用户名: 密码: 验证码:
竹束单板层积材制造工艺及应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹材是一种优质的天然生物质梯度复合材料,具备高强度、高韧性、可持续发展等诸多性能与资源优势。但在材料应用方面,尚存在加工出材率低、性能变异较大等不足。因而提高竹材的加工利用效率及其产品稳定性,是提高竹基复合材料附加值的有效途径之一,也是促进竹基复合材料进一步发展和利用的必然趋势。生物质材料富含丰富的纤维素,易成为菌类、昆虫等多种生物体侵害的目标,与其它材料形式相比更容易遭受环境作用的影响,尤其在高温、高湿、强风暴等热带地区的极端环境下生物质材料的性能衰减将表现得更为严重,因而对竹基复合材料进行多方面的性能评价,研究其在热带湿热环境下的性能演变规律、损伤机理和天然抵抗能力,对于充分认识竹基复合材料对环境作用的响应机制、提升竹基复合材料的发展空间、指导并充分发挥其应用性能具有重要的意义。
     本文以梁山慈竹(Dendrocalamus farinosus)为研究对象,通过深入研究竹材的材性特征,确立了自主研发的竹材帚化机的加工原理和工艺路线,获得了横向交织、纵向连续的平整型竹束单板并以此为原料生产了竹束单板层积材。以高温、高湿、强风暴的热带环境为研究背景,针对生物质材料在热带地区应用时易发生尺寸稳定性变化、性能衰减、虫蛀侵害等不良现象,较为系统地研究了竹束单板层积材的耐湿热耦合性能、抗冲击性能、抗均布载荷性能以及抗白蚁性能及改性工艺,从设备研发、工艺评价、生物特性与环境作用的响应、机理分析与模拟等方面阐述了竹束单板层积材的制造工艺与环境适用性,揭示了竹束单板层积材的湿热老化特性、吸能机制和均布载荷作用下的形变特征。
     本论文的主要研究结果归纳如下:
     (1)确立了自主研发竹材帚化机的加工原理和帚化工艺,引入光学影像鉴别技术对单板帚化状态进行快速、定量的监测评价,优选出竹束单板并建立了其拉伸性能衰减的预测模型,通过对竹束单板进行规则化的层积复合,生产出质量稳定、密度均匀的竹束单板层积材;经6次帚化后压制的竹束单板层积材(1.0g·cm-3)其弯曲强度、拉伸强度和剪切强度分别达到245.8、203.0、和21.2MPa,室内、外吸水厚度膨胀率分别为4.8%和7.8%,相同密度下的基本性能优于传统重组竹。
     (2)湿热环境对竹束单板层积材的吸湿行为有明显影响,应用菲克定律和厚度膨胀模型在一定程度上能够较好地预测板材的吸湿特性,厚度膨胀模型的拟合优度大于0.88;湿热耦合作用降低了竹束单板层积材的力学性能,温度从21上升至60℃(RH99%),弯曲强度保持率降低至60%,压缩强度保持率降低至50%。
     (3)竹束单板层积材的抗冲击性能受单板质量、铺装方式、板坯层数、板材密度等多因素的影响。竹/木复合重组材和竹束单板层积材的总吸收能分别为105.1J和66.39J,二者的破坏模式分别为分层与沿纤维方向的劈裂。竹束单板层积材的吸能机制以面内吸能和面外吸能为主,竹/木复合重组材(纵横组坯)的面内强度较差,具有一定的分层吸能特性。
     (4)竹束单板层积材的弯曲挠度(mm)变化随着密度的增加而降低;将密度作为因数变量引入挠曲线方程,可在一定程度上预测竹束单板层积材的均布载荷中心点挠度随密度的变化规律。竹束单板材层积材的均布载荷性能存在支承方向、跨数及尺寸效应。竹材纤维方向与支承方向一致时容易引起板材背面的拉伸破坏,单跨支承时的挠度变化随板材规格的减小而降低。
     (5)研究了白蚁对竹束单板层积材的基本侵害规律和侵害机理,认为白蚁的侵害具有选择性,其侵害优先级为:纤维素>其余成分,低硬度>高硬度;竹材的薄壁组织首先遭受白蚁攻击,侵害路径沿维管束的边缘顺纤维方向延伸,毛竹精刨竹条的失重率为42.43%;竹束单板层积材的破坏形貌均沿着纤维方向,失重率为10.04%;改性竹束单板层积材具有良好的抗白蚁性能。
As a kind of natural biomass gradient composite material, bamboo has advantages ofresurces and performance such as high strength,high toughness,sustainable development and soon. However, it has defects of a lower processing rate, large variability at the same time.Therefore, improving bamboo processing efficiency and the stability of the related products isone of the effective ways to increase the added value of the composite material and also theinevitable trend of the further development and utilization to promote bamboo/woodcomposites. Biomass materials are rich in cellulose, so they are violation targets of fungi,insects and many other kinds of biology. Compared with other materials, biomass materials arevulnerable to the destruction of the environment effect, especially in high temperature, highhumidity, strong storms, and extreme growing conditions. To understand the materialproperties of the environmental effect, the development space of the material, and to give fullplay to its use properties, various performance evaluation for bamboo and composite materialsshould be performed, and the performance evolution laws and natural resistance abilitiesunder the hot and humid environment should be understand too.
     Dendrocalamus farinosus is taken as the research object. Through debugging and testingof the bamboo brooming device researched by our laboratory independently, the transverseintertwined, and vertical continuous flat veneer were got, which is used as raw material toproduce the Laminated bamboo-bundle veneer lumber(LBVL). The south regionalenvironment with high temperature, high humidity, and strong storms is taken as the researchbackground. Performance and modification technology of termite resistance of Laminatedbamboo-bundle veneer lumber are studied, and the hydrothermal aging characteristics, theabsorbing mechanism and the action of deformation characteristics under uniform load arerevealed, through tests of termite resistance modification, hydrothermal aging, concussion ofdropping hammer, and performance test under uniformly distributed load.
     The main research results of this paper are summarized as follows:
     (1)A complete set of processing technology of bamboo brooming is designed, and theoptical image identification is introduced to monitor and evaluate the broom state. The targetbamboo-bunble veneers were optimized and the prediction model between brooming frenquecyand tensile strength decline ratio was got. Laminated bamboo-bundle veneer lumber of stablequality and even density is produced through regular lamination and composition ofbamboo-bundle veneers. and the MOR, MOE and tensile strength of the board with a broomingfrequency of six times is245.8,203.0and21.2MPa, while the thickness swelling rate ofindoor and outdoor is4.8%and7.8%, respectively.The basic performance is superior tobamboo scrimber.
     (2)The properties of LBVL were significantly influenced by hydrothermal condition.Thehydrothermal aging characteristics of laminated bamboo-bundle veneer lumber can bedescribed according to the Fick’s law and thickness expansion model, and the goodness-of-fitof the thickness expansion behavior is greater than0.9. mechanical properties are reduceded bythe hot and humid coupling effect. The retention ratio of the bending strength and thecompression strength are60%and50%at21to60℃(RH99%).
     (3)Properties of the impact resistance of laminated bamboo-bundle veneer lumber isaffected by the quality of bamboo-bundle veneer, way of the paving, number of layers, densityof the board, the influence of. The total absorption energy of the bamboo/wood compositematerial and laminated bamboo-bundle veneer lumber are105.1J and66.39J, respectively.and the failure modes are mainly layered damage and damage along the fiber direction,respectively. For laminated bamboo-bundle veneer lumber, the energy absorption mechanismare in-plane and out of plane. In-plane strength of bamboo/wood composite restructuringmaterial is poor, and it has a property of layer absorption.
     (4)Performance under uniformly distributed load of laminated bamboo-bundle veneerlumber is affected by the density, and the deflection(mm) change decreases with the increaseof density. In test conditions of this experiment, the deflection of change of laminated bamboo-bundle veneer lumber of different densities under uniform loading can be preliminaryestimated according to a formula deformation which is introduced the density parameter.Support direction and size effect exist in the performance under uniform load of laminatedbamboo-bundle veneer lumber. The tensile failure on the back of the board easily happen whenthe bamboo fiber direction and the support direction are consistent. The deflection of changedecreased with the board dimensions decreases when single span supporting is adopted.
     (5)The destroying laws of the termites to laminated bamboo-bundle veneer lumber aresummarized. Termites damage are selective and relevant to cellulose content and surfacehardness level. The more soft basic organization such as bamboo parenchyma cells firstlysuffers termites attack, and the attack path is along the edge of the vascular bundle along thefiber direction. The weight loss rate of moso bamboo is about42.43%. All the damagemorphologies of the samples are along the fiber direction. The weight loss rate of LBVL isabout10.04%. and the modification for laminated bamboo-bundle veneer lumber has goodeffect on termite resistance.
引文
包建文,陈祥宝.(2000).5284/T300复合材料湿热性能研究.航空材料工艺,30(4):37-40.
    陈红燕.(2010).竹条-乙烯基酯复合材料的界面吸湿性能及界面性能的AFM表征.上海:东华大学,27-28.
    程亮.(2009).重组竹材制造技术的研究.呼和浩特:内蒙古农业大学,34-90.
    崔会旺,杜官本.(2007).我国竹木复合材料研究进展.中国人造板,14(6):4-6.
    戴青春.(2006).纬编针织结构增强复合材料的制造及其力学性能研究.上海:东华大学,11-65.
    董玉库.(1991).正交各向异性木质平板在均布载荷下挠曲面的研究.东北林业大学学报,19(1):22-28.
    费本华,王戈,林利民,等.(2005).轻型木结构用落叶松胶合板覆板均布载荷性能试验研究.林业科技,30(4):40-45.
    顾东兰.(2008).木竹重组材关键工艺及性能研究.南京:南京林业大学,26-67.
    关明杰.(2009).家具用重组竹干缩与湿涨性能研究.竹子研究汇刊,28(3):38-41.
    关明杰.(2006).竹木复合材料湿热效应研究.南京:南京林业大学,11-68.
    郭渊,关至东,刘德博,等.(2009).复合材料静压痕与落锤冲击初始损伤对比试验.北京航空航天大学学报,35(8):1018-1021.
    过梅丽,阳芳,范欣愉,等.(2001).聚合物基复合材料的湿扩散参数研究.复合材料学报,1(18):34-37.
    过梅丽,肇研.(2002).航空航天结构复合材料湿热老化机理的研究.宇航材料工艺,4:51-54.
    胡靖元.(2010).织物复合材料低俗冲击特性与损伤机理研究.哈尔滨:哈尔滨工业大学,31-66.
    黄卫卫,黄故.(2008).玻璃纤维/不饱和聚酯复合材料板材的耐冲击性能研究.天津工业大学学报,27(1):23-26.
    黄小真,蒋身学,等.(2010).竹材重组材人工加速老化方法的比较研究.中国人造板,(6):25-28.
    江泽慧,王戈,费本华,等.(2002).竹木复合材料的研究及发展.林业科学研究,15(6):712-718.
    蒋淑芳,宁宁,等.(2006).碳纤维层压板冲击损伤的红外热波检测.红外与激光工程,35(3):267-270.
    雷彩红,雷芳,陈福林.(2007).户外木塑复合材料的研究进展.塑料,36(1):22-26.
    李桂祥.(2002).中国白蚁及其防治.北京:科学出版社.
    李琴,汪奎宏,华锡奇,等.(2002).小径杂竹制造重组竹的实验研究.竹子研究汇刊,2002,21(3):33-35.
    李思辉.(2007). UHMWPE/LDPE复合材料准静态侵彻和落锤冲击性能研究.上海:东华大学,27-30.
    练军,顾伯洪,王善元.(2006).织物及其复合材料的弹道冲击性能.纺织学报,27(8):109-112.
    林树青,应哲,等.(2008).高级建筑大修翻建时白蚁综合治理实施方案的探讨.城市害虫防治,1:19-23.
    刘红影,刘德勤.(2009).温度对芳纶/玻璃纤维复合材料层压板冲击性能的影响.玻璃钢/复合材料,6:25-627.
    刘庆潭.(2003).材料力学.北京:机械工业出版社,20-25.
    刘玉美.(2009).连续玄武岩纤维增强环氧树脂基复合材料抗冲击性能研究.化工新型材料,4:76-77.
    刘元坤,张继伟.(2009).三维正交机织复合材料弹道冲击实验及破坏模式.纤维复合材料,1:24-28.
    刘志坤,胡娜娜.(2007).竹木复合积成材生产工艺研究.林产工业,34(5):26-29.
    吕新颖,江龙,闫亮.(2009).碳纤维复合材料湿热性能研究进展.玻璃钢/复合材料,206(3):76-80.
    毛雷,龙格.(2011).海南因天气灾害导致直接经济损失约7亿元. http://news.sina.com.cn/-10-28/2011-06-01.
    秦莉,于文吉.(2009).重组竹研究现状与展望.世界林业研究,22(6):55-59.
    饶文彬.(2003).木竹重组材加工机理的研究.南京:南京林业大学.28-33.
    沙松雪.(2010).机械防护服装面料抗冲击性能研究.苏州:苏州大学,28-36.
    沈真,陈普会,刘俊石,等.(1991).含缺陷复合材料层压板的压缩破坏机理.航空学报,12(3):105-113.
    沈真,杨胜春,陈普会.(2007).复合材料抗冲击性能和结构压缩设计许用值.航空学报,28(3):561-566.
    宋芳芳.(2010).台风致碎片运动及其对围护结构冲击破坏分析.工程力学,27(7):212-220.
    孙占英,韩海山,戴干策.(2009).剑麻/聚丙烯复合材料的冲击性能及其预测.复合材料学报,26(6):8-17.
    滕锦,李斌太,庄茁.(2006). z-pin增韧复合材料层合板低速冲击损伤过程研究.工程力学,23(s1):209-216.
    王金满,刘一星,等.(1991).抽提物对木材渗透性影响的研究.东北林业大学学报,19(3):41-47.
    王莉莉,于运花,等.(2004).抽油杆用CF/VE拉挤复合材料在盐溶液中的老化机理.北京化工大学学报,31(2):31-34.
    王晓洁,梁国正,等.(2006).湿热老化对高性能复合材料性能的影响.固体火箭技术,29(4):301-304.
    王玉果.(2009).三维编织炭纤维增强环氧树脂复合材料的吸湿特性.天津大学学报,42(10):867-871.
    魏俊,赵建华,梁越明.(1999).复合材料层合板受低速冲击后的力学性能的实验研究.宇航学报,20(1):92-98.
    徐伟军,黄海涛,等.(2007).防白蚁胶合板的研制及灭效实验研究.中华卫生杀虫药械,13(3):175-178.
    杨灵敏,焦亚男,高华斌.(2009).三维编织复合材料低速冲击试验与分析.纺织学报,30(5):63-67.
    尹红,王靖,刘洪滨,等.(2011).小兴安岭红松径向生长对未来气候变化的响应.生态学报,31(24):7343-7350.
    曾文慧,刘瑞娴,钟俊鸿,等.(2010).白蚁肠道共生体的纤维素代谢体系.环境昆虫学报,32(3):392-398.
    詹茂盛,刘德顺.(2007).玻纤增强环氧树脂复合材料的酸雨循环老化性能与机理.玻璃钢/复合材料,5:28-32.
    张阿樱,张东兴,等.(2011).碳纤维/环氧树脂层压板湿热性能研究进展.中国机械工程,22(4):494-497.
    张方文,于文吉.(2008).木竹重组结构材料研究与发展.林产工业,35(1):7-12.
    张方文.(2008).竹基重组结构材料制造技术的研究.北京:中国林业科学研究院木材工业研究所,68-99.
    张磊,常新龙,等.(2010).基于湿热加速老化试验的HTPB固体推进剂寿命预估.弹箭与制导学报,30(1):148-150.
    张齐生,孙丰文.(1995).竹木复合是科学合理利用竹材资源的有效途径.林产工业,6:4-6.
    张亚慧,孟凡丹,于文吉.(2011).疏解次数对竹基纤维复合材料性能的影响.木材工业,25(5):1-4.
    张瑜,朱军.(2004).黄麻PHBV复合材料的耐湿热性能研究.中国麻业,26(5):241-244.
    赵鹏,姚卫星.(2008).湿热对纤维增强树脂基复合材料性能影响综述.第五届长三角科技论坛及航空航天科技创新与长三角经济发展论坛.上海:上海市宇航学会,238-244.
    赵仁杰,喻云水.(2002).竹材人造板工艺学.北京:中国林业出版社,1-2.
    郑立胜.(2009).基于红外热成像检测的飞机复合材料冲击试验研究.玻璃钢/复合材料,204(1):19-22.
    周箭.(2009).新型PVDF基木塑复合材料体系界面行为及物性研究.杭州:浙江大学,46-98.
    周荣星.(2002).多轴向经编织结构增强材料低速冲击能量吸收特性研究.上海:东华大学,38-67.
    朱一辛.(2003).木竹重组材研究进展及开发前景.林业科技开发,7(6):6-7.
    朱一辛.(2006).重组木与重组竹抗弯性能的比较.东北林业大学学报,34(4):20-21.
    邹军平.(2007).浅析堤坝白蚁的防治.现代园艺,11:27-28.
    A Gambetta, V Zaffagnini, et al..(2000). Use of Hexaflumuron baits against subterranean termites forprotection of historical and artistic structures: experiment carried out in selected test areas at the churchof Santa Maria della Sanita in Naples. Permissions&Reprints,1(3):207-216.
    A M Taylor. et.al..(2006). Effects of heartwood extractive fractions of Thuja plicata and Chamaecy parisnootkatensis on wood degradation by termites or fungi. The Japan Wood Research Society,52:147-153.
    A Rachel, et.al..(2006). Natural durability of tropical and native woods against termite damagebyReticulitermes flavipes (Kollar). International biodeterioration&biodegradation,57:146-150.
    A T Moura.(2002). Prediction of low velocity impact damage in carbon-epoxy laminates. Composites,33:361-368.
    A M Taylor, B L Gartner, J J Morrell.(2002). Heartwood formation and natural durability. A review. WoodFiber Sci.,34(4),587-611.
    A Macedo, C M P Vaz, J C D Pereira., et al..(2002). Wood density determination by X-and gamma-raytomography. Holzforschung,56,535-540.
    A L G Mark, M Gerry, A L Carolyn.(2005). X-ray tomography of whole cells. Current Opinion in StructuralBiology,15:593–600.
    A M kel, H T Valentine.(2001). The ratio of NPP to GPP: evidence of change over the course of standdevelopment. Tree Physiol,21(14):1015-1030.
    B Kamal Adhikary.et al..(2008). Long-term moisture absorption and thickness swelling behavior of recycledthermoplastics reinforced with Pinus radiata sawdust. Chemical Engineering Journal,42:190-198.
    C A Clausen, V Yang.(2007). Protecying wood from mould, decay, and termites with multi-componentbiocide systems. International Biodeterioration&Biodegradation,59:20-24.
    C Skaar.(1958). Moisture movement in beech below the fiber saturation point. Forest Prod J,8:352-357.
    D E Pendleton, T A Hoffard, et al.(2002). Durability of an extruded HDPE/wood composite. Forest Prod.J,52(6):21-27.
    D A Norman, R E Robert.(2003). The effect of fiber orientation on t he toughening of short fiber-reinforcedpolymers. Journal of Applied Polymer Science,90(10):2740-2751.
    D Roylance.(1980). Stress wave-propagation in fibers-effects of cross-overs.Fiber Sci Technol,13(5):385-395
    D S Bajwa, D Bruce.(2005). Epoch composite products inc Improvements in weathering characteristics ofwood-plastic composites. Madison W I:8#international conference on wood fiber plastics composites,258–263.
    D Zhu.(1993). A feasibility study on using CT inmage analysis for hardwood log Inspection. Doctordissertation, Virginia Tech.
    D Zhu, A A Beex.(1994). Robust Spatial Autoregressive Modeling for Hardwood Log Inspection. Journal ofVisual Communication and Image Representation,5(1):41-51.
    E A Behr.(1972). Decay and termite resistance of medium-density fiberboards made from wood residue.Forest Products Journal,22(12):48-51.
    E Ana. et al.(2004). comparison of water absorption in natural cellulosic fibres from wood and one-yearcrops in polypropylene composites and its influence on their mechanical properties.Composites PatrA,35:1267-1276.
    E Ana, V Francisco. et al.(2004). Comparison of water absorption in natural cellulosic fibers from wood andone-year crops in polypropylene composites and its influence on their mechanicalproperties..Composites Part A: applied science and manufacturing,35:1267-1276.
    F Longuetaud, J M Leban, F Mothe. et al..(2004). Automatic detection of pith on CT images of spruce logs.Comput. Electron. Agric,44(2):107-119.
    F Longuetaud, F Mothe, J-M Leban.(2006). A Makela. Picea abies sapwood width: variations within andbetween trees. Scand. J. Forest Res,21:41-53.
    F Longuetaud, L Saint-André, J-M Leban.(2005). Automatic Detection of Annual Growth Units on Piceaabies Logs Using Optical and X-Ray Techniques. Journal of Nondestructive Evaluation,24(1):29-43.
    F Longuetaud, F Mothe, Mothe, J-M Leban.(2007). Automatic detection of the heartwood/sapwoodboundary within Norway spruce (Picea abies (L.) Karst.) logs by means of CT images. Computers andElectronics in Agriculture,58:100-111.
    F Mendoza, P Verboven, Mebatsion H K, et al.(2007). Three-dimensional pore space quantification of appletissue using x-ray computed microtomography. Planta,226:559-570.
    G R Lindsey.(2010). Evaluation of parameters specified in AWPA standard E1-97,“Standard method forlaboratory evaluation to determine resistance to subterranean termites”, Master’s thesis,36-37.
    I Ghasemi. et al.(2009). Long-term water absorption behavior of polypropylene/wood four/organoclayhybrid nanocomposite. Iranian Polymer Journal,18(9):683-691.
    Z H Jiang.(2007). Bamboo and rattan in the world. Beijing, China: China forestry publishing house.
    J M Pilarski, L M Matuana.(2006). Durability of wood flour plastic composites exposed to acceleratedFreeze thaw cycling: II High density polyethylene matrix. App l Polym Sci,100(1):35-39.
    J Comyn.(1985). Polymer permeability. London and New York: Elsevier Applied Science Publishers:34-87.
    J L Thomason, M A Vlug.(1997). Influence of fibre length and concent ration on the properties of glassreinforced polypropyleneⅣ: Impact properties. Composites Part A: Applied Science and Manufacturing,28(3):277-288.
    J Johansson, O Hagman, J Oja.(2003). Predicting moisture content and density of Scots pine by microwavescanning of sawn timber. Comput. Electron. Agric.b,41(1–3):85-90.
    J Wu, D Liew.(2000). A computer vision method for detection of external log cracks and pith inlogcross-section images. In: World Automation Congress: International Symposium on IntelligentAutomation and Control (ISIAC), Maui, Hawaii, USA, June11-16.
    J Z Wang, R DeGroot.(1996). Treatability and durability of heartwood. In: Ritter, M.A., Duwadi, S.R., Lee,P.D.H.(Eds.), National Conference onWood Transportation Structures. U.S. Department of Agriculture,Forest Service, Forest Products Laboratory, Madison, WI, October23-25.
    K Nagata, G L Aistrup, J Song. et al..(1996). Subconductance-state currents generated by imidacloprid etthenicotinic acetylcholine receptor in PC12cells. Neuroreport,7(5):1025-1028.
    R H Leicester. et.al.(2008). A reliability model for assessing the risk of termite attack on housing inAustralia. Reliability Engineering&System Safety,93(3):468-475.
    L D Lin.et.al..(2009). Leachability,metal corrosion,and termite resistance of wood treated with copper-basedpreservative. International biodeterioration&biodegradation,63:533-538.
    L O Lindgren.(1992). Non-destructive wood density distribution measurements using computed tomography.Holz als Roh-und Werkstoff,50:295-299.
    L Wilhelmsson, J Arlinger, K Spangberg. et al..(2002). Models for predicting wood properties in stems ofPicea abies and Pinus sylvestris in Sweden. Scand. J. Forest Res,17(4):330–350.
    M Nicole, LM Stark.(2007). Characterization of weathered wood-plastic composite surfaces using FTIRspectorscopy, contact angle, and XPS. Polymer Degradation and Stability,92:1883-1890.
    M Verma.(2009). Biological alternatives for termite control: Areview. International Biodeterioration&Biodegradation,63:959-972.
    M Tomizawa, H Otsuka, T Miyamoto. et al..(1995). Pharmalogical characteristics of insect nicotinicacetylcholine receptor with itsion channel and the comparison of the effect of nicotinodis andneonictinoids. Nippon Noyaku Gakkaishi,20(1):57-64.
    M Sugimori, F Lam.(1999). Cro-void distribution analysis in strand-based wood composites using an X-raycomputer tomography.J Wood Sci,45:254-257.
    N Naresworo, A Naoto.(2000). Development of structural composite products made from bamboo I:fundamental properties of bamboo zephyr board. Wood Sci,46:68-74.
    N Naresworo, A Naoto.(2001). Development of structural composite products made from bamboo Ⅱ:fundamental properties of laminated bamboo lumber. Wood Sci,47:237-242.
    N Ayrilmis. et.al..(2005). Physical and mechanical properties and fire,decay,and termite resistance of treatedoriented strandboard. Forest products journal,55(5):74-81.
    N M Stark.(2006). Effect of weathering cycle and manufacturing method on performance of wood flour andhigh-density polyethylene composites.J Appl Polym Sci,100(4):3131-3140.
    P M Cunniff.(1992). An analysis of the system effects of woven fabrics under ballistic impact.Text Res J,62(9):495-509.
    P R Vlosky, T Shupe, and Q. Wu.(2009). Perceptions and use of termite resistant treated wood products. PartII: the perspective of homeowners and Architects in Formosan subterranean termite infected states.Drvna Industrija,60(4):219-228.
    P P Karenlampi, M Riekkinen.(2003). Prediction of the heartwood content of pine logs. Wood Fiber Sci.,35(1):83–89.
    Q S Shi. et al..(2004). Hygroscopic thickness swelling rate of compression molded wood fiberboard andwood fiber/polymer composites. Composites Patr A,35:1276-1285.
    Q S Shi.(2007). Diffusion model based on Fick’s second law for the moisture absorption process in woodfiber-based composites:is it suitable or not?.Wood Sci Technol,41:645-658.
    Q Lin, X Zhou, G Dai.(2003). Effect of hydrothermal aspects of wood as a component of thermoplasticcomposites. J Appl Polym Sci,9(2):96-104.
    Q L Wu.(2009). Termite reseistant properties of wood plastic composites.AWPA E1test data,1-12.
    R T John,et al..(1997). Plywood Design Specification. Published by APA,12–263.
    S N Kartal, et.al..(2007). Decay and termite resistance of plywood treated with various fireretardants.Building and Environment,42(3):1207-1211.
    S Tripathi. et.al..(2010) Resistances of Chemically treated bambusa arundinacea against fungi,termite andfire.Chemistry and industry of forest product,30(4):7-14.
    S W Braden.(2008). Measurement of wood pallet performance subjected to uniform loading in racked, forktine, and floor support conditions. Master’s thesis,22-25.
    S P Thomas. et al..(2010). Molecular transport characteristics of poly(ethylene co-vinylacetate)/calciumphosphate nanocomposites in different solvents. Journal of Membrane Science,120(4):1974-1983.
    S Rassmann. et al..(2010). Effect of processing conditions on the mechanical and water absorptionproperties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. CompositesPatr A,35:1276-1285.
    S A Verhey, P E Laks, P L Richter.(2003). Use of field stakes to evaluate the decay resistance ofwood-fiber thermoplastic.composites. Forest Products Journal,53(5):5-8.
    S Sone, K Nagata, S Tsuboi. et al..(1994) Toxic symptoms and neural effect of a new class of insecticidesimidacloprid on the American Cockroach, Periplaneta americana. Nippon Nayaku Gakkaishi,19(1):69-72.
    S Tamrakar, A Robert.(2011). Water absorption of wood polypropylene composite sheet piles and itsinfluence on mechanical properties.Construction and building materials,25:3977-3988.
    T E McConnell.(2010). Technical note: The susceptibility of chemically treated southern hardwoods tosubterranean termite attack. Wood and fiber science,42(2):252-254.
    U Mustafa, D Ustaomer, S Nami Kartal. et al..(2009). Termite Resistance of MDF Panels Treated withVarious Boron Compounds. Int J Mol Sci,10(6):2789-2797.
    V Monica, S Aatyawati, P Rajendra.(2009). Biological alternatives for termite cntrol: A review. InternationalBiodeterioration&Biodegradation,63(8):959-972.
    W Winistorfer.(1995). Application of a drill resistance technique for density profile measurement in woodcomposite panels. Composites&Manufactures Products,45(46):90-93.
    Y H Choi.(1991). A new approach toward understanding damage mechanisms and mechanics of laminatedcomposites due to low-velocity impact: Part Ⅱ-Analysis. Journal of Composite Materials,25:1012-1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700