on Power Delivery,2011,26(3):2009-2017.
    [118]卓谷颖,江道灼,连霄壤.模块化多电平换流器不平衡环流抑制研究[J].电力系统保护与控制,2012(24):118-124.
    [119]宋平岗,李云丰,王立娜,等.基于改进阶梯波调制的模块化多电平换流器环流抑制策略A Modified Ladder Wave Modulation-Based Circulating Current Suppressing Strategy for Modular Multilevel Converter[J]电网技术:录用.
    [120]张振华,江道灼.基于模块化多电平变流器的STATCOM研究[J].电力自动化设备,2012(2):62-66.
    [121]杨晓峰,范文宝,王晓鹏,等.基于模块组合多电平变换器的STATCOM及其控制[J].电工技术学报,2011(8):7-13.
    [122]朱劲松,李磊.基于模块化多电平换流器的STATCOM分析与控制[J].电力系统保护与控制,2012(24):113-117.
    [123]连霄壤,江道灼.基于模块化多电平的静止无功补偿器故障容错控制[J].电力系统保护与控制,2012(16):83-89.
    [124]王姗姗,周孝信,汤广福,等.模块化多电平换流器HVDC直流双极短路子模块过电流分析[J].中国电机工程学报,2011(1):1-7.
    [125]赵成勇,陈晓芳,曹春刚,等.模块化多电平换流器HVDC直流侧故障控制保护策略[J].电力系统自动化,2011(23):82-87.
    [126]Marquardt R. Modular Multilevel Converter topologies with DC-Short circuit current limitation:Power Electronics and ECCE Asia (ICPE & ECCE),2011 IEEE 8th International Conference on,2011[C].
    [127]Marquardt R. Modular Multilevel Converter:An universal concept for HVDC-Networks and extended DC-Bus-applications:Power Electronics Conference (IPEC),2010 International, 2010[C].
    [128]Li X, Song Q, Liu W, et al. Protection of Nonpermanent Faults on DC Overhead Lines in MMC-Based HVDC Systems[J]. IEEE Transactions on Power Delivery, 2013,28(1):483-490.
    [129]Yinglin X, Zheng X, Qingrui T. Modulation and Control for a New Hybrid Cascaded Multilevel Converter With DC Blocking Capability[J]. Power Delivery, IEEE Transactions on,2012,27(4):2227-2237.
    [130]赵成勇,许建中,李探.全桥型MMC-MTDC直流故障穿越能力分析[J].中国科学:技术科学,2013(1):106-114.
    [131]江政听,李广凯,王鸿雁,等.模块化多电平换流器直流输电稳态仿真分析[J].电气技术,2011(8):5-9.
    [132]马雅青,王卫安,张杰,等MMC-HVDC典型扰动暂态响应特性分析[J].电力系统及其自动化学报,2011(5):110-118.
    [133]潘伟勇,徐政.模块化多电平变流器稳态和暂态性能仿真研究[J].能源工程,2012(1):19-24.
    [134]Gnanarathna U N, Gole A M, Jayasinghe R P. Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs[J]. Power Delivery, IEEE Transactions on,2011,26(1):316-324.
    [135]赵成勇,刘涛,郭春义,等.基于实时数字仿真器的模块化多电平换流器的建模[J].电网技术,2011(11):85-90.
    [136]于飞,张群,刘喜梅.基于Rt-Lab的模块化多电平换流器实时仿真[J].青岛科技大学学报(自然科学版),2012(5):541-545.
    [137]孙志成,郭家虎,廖其艳.模块化多电平换流器的拓扑机制与仿真实现[J].电工电气,2012(1):23-26.
    [138]Peralta J, Saad H, Dennetiere S, et al. Detailed and Averaged Models for a 401-Level MMC-HVDC System[J]. IEEE Transactions on Power Delivery,2012,27(3):1501-1508.
    [139]Jianzhong X, Chengyong Z, Wenjing L, et al. Accelerated Model of Modular Multilevel Converters in PSCAD/EMTDC[J]. IEEE Transactions on Power Delivery, 2013,28(1):129-136.
    [140]王姗姗,周孝信,汤广福,等.交流电网强度对模块化多电平换流器HVDC运行特性的影响[J].电网技术,2011(2):17-24.
    [141]黄俊,赵成勇,孙一莹,等.受端系统过电压对两种不同直流输电方式传输能力的影响研究[J].华东电力,2012(10):1767-1771.
    [142]刘栋,汤广福,贺之渊,等.基于面积等效法的模块化多电平换流器损耗分析[J].电网技术,2012(4):197-201.
    [143]屠卿瑞,徐政.基于结温反馈方法的模块化多电平换流器型高压直流输电阀损耗评估[J].高电压技术,2012(6).
    [144]刘建涛,王珂,姚建国,等.模块化多电平换流器损耗分析[J].电气应用,2012(17):70-75.
    [145]Dorn J, Huang H, Retzmann D. Novel voltage-sourced converters for HVDC and FACTS applications:CIGRE Symposium, Paris, France,2007[C].
    [146]Antonopoulos A, Angquist L, Nee H P. On dynamics and voltage control of the Modular Multilevel Converter:Power Electronics and Applications,2009. EPE'09.13th European Conference on,2009[C].
    [147]屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010(2):547-552.
    [148]Hyttinen M, Lamell J O, Nestli T F. New application of voltage source converter (VSC) HVDC to be installed on the gas platform Troll A:CIGRE Session, Pairs, France,2004[C].
    [149]Perez M, Rodriguez J, Pontt J, et al. Power Distribution in Hybrid Multi-cell Converter with Nearest Level Modulation:Industrial Electronics,2007. ISIE 2007. IEEE International Symposium on,2007[C].
    [150]Franquelo L G, Rodriguez J, Leon J I, et al. The age of multilevel converters arrives[J]. IEEE Industrial Electronics Magazine,2008,2(2):28-39.
    [151]Rodriguez J, Jih-Sheng L, Fang Z P. Multilevel inverters:a survey of topologies, controls, and applications[J]. IEEE Transactions on Industrial Electronics,2002,49(4):724-738.
    [152]Yu L, Huang A Q, Wenchao S, et al. Small-Signal Model-Based Control Strategy for Balancing Individual DC Capacitor Voltages in Cascade Multilevel Inverter-Based STATCOM[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2259-2269.
    [153]Hong-Seok S, Kwanghee N. Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. IEEE Transactions on Industrial Electronics, 1999,46(5):953-959.
    [154]Lie X, Andersen B R, Cartwright P. VSC transmission operating under unbalanced AC conditions-analysis and control design[J]. IEEE Transactions on Power Delivery, 2005,20(1):427-434.
    [155]Yazdani A, Iravani R. A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions[J]. IEEE Transactions on Power Delivery, 2006,21(3):1620-1629.
    [156]Akagi H., Watanabe E. H., Aredes M瞬时功率理论及其在电力调节中的应用[M].徐政,译.北京:机械工业出版社,2009.
    [157]Yazdani A, Iravani R. Dynamic model and control of the NPC-based back-to-back HVDC system[J]. IEEE Transactions on Power Delivery,2006,21(1):414-424.
    [158]吴忠,李红,等.自然采样SPWM逆变电源的谐波分析及抑制策略[J].电网技术,2001,25(4):17-20.
    [159]许胜,赵剑锋,许杏桃.改进型级联H桥型DSTATCOM装置n+1冗余容错控制策略[J].电力自动化设备,2010(7):54-59.
    [160]Wenchao S, Huang A Q. Fault-Tolerant Design and Control Strategy for Cascaded H-Bridge Multilevel Converter-Based STATCOM[J]. IEEE Transactions on Industrial Electronics, 2010,57(8):2700-2708.
    [161]Paap G C. Symmetrical components in the time domain and their application to power network calculations[J]. IEEE Transactions on Power Systems,2000,15(2):522-528.
    [162]Cuiqing D, Sannino A, Bollen M H J. Analysis of response of VSC-based HVDC to unbalanced faults with different control systems:Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES,2005[C].
    [163]徐政,屠卿瑞,管敏渊,等.柔性直流输电系统[M].北京市:机械工业出版社,2012.
    [164]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005.
    [165]梁海峰,李庚银,李广凯,等.向无源网络供电的VSC-HVDC系统仿真研究[J].电网技术,2005(8):45-50.
    [166]荣飞,罗安,汤赐,等STATCOM输出滤波器结构设计及参数优化[J].电工技术学报,2008(4):137-142.
    [167]Cuiqing D, Agneholm E. A Novel Control of VSC-HVDC for Improving Power Quality of an Industrial Plant:IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on, 2006[C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700