用户名: 密码: 验证码:
赤潮赤潮异弯藻培养液CDOM分析及其潜在的化感作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有色可溶性有机物质(chromophoric dissolvable organic matter, CDOM)是海洋溶解有机物储库中一个重要组分,在影响海洋水色、初级生产力和生态系统结构以及海-气物质交换等方面都起着至关重要的作用,因此已成为近年来相关领域的前沿热点问题。但由于其组成复杂,分离困难,迄今为止国内外的研究仍主要是从宏观上对其光学行为进行探讨,研究对象多为海洋湖泊等自然水域。目前,国内外对CDOM的化学分离及结构鉴定的研究工作尚处于起始阶段。
     本文以针胞藻纲赤潮异弯藻Heterosigma akashiwo (Hada)的培养液为研究对象,选取HP-20大孔吸附树脂富集保留水体中的有色可溶性有机物质,对甲醇/水梯度洗脱后得到的六个洗脱组分分别进行了光化学性质分析、液相色谱质谱联用分析及其潜在化感物质溶血活性的研究,结果如下:
     通过对各洗脱组分的吸收及荧光光谱、光降解等光化学性质的研究表明:随着洗脱液极性的降低,赤潮异弯藻CDOM洗脱物的平均分子量下降,芳香结构数量减少、富里酸/腐植酸比例升高;在荧光光谱图中共出现了8个峰,包括3个类腐殖质荧光峰、4个类蛋白荧光峰及一个类色素荧光峰,各洗脱组分中类腐殖质的相对含量随着洗脱液极性的降低呈指数下降(R2=0.9686),类蛋白质呈线性上升(R2=0.9664);紫外照射结果证实了赤潮异弯藻CDOM各洗脱组分在接受短期的紫外光照射下均容易发生光化学降解,吸收系数衰减随时间的变化可按一阶动力学方程拟合,一阶动力学常数位于0.2~0.35之间。
     其次,运用超高效液相色谱-四级杆飞行时间质谱联用分析系统(UPLC-Q-TOF-MS)对各洗脱组分进行LC-MS分析,建立了有效分离分析各组分的方法,确定了各组分的平均质荷比(m/z)位于300-700之间。另外,总结了各组分中主要离子的精确m/z比值及其碎片离子,为进一步的化学结构研究提供了支持。
     最后,对各组分进行的溶血活性测定结果表明:赤潮异弯藻溶血毒素主要出现在低极性洗脱组。运用高效液相色谱对溶血活性最高的a5组分进一步细分,结果显示a5组分中至少含有两组溶血物质,一组为具有183.01(m/z)稳定母核的同系物,结构鉴定为3-烷基苯羟基亚硫酸;另一组溶血物质推测为不饱和脂肪酸C18:3(n-6)、C18:2(n-6)、C18:1(n-9)及C20:1(n-9)。
     以上结果表明,赤潮异弯藻CDOM多为低分子量物质,富里酸等较低极性物质的含量低于以腐植酸为主的高极性物质。其中溶血活性物质主要出现在低极性洗脱组,结构鉴定分别为3-烷基苯羟基亚硫酸与不饱和脂肪酸,与紫外吸收物质不存在一致性,两者无确切相关关系。
The chromophoric dissolvable organic matter (CDOM) , one of an important components in the marine dissolvable organic matter storage, play an important role in influencing ocean color, primary productivity and ecosystem structure, as well as the air-sea exchange. Therefore, study on CDOM has became a hot topic in recent years. As its composition is too complex to fractionate, researches at home and abroad are mainly carried on optics behavior of CDOM in natural waters, such as oceans and lakes, while isolation and identification of CDOM are still in an exploratory stage.
     In this study, the CDOM excreted by Raphidophyte microalga Heterosigma akashiwo (Hada) was used for detailed characterization. The CDOM was selectively absorbed on HP-20 macroporous resin, and eluted gradiently by methyl alcohol/water to obtain six fractions, which was used for further discussion on photochemistry nature, chemical analysis by UPLC-Q-TOF-MS, and assessment of hematolysis activeness. The results were summarized described as follows:
     Firstly, the photochemistry nature of six fractions, such as absorption spectrum, fluorescence spectrum and photodegradation was studied. The results showed that as eluent polarity reduced, the average molecular weight of eluate decreased, aromatic substance lessened. There were eight fluorophores in all: three humic-like fluorophores, four protein-like and one pigment-like fluorophores, besides, comparative content of humic-like fluorescence was down, while protein-like’s was up. The photodegradation processes of absorption coefficient followed the first-order dynamic equation, and the kinetic constant was about 0.2~0.35.
     Secondly, six fractions were all analyzed by using Ultra Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF-MS). Method that can isolate various components effectively was established and their average m/z was calculated at 300~700. Efforts were also focused on identifying the main ions of CDOM from heterosigma akashiwo culture, corresponding fragment ions besides. All of these results had provided support for further chemical constitution research.
     Finally, hemolytic activity of different eluates was determined. The experiment demonstrated that the low polar materials are main factors responsible for hemolysis excreted by heterosigma akashiwo. Utilizing Highly Performance Liquid Chromatography to further separate eluate a5, the fraction had the highest hemolytic degree, finally found two groups of hemolytic compounds in eluate a5: one was homolog with a core structure (m/z 183.01), and it had been speculated as 3-dodecylphenyl hydrogen sulfite; the other was unsaturated fatty acid (UFA), containing octadecenoic C18:1(n-9), octadecadienoic C18:2(n-6), octadecatrienoic C18:3(n-6) and dodecenoic C20:1(n-9) acids.
     In conclusion, CDOM excreted by Raphidophyte microalga Heterosigma akashiwo (Hada) were mainly low molecular weight materials, and the low polar materials, such as fulvic acids (FA), were lower than the high polar materials of which majority were humic acids (HA). While the hemolytic toxin mainly appeared in the low polar elution group, the structure were respectively speculated as 3-aklyl benzenes hydroxyl sulfurous acid and the unsaturated fatty acid, hemolytic compounds and ultraviolet absorption materials had no correlativity.
引文
[1] Kirk J T O. Light and photosynthesis in aquatic ecosystems (2nd ed). Cambridge, Britain: Cambridge University Press, 1994.
    [2] Nelson N B, Siegel D A, Michaels A F. Seasonal dynamics of colored dissolved material in the Sargasso Sea [J]. Deep-Sea ResΙ, 1998, 45:931-957.
    [3] Zepp R G, Callaghan TV, Erickson D J. Effects of enhanced solar ultraviolet radiation on biogeochemical cycles [J]. Photochem Photobiol B: Biology, 1998, 46:69-82.
    [4] Clark C D, Hiscock W T, Millero F J, et al. CDOM distribution and CO2 production on the southwest Florida shelf [J]. Mar Chem, 2004, 89:145-167.
    [5] Herndl G H. Differences in the optical and biological reactivity of the humic and nonhumic dissolved organic carbon component in two contrasting coastal marine environments [J]. Limnol Oceanogr, 2000, 45:1120-1129.
    [6] Monsallier J M, Shcrbaum F J, Buckau G, et al. Influence of photochemical reactions on the complexation of humic acid with europium (III) [J]. Photochem Photobiol (A):Chemistry, 2001, 138 (1):55-63.
    [7]吴永森,张士魁,张绪琴,等.海水黄色物质光吸收特性实验研究[J].海洋与湖沼, 2002, 33(4):402-406.
    [8] Zhang X Q, Wu Y S, Zhang S K, et al . The Distribution on Fluorescence Intensity of Yellow Substance in Jiaozhou Bay [J]. Journal of Remote Sensing, 2002, 6 (3) : 229-232.
    [9] Parlanti E, Morin B, Vacher L. Combined 3D-spectrofluorometry, high performance liquid chromatography and capillary electrophoresis for the characterization of dissolved organic matter in natural waters [J]. Org Geochem, 2002, 33:221-236.
    [10] Repeta D J, Hartman N T, John S, et al. Structure Elucidation and Characterization of Polychlorinated Biphenyl Carboxylic Acids as Major Constituents of Chromophoric Dissolved Organic Matter in Seawater[J]. Environ. Sci. Technol, 2004, 38:5373-5378.
    [11] Koprivnjak J -F, Pfrommb P H, Ingall E , et al. Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis–electrodialysis [J]. Geochimica et Cosmochimica Acta 2009, 73:4215-4231.
    [12] Jason Kempton, Charles J Keppler, AlanLewitus AndrewShuler, et al. A novel Heterosigma akashiwo (Raphidophyceae) bloom extending from a South Carolinabay to offshore waters [J]. Harmful Algae, 2008, 7:235-240.
    [13] Coble P G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color [J]. Chem. Rev, 2007, 107:402-418.
    [14] Kalle K. The problem of the Gelbstoff in the sea [J]. Oceanography and Marine Biology: An Annual Review, 1966, 4:91-104.
    [15] Gagosian R R, Stuermer D H. The cycling of biogemic compounds and their diagenetically, transformed products in sea water [J]. Mar. chem., 1977, 5 (4-6):605-632.
    [16] Sathyendranath S. Remote sensing of ocean colour in coastal, and optically-complex waters [J]. Reports of the International Ocean-Color Coordinating Group, 2000, 3:9-21.
    [17] Leenheer J A. CrouéJ P. Characterizating aquatic dissolved organic matter [J]. Environmental Science and Technology,2003(3):18-26.
    [18] Rochelle E J, Fisher T R. Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton [J]. Marine Chemistry, 2002, 77(1):7-21.
    [19] Stedmon C A, Markager S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis [J]. Limnology and oceanography, 2005, 50(5):1415-1426.
    [20] Jerlov N G. Marine Optics [M]. Amsterdam: Elsvier Science Publications, 1976:57-63.
    [21] Morel A, Prieur L. Analysis of variations in ocean color [J]. Limnol Oceanogr, 1977, 22 (4):709-722.
    [22] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea(yellow substance)in the UV and visible domains [J]. Limnol Oceanogr, 1981, 26:43-53.
    [23] Markager S, Vincent W. Spectral light attenuation and the absorp tion of UV and blue light in natural waters [J]. Limnol Oceanogr, 2000, 45:642-650.
    [24] Stedmon C A, Markager S, Kaas H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastalwaters [J]. Est Coast Shelf Sci, 2000, 51:267-278.
    [25]夏恩沁,郭卫东,胡明辉.海洋蛋白荧光光分析法的研究进展[J].台湾海峡, 2004, 23(2):238-244.
    [26] Coble P G, Del Castillo C E, Bernard A. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon [J]. Deep-Sea ResearchⅡ, 1998, 45:2195-2223.
    [27] Chen J, Gu B, LeBoeuf E J, et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions [J]. Chemosphere, 2002, 48(1):59-68.
    [28] Hatcher P G, Rowan R, Mattingly M A. 1H and 13C NMR of marine humic acids [J]. Organic Geochemistry, 1980, 2:77-85.
    [29] Wilson M A, Barron P F, Gillam A H. The structure of freshwater humic substances as revealed by 13C-NMR spectroscopy [J]. Cosmochim. Acta, 1981, 45:1743-1750.
    [30] Harvey G. R, Boran D A, Chesal L A, et al. The structure of marine fulvic and humic acids[J]. Mar Chem, 1983, 12:119-132.
    [31] Hedges J I, Hatcher P G, Ertel J R, et al. A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry [J]. Cosmochim. Acta, 1992, 56:1753-1757.
    [32] Coble P G, Christopher A. Schultz, Kenneth Mopper. Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques [J]. Mar Chem, 1993, 41:173-178.
    [33] Mayer L M, Schick L L, Loder T C III. Dissolved protein fluorescence in two aineestuaries [J]. Mar Chem, 1999, 64:171-179.
    [34] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-mission matrix spectroscopy [J]. Mar Chem, 1996, 51:325-346.
    [35] Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Mar Chem, 2003, 82:255-271.
    [36] Boehme J, Wells M. Fluorescence variability of marine and terrestrial colloids: Examining size fractions of chromophoric dissolved organic matter in the Damariscotta River estuary [J]. Mar Chem, 2006, 101(1-2):95-103.
    [37] Kujawinski E B, Del Vecchio R, Blough N V, et al. Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry [J]. Mar Chem, 2004, 92:23-37.
    [38] Del Vecchio R, Blough N V. On the Origin of the Optical properties of Humic Substances [J]. Environ. Sci. Techno, 2004, 38 (14):3885-3891.
    [39] Erin S. Boyle, Nicolas Guerriero, Anthony Thiallet, et al. Optical Properties of Humic Substances and CDOM: Relation to Structure [J]. Environ. Sci. Technol, 2009, 43:2262-2268.
    [40] Hu M, Lee ZP. Ocean color reveals phase shift between Marine Plants and Yellow substance [J]. Geoscience and remote sensing letters, 2006, 3(2):262-266.
    [41] Pienitz R, Vincent W F. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes [J]. Nature, 2000, (4):484-487.
    [42] Kowalczuk P, Cooper W J, Whitehead R F, et al. Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight [J]. Aquat Sci, 2003, 65: 384-401.
    [29] Wilson M A, Barron P F, Gillam A H. The structure of freshwater humic substances as revealed by 13C-NMR spectroscopy [J]. Cosmochim. Acta, 1981, 45:1743-1750.
    [30] Harvey G. R, Boran D A, Chesal L A, et al. The structure of marine fulvic and humic acids[J]. Mar Chem, 1983, 12:119-132.
    [31] Hedges J I, Hatcher P G, Ertel J R, et al. A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry [J]. Cosmochim. Acta, 1992, 56:1753-1757.
    [32] Coble P G, Christopher A. Schultz, Kenneth Mopper. Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques [J]. Mar Chem, 1993, 41:173-178.
    [33] Mayer L M, Schick L L, Loder T C III. Dissolved protein fluorescence in two aineestuaries [J]. Mar Chem, 1999, 64:171-179.
    [34] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-mission matrix spectroscopy [J]. Mar Chem, 1996, 51:325-346.
    [35] Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Mar Chem, 2003, 82:255-271.
    [36] Boehme J, Wells M. Fluorescence variability of marine and terrestrial colloids: Examining size fractions of chromophoric dissolved organic matter in the Damariscotta River estuary [J]. Mar Chem, 2006, 101(1-2):95-103.
    [37] Kujawinski E B, Del Vecchio R, Blough N V, et al. Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry [J]. Mar Chem, 2004, 92:23-37.
    [38] Del Vecchio R, Blough N V. On the Origin of the Optical properties of Humic Substances [J]. Environ. Sci. Techno, 2004, 38 (14):3885-3891.
    [39] Erin S. Boyle, Nicolas Guerriero, Anthony Thiallet, et al. Optical Properties of Humic Substances and CDOM: Relation to Structure [J]. Environ. Sci. Technol, 2009, 43:2262-2268.
    [40] Hu M, Lee ZP. Ocean color reveals phase shift between Marine Plants and Yellow substance [J]. Geoscience and remote sensing letters, 2006, 3(2):262-266.
    [41] Pienitz R, Vincent W F. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes [J]. Nature, 2000, (4):484-487.
    [42] Kowalczuk P, Cooper W J, Whitehead R F, et al. Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight [J]. Aquat Sci, 2003, 65: 384-401.
    [56] Carder K L, Steward R G, Harvey G R, et al. Marine Humic and fulvic acids:their effects on remote sensing of ocean chlorophyll [J]. Limnol Oeanogr, 1989, 34(1):68-81.
    [57] Artinger R, Buckau G, Geyer S, et a1. Characterization of groundwater humic substances:influence of sedimentary organic carbon [J]. Applied Geochemistry,2000(15):97-l16.
    [58] Huovinen P S, Penttil H, Soimasuo M R.Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland [J].Chemosphere, 2003, 51(3):205-214.
    [59] Babin M, Stramski D, Giovanni M, et al.Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe[J]. Journal of Geophysical Research, 2003, 108(C7), 3211, doi:10.1029/2001 JC000882.
    [60]季乃云,赵卫红,王江涛,等.胶州湾赤潮暴发水体中溶解有机物质荧光特征[J].环境科学, 2006, 27(2):257-262.
    [61] Wu F C, Kothawala D N, Evans R D. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream [J]. Applied Geochemistry, 2007, 22(8):1659-1667.
    [62]傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特征研究[J].光谱学与光谱分析, 2005, 25(12):2024-2028.
    [63]赵卫红,王江涛,崔鑫,等.海洋微藻产生的不同粒级溶解有机物质的三维荧光光谱[J].高技术通讯, 2007, 17(1):88-93.
    [64] Kieber D J, McDaniel J, Mopper K. Photochemical source of biological substrates in sea water: Implication for carbon cycling [J]. Nature, 1989, 341: 637-639.
    [65] V?h?talo A V, Salonen K, Salkinoja-Salonnen M. Photochemical mineralization of synthetic lignin in lake water indicates enhanced turnover of aromatic organic matter under solar radiation [J]. Biodegradation, 1999, 10: 415-420.
    [66] Kulovaara M, Corin N, Bachlund P, et al. Impact of UV254-radiation on aquatic humic substances [J]. Chemosphere, 1996, 33:783-790.
    [67] Waldemar Grzybowski. Effect of short-term sunlight irradiation on absorbance spectra of chromophoric organic matter dissolved in coastal and riverine water [J]. Chemosphere, 2000, 40:1313-1318.
    [68]程远月,郭卫东.厦门湾有色溶解有机物光漂白的三维荧光光谱研究[J].光谱学与光谱分析, 2009, 29(4):990-993.
    [69]郭卫东,程远月.天然日光辐照下河口区CDOM的光化学降解[J].环境科学, 2008, 29(6):1463-1468.
    [70]王鑫,张运林,张文宗.太湖北部湖区CDOM光学特性及光降解研究[J].环境科学研究, 2008, 21(6):130-136.
    [71] Gonsior M, Peake B M, Cooper W T, et al. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry [J]. Environ. Sci. Technol, 2009, 43(3):698 -703.
    [72] Osbum C L, Coffin D A, Boyd T J. Observed variation in the photo-reactivity of CDOM from freshwater, estuarine, and marine sources in the Chesapeake Bay [J]. Eos, 2002, 8, OS31B-09.
    [73] Hu C, Muller-Karger F E, Zepp R G. Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts [J]. Limnol Oceangr, 2002, 47:1261-1267.
    [74] Koch B P, Witt M. Molecular formulae of marine and terrigeous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Geochim.Cosmochim.Acta, 2005, 69:3299-3308.
    [75] Hertkorn N, Benner R, Frommberger M, et al. Characterization of a major refractory component of marine organic matter[J].Geochim.Cosmochim.Acta, 2006, 70:2990-3010.
    [76]Jerry A.Leenheer, Colleen E.Rostad, Paul M.Gates, et al. Molecular resolution and fragmentation of fulvic acid by Electrospray Ionization/MultistageTandem Mass Spectrometry [J]. Anal.Chem., 2001(73):1461-1471.
    [77]粱松,钱宏林,齐雨藻.中国沿海的赤潮问题[J].生态科学, 2000, 19(4): 44-50.
    [78]朱惠刚,施玮,吴静.水体藻类污染与健康(一)[J].净水技术, 2000, 18(1): 13-16.
    [79]冯力霞.环境胁迫对4株微藻叶绿素荧光特性的影响[D].中国海洋大学, 2006.
    [80]何家菀,陈明惠,何振荣.小定鞭藻毒素的分离与鉴定[J].水生生物学报, 1996, 20(1):41-48.
    [81]尹伊伟,王朝晖,江天久,等.海洋藻类毒素的生态毒理学研究[J].海洋环境科学, 2004, 23(2):78-80.
    [82]齐雨藻,徐宁,王艳,等.中国赤潮研究的新进展-球形棕囊藻赤潮及其产硫的研究[J].中国基础科学国家重点基础研究项目, 2002, 23-28.
    [83]王朝晖,尹伊伟,齐雨藻,等.珠海桂山岛米氏裸甲藻赤潮对鱼鳃损伤的病理学组织观察[J].海洋学报, 2001, 23(1):133-138.
    [84] Yousuke Miyazaki, Takuji Nakashima, et al. Purification and characterization of photosensitizing hemolytic toxin from harmfull red tide phytoplankton Heterocapsa circularisquama[J]. Aquatic Toxicology, 2005, 73:382-393.
    [85] Gopal K. Pual, Nobuaki Matsumori, Michio Murata, et al. Isolation and Chemical Structure of Amphidinol 2, a Potent Hemolytic Compound from Marine Dinoflagellate Amphidinium klebsii [J]. Tetrahedron Letters, 1995, 36(35):6279-6282.
    [86] Nagai, T, Ru, S., Katoh, et al. An extracellular hemolysin homolog from cyanobacterium Synechocystis sp. PCC6803. In Proceedings of the 12th International Congress on Photosynthesis, 2001, S36-010.
    [87] Marisa Rangel, Elena L A Malpezzi, Sylvia M M susuni, et al. Short communication hemolytic activity in extracts of the diatom nitzschia [J]. Elsevier Science, 1997, 35(2):305-309.
    [88] Freitas J C, Rangel M, Malpezzi E L A. Hemolytic and neurotoxic activities in diatoms [J]. Soc scient Fish, l981, 47:1029-1033.
    [89] Moore R E. Occurrence of plant hormone producting bacteria in the sea [J]. Jappl Bacterial, 1982, 54:1919-1934.
    [90] Mitsui A, Rosner D, Goodman A, et al. Hemolytic toxins in marine cyanobacterium synechococcus sp. Red Tide-Biology Environmental Science and Toxicology[J]. Ed by Tomotosh okaichi, 1988, 367-370.
    [91] ShimadaY, Nakamura M, NaitoY, et al. C-terminal amino acid residues are required for the folding and cholesterol binding property of perfringolysin O, a pore-forming cytolysin [J]. Biol Chem, 1999, 274:18536-18542.
    [92] Hashimoto Y. Animal, Plant and Microbial Tons [J]. Plenum Press, New York, 1976, 1:33-338.
    [93]刘宁宁,林永永.有毒甲藻的研究[J].热带海洋, 1999, 18(2):1-4.
    [94] Chang F G, Anderson C, Boustead N C. Fiest record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cage-reared salmon in Big Gloy Bay, New Zealand [J]. New Zealand of Mar and Freshwater Res, 1990(24):461-469.
    [95] Yasumoto T, Underdal B, Aune T, et al. Sceening for hemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norweigan coastal waters[J]. Elsevier science publications, New York. 1990:436-442.
    [96] Akiko Emura, Yukihiko Matsuyamb, Tatsuya Oda. Evidence for the production of a novel proteinaceous hemolytic exotoxin by dinoflagellate Alexandrium taylori [J]. Harmful Algae, 2004, 3:29-37.
    [97] Yoji Sato, Tatsuya Oda, Tsuyoshi Muramatsu, et al. Photosensitizing hemolytic toxin in Heterocapsa circularisquama, a newly identified red tide dinoflagellate [J]. Aquatic Toxicology, 2002, 56:191-196.
    [98] Nayak B B, Karunasagar I. Influence of bacteria on growth and hemolysin production by the marine dinoflagellate Amphidinium carterae [J]. Marine Biology, 1997, 130:35-39.
    [99]周成旭,傅永静,严小军. 4种典型有害赤潮原因种的溶血特性研究[J].生态毒理学报, 2007, 2(1):78-82.
    [100] Borlak J T, Welch V A. Health implications of fatty acids [J]. Arzneim.Forsch, 1994, 44:976-981.
    [101] Simopoulos A P. Omega-3 fatty acids in in?ammation and autoimmune diseases [J]. J.Am.Coll.Nutr, 2002, 21:495-505.
    [102] Friedrich Jüttner. Liberation of 5, 8, 11, 14, 17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defence reaction in epilithic diatom biofilms[J]. J.Phycol, 2001, 37(5):744-755.
    [103] Meng Fu, Albert Koulmanb, Marionvan Rijssel, et al. Chemical characterization of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae) [J]. Toxicon, 2004, 43:355-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700