用户名: 密码: 验证码:
黑洞熵与黑洞似正规模的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑洞熵和黑洞似正规模一直是黑洞物理研究中的两个前沿热门课题。在黑洞熵的研究中,其统计力学起源问题尤为重要,但却一直是困扰理论物理学者的一大难题。因此,对黑洞熵统计起源问题的深入研究将对黑洞物理学乃至量子引力理论的发展起到重要的推动作用。另外,黑洞似正规模与外场的初始扰动无关,而是由黑洞自身的参数决定。这一特点说明,黑洞作为一种天体,它有自己的“特征声音”,而似正规模正是这种“声音”的物理表述。当不久的将来引力波被探测到时,黑洞似正规模可能会成为黑洞存在的直接证据。
     本论文包括如下五部分内容:
     在第一章中,首先简单回顾了黑洞及其热力学性质,接着,介绍了黑洞熵和黑洞似正规模的定义、研究方法以及意义。
     在第二章中,首先应用薄膜模型方法计算了带电dilaton-axion黑洞在渐进平直和渐进非平直两种时空背景下的熵。通过计算视界面附近一薄层内量子场的熵来得到黑洞熵。计算过程中,虽然克服了原始砖墙模型中的部分不完美之处,但仍然需要人为的引入截断因子来消除视界面上的奇异。当把广义测不准原理引入到了薄膜模型中计算黑洞熵时,在无需引入任何截断因子的情形下,视界面附近量子场的发散问题就能够被消除,并且小质量近似问题也能够很好的得以解决。然后,利用留数定理对黑洞熵的积分表达式进行计算,便能够得到与视界面积成正比的黑洞熵。
     在第三章中,采用三阶WKB近似方法,分别计算了静态球对称quintessence物质包围的整体单极子黑洞的有质量标量场和无质量Dirac场的低频似正规模,并且详细讨论了似正规模频率与各种参数因子之间的变化关系。
     在第四章中,计算了在变形Horava-Lifshitz引力中的静态球对称黑洞的无质量Dirac场的低频似正规模,并且讨论了Horava-Lifshitz参数因子对似正规模的影响。
     最后是本论文的结论部分。
The black hole entropy and the quasinormal modes of black holes have long been the important and exciting themes in the black hole physics. The statistical explanation of the black hole entropy is one of the most important aspects, and has long been a puzzled problem to many theoretical physicists, therefore, the investigation on this topic will play an improving role in the black hole physics and even quantum gravitation theory. While, it is well known that the complex frequencies of quasinormal modes are independent of the initial perturbation and just decided by parameters of black hole themselves. In a sense, the quasinormal modes can be regarded as a characteristics sound of black holes. It is widely believed direct way to identify the existence of a black hole, when gravitational wave will be detected in the near future.
     The thesis consists of five parts, and is organized as follows:
     In Sec.1, a brief introduction of black hole's thermodynamic characters are given at first. Then, the definition, calculation method and motivations of study of the black hole entropy and quasinormal modes are introduced, respectively.
     In Sec.2. firstly, the entropy of the charged dilaton-axion black hole is calculated for both asymptotically flat and non-flat cases, using the thin-film model. The thin-film model designates that the black hole entropy is contributed of quantum field by a thin film near the black hole horizon, and the results obtained confirm the Bekenstein-Hawking area-entropy formula. The thin-film model method avoids some drawbacks in the original brick-wall method, but the arbitrary cutoff to remove the divergence near the horizon cannot be avoided yet. For this, the entropy of black holes are corrected to leading order in the Planck length, with the newly modified equation of states density motivated by the generalized uncertainty principle, in the regime of the thin-film model method, which drastically solves the ultraviolet divergences of the just vicinity near the horizon replacing the conventional brick-wall method cutoff with the minimal length. Then, the integral equation of entropy can be solved with residue theorem, which is proportional to the black hole horizon area.
     In Sec.3, adopting three-order WKB approximation method, the quasinormal modes of a black hole with a global monopole surrounded by static spherically-symmetric quintessence matter are calculated, for massive scalar fields and massless Dirac fields perturbation, re-spectively, and the influence of different parameters on quasinormal modes frequency are discussed.
     In Sec.4, in the deformed Horava-Lifshitz gravity, the black hole quasinormal modes of the massless Dirac field perturbation are calculated, and then the influence of Horava-Lifshitz parameter on quasinormal modes frequency are discussed.
     A conclusion is presented in the last section.
引文
[1]约翰-皮尔卢米涅(Jean-Pierre Luminet).黑洞[M].长沙:湖南科学技术出版社,2001.
    [2]赵峥.黑洞的热性质与时空奇异性零曲面附近的量子效应[M].北京:北京师范大学出版社,1999.
    [3]Oppenheimer J R. Snyder H. On continued gravitational contraction. [J]. Phys. Rev.,1939.56(5): 455-459.
    [4]赵峥.黑洞与弯曲的时空[M].山西:山西科学技术出版社,2000.
    [5]刘墨林.基于空间-时间-物质理论和膜世界模型的黑洞研究[D]:(博士学位论文).辽宁大连:大连理工大学.2009.
    [6]Kerr R P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics [J]. Phys. Rev. Lett.,1963.11(5):237-238.
    [7]Newman E T. Couch E. et al. Metric of a Rotating, Charged Mass [J]. J. Math. Phys.,1965.6(6): 918-919.
    [8]霍金,时间简史[M].长沙:湖南科学技术出版社,1994.
    [9]Carter B. Axisymmetric Black Hole Has Only Two Degrees of Freedom [J]. Phys. Rev. Lett.,1971. 26(6):331-333.
    [10]Carter B. Elastic perturbation theory in General Relativity and a variation principle for a rotating solid star [J]. Commun. Math. Phys.,1973.30(4):261-286.
    [11]Robinson D C. Classification of black holes with electromagnetic fields [J]. Phys. Rev. D.1971. 10(2):458-460.
    [12]Robinson D C. Uniqueness of the Kerr Black Hole [J]. Phys. Rev. Lett.,1975,34(14):905-906.
    [13]Hawking S W. Gravitational Radiation from Colliding Black Holes [J]. Phys. Rev. Lett.,1971. 26(21):1344-1346.
    [14]Hawking S W. Black hole explosions? [J]. Nature.1974,248(1):30-31.
    [15]Hawking S W. Particle creation by black holes [J]. Commun. Math. Phys.,1975.43(3):199-220.
    [16]Wald R M. General relativity [M]. Chicago and London:The University of Chicago Press.1984.
    [17]Hawking S W and Ellis G F R. The large scale structure of space-time [M]. Cambridge:Cambridge University Press,1973.
    [18]Hawking S W. Gravitational Radiation from Colliding Black Holes [J]. Phys. Rev. Lett.,1971, 26(21):1344-1346.
    [19]Bardeen J M. Cater B. Hawking S W. The four laws of black hole mechanics [J]. Commun. Math. Phys.,1973,31(2):161-170.
    [20]Bekenstein J D. Black Holes and Entropy [J]. Phys. Rev. D,1973,7(8):2333-2346.
    [21]Smarr L. Mass Formula for Kerr Black Holes [J]. Phys. Rev. Lett.,1973,30(2):71-73. E30(11): 521-521.
    [22]赵峥.四维静态黎曼时空中的Hawking辐射[J].物理学报,1981 30(11):1508-1519.
    [23]Penrose R. [J]. Rev. Nuovo. Cimento.1969,1(2):252.
    [24]刘辽,赵峥,田桂花等.黑洞与时间的性质[M].北京:北京大学出版社,2008.
    [25]Bekenstein J D. Generalized second law of thermodynamics in black-hole physics [J]. Phys. Rev. D,1974,9(12):3292-3300.
    [26]Liberati S, Pollifrone G. Entropy and topology for gravitational instantons [J]. Phys. Rev. D.1997, 56(10):6458-6466.
    [27]Wu Z C. Entropy of a Black Hole with Distinct Surface Gravities [J]. Gen. Rel. Grav.,2000,32(9): 1823-1833.
    [28]Gibbons G W. Hawking S W. Action integrals and partition functions in quantum gravity [J]. Phys. Rev. D,1977,15(10):2752-2756.
    [29]Hawking S W,Horowitz T. Entropy, area, and black hole pairs [J]. Phys. Rev. D.1995.51(8): 4302-4314.
    [30]Bombelli L. Koul R K, Lee J. et al. Quantum source of entropy for black holes [J]. Phys. Rev. D. 1986,34(2):373-383.
    [108]Holzhey C,Larsen F. Wilczek F. Geometric and renormalized entropy in conformal field theory [J]. Nucl. Phys. B.1994.421(3):443-467.
    [32]Callen C, Wilczek F. On geometric entropy [J]. Phys. Lett. B.1994.333(1-2):55-61.
    [33]'t Hooft G. On the quantum structure of a black hole [J]. Nucl. Phys. B.1985.256:727-745.
    [34]Strominger A. Vafa C. Microscopic origin of the Bekenstein-Hawking entropy [J]. Phys. Lett. B. 1996,379(1-4):99-104.
    [35]Maldacena J M, Strominger A. Statistical Entropy of Four-Dimensional Extremal Black Holes [J]. Phys. Rev. Lett.,1996.77(3):428-429.
    [36]Horowitz G T. Lowe D A. Maldacena J M. Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U Duality [J]. Phys. Rev. Lett.,1996.77(3):430-433.
    [37]Won T K, John J O. Park Y J. Entropy of the Randall-Sundrum black brane world in the brick-wall method [J]. Phys. Lett. B.2001.512(1-2):131-136.
    [38]Marolf D. String/M-branes for Relativists [J]. arXiv:gr-qc/9908045.
    [39]Frolov V, Fursaev D V. Statistical mechanics of charged black holes in induced Einstein-Maxwell gravity [J]. Phys. Rev. D.2000,61(6):064010(1-8).
    [40]Brown J D, Henneaux M. Central charges in the canonical realization of asymptotic symmetries An example from three dimensional gravity [J]. Commun. Math. Phys.,1986.104(2):207-226.
    [41]Carlip S. Black Hole Entropy from Conformal Field Theory in Any Dimension [J]. Phys. Rev. Lett., 1999.82(14):2828-2831.
    [42]Soloviev V O. Black hole entropy from Poisson brackets:Demystification of some calculations [J]. Phys. Rev. D,2000,61(2):027502(1-4).
    [43]Das S. Ghosh A, Mitra P. Statistical entropy of Schwarzschild black strings and black holes [J]. Phys. Rev. D,2000.63(2):024023(1-4).
    [44]Carlip S. Entropy from Conformal Field Theory at Killing Horizons [J]. Class. Quant. Grav.,1999. 16(10):3327-3348.
    [45]Ruffini R. Wheeler J A. Introducing the black hole [J]. Phys. Today,1971.24(1):30-41.
    [46]Regge T, Wheeler J A. Stability of a Schwarzchild Singularity [J]. Phys. Rev.,1957,108(4):1603-1609.
    [47]Misner C W, Thorne K S. Wheeler J A. Gravitation [M]. San Francisco:Freeman,1973.
    [48]Zerilli F J. Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordstrom geometry [J]. Phys. Rev. D,1974,9(4):860-868.
    [49]Teukolsky S. Rotating black holes-separable wave equations for gravitational and electromagnetic perturbations [J]. Phys. Rev. Lett.,1972.29(16):1114-1118.
    [50]Vishveshwara C. Scattering of gravitational radiation by a Schwarzschild black-hole [J]. Nature, 1970.227(5261):936-938.
    [51]Frolov V P, Novikov I D. Black Hole Physics:Basic Concepts and New Developments [M].1998. Kluwer Academic Publishers.
    [52]陈松柏.黑洞时空中的似正规模和幂率拖尾[D]:(博士学位论文).湖南长沙:湖南师范大学.2006.
    [53]Cardoso V. Quasinormal Modes and Gravitational Radiation in Black Hole Spacetimes. PhD thesis. 2004, gr-qc/0404093
    [54]Nollert H P. Quasinormal modes:the characteristic'sound'of black holes and neutron stars [J]. Class. Quant. Grav.,1999.16(12):R159-R216.
    [55]Anninos P. Hobill D. Seidel E. et al. Collision of two black holes [J]. Phys. Rev. Lett..1993.71(18): 2851-2854.
    [56]Gleiser R J, Nicasio C O, Price H, et al. Colliding Black Holes:How Far Can the Close Approxi-mation Go? [J]. Phys. Rev. Lett.,1996,77(22):4483-4486.
    [57]Maldacena J. The Large N Limit of Superconformal Field Theories and Supergravity [J]. Adv. Theor. Math. Phys.,1998.2(2):231-252.
    [58]Horowitz G T. Hubeny V E. Quasinormal modes of AdS black holes and the approach to thermal equilibrium [J]. Phys. Rev. D.2000.62(2):024027(1-11).
    [59]Hod S. Bohr's Correspondence Principle and the Area Spectrum of Quantum Black Holes [J]. Phys. Rev. Lett.,1998,81(20):4293-4296.
    [60]Dreyer O. Quasinormal Modes, the Area Spectrum, and Black Hole Entropy [J]. Phys. Rev. Lett. 2003.90(8):081301(1-4).
    [61]Chandrasekhar S. Detweiler S. The Quasi-Normal Modes of the Schwarzschild Black Hole [J]. Proc. R. Soc. London A,1975.344(3):441-452.
    [62]Leaver E W. An analytic representation for quasi-normal modes of Kerr black holes [J]. Proc. R. Soc. London A.1985,402(2):285-298.
    [63]Leaver E W. Solutions to a generalized spheroidal wave equation:Teukolsky's equations in general relativity, and the two-center problem in mole cular quantum mechanics [J]. J. Math. Phys.,1986. 27(5):1238-1265.
    [64]Nollert H P. Quasinormal modes of Schwarzschild black holes:The determination of quasinormal frequencies with very large imaginary parts [J]. Phys. Rev. D,1993,47(12):5253-5258.
    [65]Schutz B. Will C. Black hole normal modes-A semianalytic approach [J]. Astrophys. J.,1985, 291(2):L33-L36.
    [66]Iyer S, Will C M. Black-hole normal modes:A WKB approach. Ⅰ. Foundations and application of a higher-order WKB analysis of potential-barrier scattering [J]. Phys. ReV. D,1987.35(12): 3621-3631.
    [67]Iyer S, Will C M. Black-hole normal modes:A WKB approach. Ⅱ. Schwzchild black holes [J]. Phys. ReV. D,1987,35(12):3632-3636.
    [68]Konoplya R A. Quasinormal behabior of the D-dimensional Schwarzschild black hole and the higher order WKB approach [J]. Phys. ReV. D,2003,68(2):024018(1-8).
    [69]Poschl G. Teller E. [J]. Z. Phys.,1933.83:143.
    [70]Ferrari V, Mashhoon B. Oscillations of a Black Hole [J]. Phys. Rev. Lett.,1984,52(16):1361-1364.
    [71]Ferrari V. Mashhoon B. New approach to the quasinormal modes of a black hole [J]. Phys. Rev. D, 1984.30(2):295-304.
    [72]Motl L. An analytical computation of asymptotic Schwarzchild quasinormal frequencies [J]. Adv. Theor. Math. Phys.,2003.6(6):1135-1162.
    [73]Motl L, Neitzke A. Asymptotic black hole quasinormal frequencies [J]. Adv. Theor. Math. Phys 2003,7(6):307-330.
    [74]Wenzel G. Eine Verallgemeinerung der Quantenbedingungen ftlr die Zwecke der Wellenmechanik [J]. Z. Phys.,1926.38(6-7):518-529.
    [75]Kramers H A. Wellenmechanik und halbzahlige Quantisierung [J]. Z. Phys.,1926,39(10-11):828-840.
    76] Brillouin L. [J]. Compes Rendus.1926.183:24.
    [77]Brillouin L. [J]. J. de Physique et le Rad.,1926,7:353.
    [78]曾谨言.量子力学[M].北京:北京大学出版社.1999.
    [79]Sur S. Das S. SenGupta S. Charged black holes in generalized dilaton-axion gravity [J]. JHEP.2005, 05(10):064(1-33).
    [80]Wald R M. General Relativity [M]. Chicago:University of Chicago Press.1984.
    [81]Hawking S W. Black holes explosions [J]. Nature.1974.248(1):30-31.
    [82]Hawking S W. Particle Creation by Black Holes [J]. Comm. Math. Phys.,1975.43(2):199-220.
    [83]Hawking S W.时间简史[M].长沙:湖南科学技术出版社.1994.
    [84]Hawking S W and Ellis G F R. The large Scale Structure of Space-time [M]. Cambridge:Cambridge University Press,1973.
    [85]Jing J L. Entropy of the Quantum Scalar Field in Static Black Holes [J]. Int. J. Theor. Phys.,1998. 37(5):1441-1453.
    [86]Li Z H. Quantum corrections to the entropy of a Reissner-Nordstrom black hole due to spin fields [J]. Phys. Rev. D,2000.62(2):024001(1-3).
    [87]Li Z H. Logarithmic terms in brick wall model [J]. Phys. Lett. B.2006.643(2):64-70.
    [88]Liu W B. Zhao Z. Entropy of the Dirac field in a Kerr-Newman black hole [J]. Phys. Rev. D.2000. 61(6):063003(1-7).
    [89]Li X, Zhao Z. Entropy of an Extreme Reissner-Nordstrom Black Hole [J]. Gen. Rel. Grav.,2002. 34(2):255-267.
    [90]Wei Y H, Wang Y C, Zhao Z. Quantum entropies in extreme dilaton black hole backgrounds [J]. Phys. Rev. D,2002,65(12):124023(1-5).
    [91]Lee H, Kim S W, Kim W T. Nonvanishing entropy of external charged black hole [J]. Phys. Rev. D,1996,54(10):6559-6562.
    [92]Jing J L. Entropy of the quantum scalar filed in static black holes [J]. Phys. Rev. Lett,1998,37(5): 1441-1453.
    [93]Lee M H. Kim K J. Entropy of a quantum field in rotating black holes [J]. Phys. Rev. D,1996, 54(6):3904-3914.
    [94]Lee M H. Kim H C, Kim K.J. On the entropy of a quantum field in 2+1 dimensional spinning black holes [J]. Phys. Lett. B.1996.388(1):487-493.
    [95]Wu S Q, Yan M L. Entropy of a Kerr-de Sitter black hole due to arbitrary spin fields [J]. Phys. Rev. D.2004,69(4):044019(1-14).
    [96]Zhao R. Zhang J F, Zhang L C. Statistical entropy of Reissner-Nordstrom black hole [J]. Nucl. Phys. B.2001.609(2):247-252.
    [97]Mukohyama S W. Israel W. Black holes, brick walls, and the Boulware state [J]. Phys. Rev. D. 1998.58(10):104005(1-10).
    [98]Li X. Zhao Z. Entropy of a Vaidya black hole [J]. Phys. Rev. D.2000.62(10):104001(1-4).
    [99]Liu W B, Zhao Z. An Improved Thin Film Brick-Wall Model of Black Hole Entropy [J]. Chin. Phys. Lett.,2001,18(2):310-312.
    [100]He F, Zhao Z. Kim S W. Statistical entropies of scalar and spinor fields in Vaidya-de Sitter space-time computed by the thin-layer method [J]., Phys. Rev. D.2001,64(4):044025(1-9).
    [101]Li X. Zhao Z. Entropy of Vaidya-de Sitter spacetime [J]. Chin. Phys. Lett.,2001.18(3):463-465.
    [102]Tian G H, Zhao Z. Entropy of an "arbitrarily accelerating" Kinnersley black hole [J]. Nucl. Phys B.2002.636(1-2):418-431.
    [103]Tian G H. He H. Zhao Z. Entropy of an arbitrarily accelerating black hole [J]. Gen. Rel. Grav., 2002,34(9):1357-1370.
    [104]Li Z H, Mi L Q, Zhao Z. Brick walls for nonstationary black holes [J]. Chin. Phys. Lett.,2002, 19(12):1755-1758.
    [105]Ghosh T, SenGupta S. Entropy of charged dilaton-axion black hole [J]. Phys. Rev. D.2008.78(2): 024045(1-5).
    [106]Wang C Y, Gui Y X. Rediscussion of charged dilaton-axion black hole entropy [J]. Cent. Eur. J. Phys.,2009.7(3):521-526.
    [107]Ghosh A, Mitra P. Entropy in Dilatonic black hole background [J]. Phys. Rev. Lett.1994.73(19): 2521-2523.
    [108]Holzhey C F E, Wilczek F. Black holes as elementary particles [J]. Nucl. Phys. B.1992.380(3): 447-477.
    [109]Kallosh R, Ortin T, Peet A. Entropy and action of dilaton black holes [J]. Phys. Rev. D,1993. 47(12):5400-5407.
    [110]曾谨言.量子力学导论[M].北京:北京大学出版社,1998.
    [111]Chang L N, Minic D, Okamura N, et al. The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem [J]. Phys. Rev. D.2002.65(12): 125028(1-7).
    [112]Li X. Black Hole Entropy without Brick Wall [J]. Phys. Lett. B.2002,540(1-2):9-13.
    [113]Liu C Z, Li X, Zhao Z. Letter:Quantum Entropy of the Garfinkle-Horowitz-Strominger Dilaton Black Hole [J]. Gen. Relativ. Gravit.,2004,36(5):1135-1142.
    [114]Liu W B. Reissner-Nordstrom Black Hole Entropy Inside and Outside the Brick Wall [J]. Chin. Phys. Lett.,2003,20(4):440-443.
    [115]Liu C Z. Black Hole Entropy of the Thin Film Model and the Membrane Model Without Cutoffs [J]. Int. J. Theor. Phys.,2005.44(4):567-579.
    [116]Kim W, Kim Y, Park Y J. Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle [J]. Phys. Rev. D,2006.74(10):104001(1-5).
    [117]Sun X F, Liu W B. Improved black hole entropy calculation without cutoff [J]. Mod. Phys. Lett. A.2004.19(9):677-680.
    [118]Yoon M, Ha J, Kim W. Entropy of Reissner-Nordstrom black holes with minimal length revisited [J]. Phys. Rev. D,2007,76(4):047501(1-3).
    [119]Wang C Y, Gui Y X, Xing L L. Entropy of charged dilaton-axion black hole with minimal length revisited [J]. Cent. Eur. J. Phys.,2009.7(3):630-637.
    [120]Kempf A. Mangano G. Mann R B. Hilbert space representation of the minimal length uncertainty relation [J]. Phys. Rev. D,1995,52(2):1108-1118.
    [121]潘启沅.黑洞时空中微扰的演化与相对论框架下的量子信息[D]:(博士学位论文).湖南长沙:湖南师范大学.2008.
    [122]常加峰.半经典近似与黑洞低频似正规模[D]:(博士学位论文).上海:中国科学院上海天文台,2006.
    [123]Kibble T W B. Topology of cosmic domains and strings [J].J. Phys. A:Math. Gen.,1976,9(8): 1387-1400.
    [124]Vilenkin A. Cosmic strings and domain walls [J]. Phys. Rep.,1986.121(5):263-315.
    [125]Lee K, Nair V P, Weinberg E J. Black holes in magnetic monopoles [J]. Phys. Rev. D.1989.45(8): 2751-2761.
    [126]Barriola M. Vilenkin A. Gravitational field of a global monopole [J]. Phys. Rev. Lett.,1989,63(4):341-343.
    [127]Liebling S L. Static gravitational global monopoles [J]. Phys. Rev. D,2000,61(2):024030(1-4).
    [128]Salgado M. A simple theorem to generate exact black-hole solutions [J]. Class. Quantum. Grav.. 2003,20(21):4551-4566.
    [129]Watabe H. Tom T. Perturtations of global monopoles as a black hole's hair [J]. JCAP,2004,0402: 001(1-11).
    [130]Yu H W. Decay of massive scalar hair in the background of a black hole with a global monopole [J]. Phys. Rev. D.2002.65(8):087502(1-4).
    [131]Jiang Q Q, Wu S Q. Hawking radiation of charged particles as tunneling from Reiss-ner-Nordstrom-de Sitter black holes with a global monopole [J]. Phys. Lett. B,2006,635(2-3): 151-155.
    [132]Li X Z, Xi P. Zhai X H. Global monopole surrounded by quintessence-like matter [J]. Phys. Lett. B.2008,666(2):125-130.
    [133]Xi P. Quasinormal modes of a black hole with quintessence-like matter and a deficit solid angle: scalar and gravitational perturbations [J]. Astrophys Space Sci.,2009.321(1):47-51.
    [134]Wang C Y, Gui Y X, Wang F J. Massive scalar field quasinormal modes of a black hole with quintessence-like matter and a deficit solid angle [J]. Astrophys Space Sci.,2009.323 (4):395-399.
    [135]Wang C Y Gui Y X, Zhang Y. Dirac quasinormal modes of a black hole with quintessence-like matter and a deficit solid angle [J]. Astrophys Space Sci.,2009.325(1):119-125.
    [136]Brill D R. Wheeler J A. Interaction of Neutrinos and Gravitational Field [J]. Rev. Mod. Phys 1957.29(3):465-479.
    [137]Anderson A, Price R H. Intertwining of the equations of black-hole perturbations [J]. Phys. Rev. D,1991.43(10):3147-3154.
    [138]Horava P. Quantum gravity at a Lifshitz point [J]. Phys. Rev. D,2009.79(8):084008(1-15).
    [139]Horava P. Membranes at Quantum Criticality [J]. JHEP,2009.0903(3):020(1-34).
    [140]Horava P. Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point [J]. Phys Rev. Lett.,2009,102(16):161301(1-4).
    [141]Volovich A. Wen C. Correlation Functions in Non-Relativistic Holography [J]. JHEP.2009. 0905(5):087(1-16).
    [142]Kluson J. Branes at Quantum Criticality [J]. JHEP,2009,0907(7):079(1-17).
    [143]Chen B. Huang Q G. Field Theory at a Lifshitz Point [J]. Phys. Lett. B.2009,683(2-3):108-113.
    [144]Volovik G E. z=3 Lifshitz-Horava model and Fermi-point scenario of emergent gravity [J]. JETP Lett.,2009.89(11):525-528.
    [145]Cai R G, Hu B, Zhang H B. Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity [J]. Phys. Rev. D,2009,80(4):041501(1-5).
    [146]Calcagni G. Cosmology of the Lifshitz universe [J]. JHEP.2009,0909(9):112-133.
    [147]Takahashi T. Soda J. Chiral Primordial Gravitational Waves from a Lifshitz Point [J]. Phys. Rev. Lett.,2009,102(23):231301(1-4).
    [148]Mukohyama S. Scale-invariant cosmological perturbations from Horava-Lifshitz gravity without inflation [J]. JCAP,2009.0906(6):001(1-9).
    [149]Kiritsis E, Kofinas G. Horava-Lifshitz Cosmology [J]. Nucl. Phys. B,2009,821(3):467-480.
    [150]Brandenberger R. Matter Bounce in Horava-Lifshitz Cosmology [J]. Phys. Rev. D.2009.80(4): 043516(1-6).
    [151]Piao Y S. Primordial Perturbation in Horava-Lifshitz Cosmology [J]. Phys. Lett. B.2009.681(1): 1-4.
    [152]Gao X. Cosmological Perturbations and Non-Gaussianities in Horava-Lifshitz Gravity [J]. arXiv:hep-th/0904.4187.
    [153]Colgain E O, Yavatanoo H. Dyonic solution of Horava-Lifshitz Gravity [J]. JHEP,2009,0908(1): 021(1-7).
    [154]Lu H, Mei J, Pope C N. Solutions to Horava Gravity [J]. Phys. Rev. Lett.,2009.103(9):091301(1-4).
    [155]Cai R G, Cao L M, Ohta N. Topological Black Holes in Horava-Lifshitz Gravity [J]. Phys. Rev. D,2009,80(2):024003(1-7).
    [156]Cai R G, Liu Y, Sun Y W. On the z=4 Horava-Lifshitz Gravity [J]. JHEP,2009.0906(6): 010(1-15).
    [157]Ghodsi A. Toroidal solutions in Horava Gravity [J]. arXiv:hep-th/0905.0836.
    [158]Myung Y S, Kim Y W. Thermodynamics of Horava-Lifshitz black holes [J]. arXiv:hep-th/0905.0179.
    [159]Nishioka T. Horava-Lifshitz Holography [J]. Class. Quantum. Grav.,2009.26(24):242001(1-6).
    [160]Cai R G, Cao L M. Ohta N. Thermodynamics of Black Holes in Horava-Lifshitz Gravity [J]. Phys Lett. B,2009.679(5):504-509.
    [161]Myung Y S. Entropy of black holes in the deformed Horava-Lifshitz gravity [J]. Phys. Lett. B. 2010,684(2-3):158-161.
    [162]Chen D Y. Yang H T. Zu X T. Hawking radiation of black holes in the z=4 Horava-Lifshitz gravity [J]. Phys. Lett. B.2009.681(5):463-468.
    [163]Myung Y S. ADM mass and quasilocal energy of black hole in the deformed Horava-Lifshitz gravity [J]. Phys. Lett. B.2010,685(4-5):318-324.
    [164]Kehagias A. Sfetsos K. The black hole and FRW geometries of non-relativistic gravity [J]. Phys. Lett. B,2009.678(1):123-126.
    [165]Myung Y S. Thermodynamics of black holes in the deformed Horava-Lifshitz gravity [J]. Phys. Lett. B.2009,678(1):127-130.
    [166]Chen S B. Jing J L. Quasinormal modes of a black hole in the deformed Horava-Lifshitz gravity [J]. Phys. Lett. B,2010. In Press.
    [167]Wang C Y. Gui Y X. Dirac quasinormal modes of the deformed Horava-Lifshitz black hole space-time [J]. Astrophys Space Sci.,2009.325(1):85-91.
    [168]Arnowitt R L. Deser S. Misner C W. The dynamics of general relativity,"Gravitation:an in-troduction to current research". Louis Witten ed. (Wilcw 1962). chapter 7. pp227-265. arXiv:gr-qc/0405109.
    [169]蒋青权.量子隧穿、反常与黑洞霍金辐射[D]:(博士学位论文).武汉:华中师范大学.2009.
    [170]Cho H T. Dirac quasinormal modes in Schwarzschild black hole spacetimes [J]. Phys. Rev. D, 2003,68(2):024003(1-11).
    [171]Wu Y J, Zhao Z. Dirac quasinormal modes in Reissner-Nordstrom spacetimes [J]. Phys. Rev. D. 2004,69(8):084015(1-6).
    [172]Chen S B, Jing J L. Dirac quasinormal modes of the Garfinkle-Horowitz-Strominger dilaton black-hole spacetime [J]. Class. Quant. Grav.,2005.22(6):1129-1142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700