用户名: 密码: 验证码:
NbX_2(X=S、Se)纳米润滑油添加剂的制备及摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在润滑工程领域,润滑油添加剂已经被广泛的应用于各种润滑油中,它们起到了减小摩擦系数、降低磨损量甚至对摩擦表面损伤部位进行修补的功能。但是,现有的润滑油添加剂都具有明显的不足,特别体现在对摩擦表面的修补作用上。近年来,通过研究发现,添加纳米颗粒的润滑油在摩擦学性能上得到了显著的提高。因此我们将层状过渡族金属硫、硒化物制备成纳米级的颗粒、线、管/束,从而使层状过渡族金属硫、硒化物具有独特闭合结构,消除了悬挂键的存在,提高化学稳定性。应用于润滑油中,一方面纳米球形颗粒在摩擦面间存在微滚动作用,变滑动摩擦为滚动摩擦,减小摩擦系数;另一方面,纳米颗粒可以沉积到摩擦表面的磨损部位,使摩擦表面得到修补。
     本文主要对过渡族金属铌的硫、硒化物NbX_2(X=S、Se)型纳米材料的制备工艺和摩擦学性能等问题进行了初步探索。主要研究内容包括:
     (1)将单质Nb粉和S粉混合,密封在石英管内,在高温箱式炉中加热,通过固相反应合成了大量的NbS_2纳米管(线)。对所合成的纳米材料分别用TEM、SEM、EDS、XRD等测试手段进行表面形貌和结构成分的表征。
     (2)将单质Se和Nb粉密封在石英管内,在高温箱式炉中加热,通过固相反应合成了大量的NbSe_2纳米纤维。将单质Nb粉和Se粉在高能球磨机内进行球磨,然后在管式炉内加热,在Ar和N_2混合气氛下反应生成了大量的NbSe_2纳米富勒烯颗粒。对所合成的纳米材料分别用TEM、SEM、EDS、XRD等方法进行了结构、形貌和成分的测试和表征。
     (3)以NbSe_2为例,对Nb的硫、硒化物纳米材料的生长过程及影响其结晶生长的环境因素,如反应温度、保温时间、过硒系数等反应条件进行了简单讨论,并对一维NbX_2纳米材料的生长机制给出了合理解释。
     (4)将NbS_2、NbSe_2纳米线作为润滑油添加剂,在UMT-2摩擦磨损试验机上进行了摩擦性能测试。NbSe_2纳米颗粒作为润滑油添加剂,添加在基础油中,在UMT-2多功能摩擦试验机上进行了不同条件的摩擦学试验,对Nb的硫、硒化物纳米材料的摩擦学行为进行了初步探讨,并对比了不同形貌的NbSe_2的摩擦学性能。
     (5)通过对添加NbX_2纳米级固体添加剂的润滑油的摩擦性能试验,初步探讨了含有NbX_2纳米级固体添加剂的润滑油的摩擦机制,其优异的摩擦性能可能归结于NbX_2纳米材料独特的闭合结构,润滑膜机制和填充条件修复机制。
Adding additives into oil reduce friction and wear and even to mend the worn surface has been widely applied in lubrication engineering for quite a long time.But,the research and development of more effective additives have never been ceased since all kinds of additives mentioned above are still not perfect,especially their effect of the wear repairing is far from satisfactory.With the aid of nano-materials,a lot of novel work has been done with enormous encouraging achievements obtained because the tribological properties have been anhanced obviously.So transitional metal dichalcogenides were prepared as nanostructures(such as tubes,wires and particles),the unique closed nanostructure(nanotubes, nanowires,nanobundles) formed with rolled up materials have eliminated the fringe dangling bonds,thereafter they improve the chemical stability. Applied in lubricating oil,one sides,the nano-materials act as spacer between the two friction surface,and some ever proposed that the nano-materials were rolling like a ball in the grinding area which leads to the reduction of friction coefficient.Another sides,nano-materials deposit on the friction surfce and compensate the loss of mass,the so-called mending effect.
     In this article,experimental investigation and theoretical analysis were carried out on the preparation process and tribological properties of transitional metal dichalcogenides and diselenium NbX_2(X=S,Se) nanostructures.
     Firstly,The solid-phase reaction was used to produce NbS_2 nanotubes(nanowires),in evacuated and sealed quartz ampoules by mixed S and Nb powder.The component and microstructure of NbS_2 were investigated by means of X-ray diffraction(XRD),scanning electronic microscope(SEM) and transmission electronic microscope(TEM).
     Secondly,NbSe_2 nanofibers were obtained by heating sealed quartz ampoules by mixed Se and Nb in high temperature boxed furnace.Besides, the mixture of Se and Nb powders were milling in high energy ball-milling machine,the mixture after milling were heat in tubular furnace,a lot of NbSe_2 nanoparticles produced in mixture of Ar and N_2.The component and microstructure of NbSe_2 were investigated by means of X-ray diffraction (XRD),scanning electronic microscope(SEM) and transmission electronic microscope(TEM).
     Thirdly,for example NbSe_2,the growth and conditions of nanowires (nanofibers) and were discussed including reactional temperature,keep temperature time,coefficient of exceeding Se and so on,and the growth mechanism of NbSe_2 nanostructures were discussed in simply.
     Fourthly,The tribological properties of NbS_2 and NbSe_2 nanowires, acting as additives,were investigated in UMT-2 machine.Besides,NbSe_2 nanoparticles were added in basic oil,the tribological properties of them were UMT-2 test in different conditions.Then the tribological behavior of them were discussed and the tribological properties of different shapes NbSe_2 were compared.
     At last,the friction mechanism of lubrication including NbX_2 as additives was discussed preliminary.The lubrication has excellent tribological proerties in high load may be due to the following factors:one dimensional nanomaterial has unique closed structures,lubrication films and fill up-repair mechanism.
引文
[1]聂明德,党鸿辛.固体润滑[M].北京:中国石化出版社,1982:179-184
    [2]许松年,吴建军.固体润滑技术的应用[J].冶金设备,1995,93(5):31-33.
    [3]彭友方.固体润滑的应用[J].润滑与密封,1997(5):63-64.
    [4]Dowson D..History of Tribology[M].Longman,1979.
    [5]宫川行雄等.火箭宇航专用轴承的润滑和设计[J].国外轴承技术,1980(06):8-15.
    [6]Masataka Nosaka.Le-7液氢火箭涡轮泵自润滑球轴承的摩擦特性[J].国外轴承技术,1993(04):1-12.
    [7]#12
    [8]陈敬中.现代晶体化学[M].北京:高等教育出版社,2001.407-409.
    [9]张家玺,刘馄,胡献国.纳米金刚石颗粒对发动机润滑油摩擦学特性的影响[J].摩擦学学报,2002,24(1):4448.
    [10]李积彬,李瀚,孙伟安.C60的摩擦学特性的研究[[J].摩擦学学报,2000,20(4):307-308.
    [11]石淼森.固体润滑技术[M].北京:中国石化出版社,1998.
    [12]阎逢元,金芝珊.C60/C70作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,1993,13(1):59-63.
    [13]官文超,申春迎.水溶性富勒烯一衣康酸共聚物的润滑性能[[J].华中科技大学学报.2001,29(8):99-101.
    [14]Qiu S Q,Zhou Z R.Preparation of Ni nanoparticles and evaluation of their tribological Performance as potential additives in oils[J].J.Tribology,2001,123:441-443.
    [15]Tarasov S,Kolubaev A,Belyaev S,et al.Study of friction reduction by nanocopper additives to motor oil[J].Wear,2002,252:63-69.
    [16]乌学东,王大璞,张信刚等.表面修饰纳米粒子的摩擦学性能[[J].上海交通大学学报,1999,33(2):224-227.
    [17]叶毅,董浚修,陈国需等.纳米硼酸盐的摩擦学特性初探[J].润滑与密封,2000,4:20-21.
    [18]王九,陈波水,侯滨等.润滑油中CuS纳米粒子的摩擦学性能研究[[J].润滑与密封,2001,2:42-43.
    [19]Rothschild A,Sloan J,Tenne R.Growth of WS_2 nanotubes phases[J].J.Am.Chem.Soc.,2000,122:5169-5179.
    [20]Feldman Y,Zak A,Popovita-Biro R,et al.New reactor for production of tungsten disulfide hollow onion-like(inorganic fullerene-like) nanoparticles[J].Solid State Sci.,2000,2:663-672.
    [21]Rapoport L,Bilik Yu,Feldman Y,et al.Hollow nanoparticles of WS2 as potential solid-state lubricants[J].Nature,1997,387(19):791-793.
    [22]Rapoport L,Feldman Y,Homyonfer M.Inorganic fullerene-like material as additives to lubricants:structure-function relationship[J].Wear,1999,225-229:975-982.
    [23]石淼淼.固体润滑材料[M].北京:化学工业出版社.2000.
    [24]S.Tarasov.A.kolubaev et al.Study of friction reduction by nanocopper additives to motor oil[J].Wear 252(2002):63-69.
    [25]夏延秋,丁津原,马先贵,等.纳米级金属粉改善润滑油的摩擦磨损性能研究[J].润滑油,1998,13(6):37.
    [26]T Hikado,T Tsukizoe,H Yosikawa.Lubrication Mechanism of Solid Lubricants in Oil(81-Lub-50)[J].Journal of Lubrication Technology,1983,105:245.
    [27]周静芳,张治军,王晓波.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [28]马丽果,杨秀华,谢继丹等.微乳法制备纳米铜粉及其在润滑油中的应用研究[J].润滑与密封,2004,(4):87-88.
    [29]赵彦保,周静芳等.油酸/PS/TiO2复合纳米微球液体石蜡抗磨性能的影响研究[J].摩擦学学报,2001,21(1):73-75.
    [30]张家玺,刘琨等.纳米金刚石颗粒对发动机润滑油摩擦学特性的影响[J].摩擦学学报,2002,22,(1):44-47.
    [31]霍玉秋,翟玉春.纳米SiO_2润滑油添加剂的制备[J].材料导报,2003,17(3):138-140.
    [32]孙昂,严立,朱新河等.表面修饰纳米TiO_2表征及改善润滑油的摩擦性能[J].大连海事大学学报,2003,29(3):25-27.
    [33]Rapoport L,Feldman Y,Tenne R et al.Tribological properties of WS_2 nanopartides under mixed lubrication[J].Wear,2003,255:785-793.
    [34]罗湘燕,唐振杰,汪定华,等.原位合成的纳米MoS_2微粒/聚酯聚合物改善航空润滑油抗磨性能的研究[J].润滑与密封,2003,(5):57-58.
    [35]陈爽,刘维民,欧忠文,徐滨士.油性表面修饰PbO纳米微粒作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2001,21(5):344-347.
    [36]陈爽,刘维民.表面修饰WS_2纳米微粒的合成及其抗磨性[J].摩擦学学报,1997,17(3):260-262.
    [37]R.Tenne,L.Margulis,M.Genut,G.Hodes.Polyhedral and Cylindrical Structures of Tungsten Disulphide[J].Nature,1992,(360):444-446.
    [38]L.Margulies,G.Salitra,R.Tenne,M.Talianker.Nested Fullerene-Like Stmctures[J].Nature,1993,(365):113-117.
    [39]A.Rothschild,J.Sloan,R.Tenne.Growth of WS_2 Nanotubes Phases[J].J.Am.Chem.Soc.,2000,(122):5169-5172.
    [40]Y.Feldman,G.L.Frey,M.Homyonfer,R.Tenne.Bulk Synthesis of Inorganic Fullerene-like MS_2(M=Mo,W) from the Respective Trioxides and the Reaction Mechanism[J].J.Am.Chem.Soc.,1996,(118):5632-5637.
    [41]A.Rothschild,R.Popovitz-Biro,O.Loude,R.Tenne.Morphology of Multi-wall WS_2Nanotubes[J].J.Phys.Chem.,2000,(104):8976-8981.
    [42]G.Seifert,H.Terrones,M.Terrones,T.Frauenheim.Novel NbS_2 Metallic Nanotubes[J].Solid State Comm,2000,(115):635-638.
    [43]T.Kasuga,M.Hiramatsu,A.Hoson,T.Sekino,K.Niihara.Formation of Titanium Oxide Nanotube[J].Langmuir,1998,(14):3160-3163.
    [44]张顺利,周静芳,张治军等.纳米管TiO_2的形貌结构和物理化学特性[J].科学通报,2000,45(10):1104-1108.
    [45]E.S.Michael,S.B.Petra,N.Reinhard,et al.Vanadium Oxid Nanotubes:A new Nanostructured Redoxactive Material for the Electrochemical Insertion of Lithium[J].Electro.chem.Soc.,1999,146:2780-2784.
    [46]M.Niederberger,H.J.Muhr,F.Krumeich,et al.Field-effect transistor made of individual V_2O_5 nanofibers[J].Chem.Mater,2000,12:1995-1998.
    [47]Y.R.Hacohen,E.Greenbaum,R.Tenne,et al.Cage Structures and Nanotubes of NiCl_2[J].Nature,1998,395:336-340.
    [48]M.Zhang,Y.Bando,K.Wada.Silicon Dioxide Nanotubes Prepared by Anodic Alumina as Templates[J].J.Mater.Res.,2000,15:387-392.
    [49]天津市工业展览馆二硫化钼组.二硫化钼[M].天津:天津人民出版社,1972.20-25.
    [50]Spalvins T.ASLE Proceedings 3rd International Conference on Solid Lubrication[M].New York:Machanical Engineering Publications,1984,204-207.
    [51]Cizaire L,Vacher B,Mogne T L,et al.Mechanisrns of ultra-low friction by hollow inorganic fullerene-like MoS_2 nanoparticles[J].Surf Coat Techn,2002,160(2-3):282-287.
    [52]Higgs C,Heshmat C,Heshmat H.Comparative evaluation of MoS_2 and WS_2 as powder lubricants in high speed,multi-pad joural bearings[J].Tribology,1999,121(3):625-630.
    [53]邢鹏飞,柳卓.WS_2微粉的物理性能及其稳定性[J].中国有色金属报,1999,9(4):811-814.
    [54]马江虹,翟玉春,田彦文.硫化物纳米管及其研究进展[J].纳米材料与结构,2003,9(1):1-4.
    [55]Li C S,Takeichi Y,Shimizu S,Uemura M,Nakai T,Sinomiya M,Tsuya Y,Tribology International,1999,32:407-411.
    [56]张文钲.空心富勒烯纳米MS_2和WS_2[J].中国钼业,2002,26(4):18-20.
    [57]Volovik Y,Rapoport L,Leschinsky V,et al.Mechanism of friction of fullerenes[J].Industrial Lubrication &Tribology,2002,54(4):17.
    [58]Rapoport L,Lvosky M,Lapsker I,et al.Slow release of fullerene-like WS_2 as a superior solid lubrication mechanism in composites matrices[J].Adv Eng Mater,2001,3(1-2):71-75.
    [59]王春明,潘冶,佟晓辉.纳米硫化物及其涂层在摩擦学中的应用与发展[J].材料导报,2005,19(Ⅳ):47-50.
    [60]Y.Feldman,E.Wasserman,D.J.Srolovitz,R.Tenne.High rate,Gas phase growth of MoS_2nested fullerences and nanotubes[J].Science,1995,267:222-226.
    [61]Boaz Alperaon,Moshe Homyonfer,Reshef Tenne.Photoelectrochemical Studies with Inorganic Cage Structures of Metal Dichalcogenides[J].J.Electroanalytical Chemistry,1999,473:186-190.
    [62]Y.Q.Zhu,W.K.Hsu,H.Terrones,et al.Novel route to WOx nanorods and WS_2 nanotubes from WS_2 inorganic fullerenes[J].J.Mater.Chem,2000,10:2570-2577.
    [63]Y.Feldman,A.Zak,R.Popovitz-Biro and R.Tenne.New Reactor for Production of Tungsten Disulfide Onion-Like(Inorganic Fullerene-Like) Nanoparticles[J].Solid State Science,2002,2:663-667.
    [64]Y.Q.Zhu,W.K.Hsu,S.Firth,et al.Niobium-dopped WS_2 nanotubes[J].Chemical Physics Letters,2001,342:15-21.
    [65]R.Rosenzweig,A.Margolin,Y.Feldman,R.Popovitz and T.Tenne.WS_2 Nanotube Bundles and Foils[J].Chemistry of Materials,2002,14:471-473.
    [66]Alla Zak,Yishai Feldman,Vladimir Alperovich,Rita Rosensweig and Reshef Tenne.Struc tural and Electronic Properties of Molecular Nanostructures[J].2002,22:207-210.
    [67]Jun Chen,Su-Long Li,Qing Xu and Koji Tanaka.Synthesis of opened MoS_2 nanotubes and the application as the catalyst of methanation[J].Chem Commun,2002,18:1722-1723.
    [68]Y.Feldman,G.L.Trey,M.Homyonfer,V.Lyakhovitskaya et al.Growth of WS_2 Nanotubes Phases[J].J.Am.Chem.Soc.,1996,118:5362-5367.
    [69]J.H.Zhan,Z.D.Zhang,X.F.Qian,et al.Solvothermal Synthesis of NanocrystallineMoS_2from MoO_3 and Elemental Sulfur[J].Journal of Solid State Chemistry,1998,141:270-273.
    [70]Yi ya Peng,Zhaoyu Meng,Chang Zhong,et al.Tubc-and ball-like amorphous MoS_2prepared by a solvothermal method[J].Materials Chemistry and Physics,2002,73:327-329.
    [71]Xian Yun Xu,Xiao Guang Li.Preparation and morphology studies of hollow polymer particles[J].Chinese Chemical Letters,2003,14:759-765.
    [72]Yan Qiu Zhu,Wen Kuang Hsu,Harold W.Kroto and David R.M.Walton.Carbon nanotube template promoted growth of NbS_2 nanotubes/nanorods[J].Chem.Commun,2001,21:2184-2185.
    [73]R.L.D.Whitby,W.K.Hsu,P.C.P.Waltts,et al.WS_2 nanotubes containing single-walled carbon nanotube bundles[J].Appl.Phys.Lett,2001,79:4574-4575.
    [74]R.L.D.Whitby,W.K.Hsu,T.H.Lee et al.Complex WS_2 nanostructures[J].Chemical Physics Letters,2002,359:68-76.
    [75]Y.Q.Zhu,W.K.Hsu,Harold W.Kroto and David R.M.Walton.Hollow Cathode Plasma Synthesis of Carbon Nanofiber Arrays at Low Temperature[J].Phys,Chem.B,2002,106:1534-1536.
    [76]Raymond L.D.Whitby,Wen Kuang Hsu,Peter K.Fearon,et al.ultiwalled Carbon Nanotubes Coated with Tungsten Disulfide[J].Chem.Mater.,2002,14(5):2209-2217.
    [77]M.Remskar and Z.Skraba.MoS_2 as microtubes[J].Appl.Phys.Lett,1996,69:351-353.
    [78]M.Remskar,Ales Real,Zora Skraba,et al.Self-Assembly of Subnanometer-Diameter Single-Wall MoS_2 Nanotubes[J].Science,2001,292:479-481.
    [79]M.Remskar et al..Self-assembly of subnanometer-diameter single-wall MoS_2 nanotubes[J].Science,2001,292:479-481.
    [80]M.Remskar et al.MoS_2 as Microtubes[J].Appl.Phys.Lett.,1996,69:3-6.
    [81]M.Nath and C.N.R.Rao.New metal disulfide nanotubes[J].J.Am.Chem.Soc,2001,123:4841-4842.
    [82]M.Nath,K.Mukhopadhyay,C.N.R.Rao.Preparation of Nanocrystalline MoS_2 Hollow Spheres[J].Chemical Physics Letters,2002,352:163-168.
    [83]D.Vollath,D.V.Szabo.Synthesis of Nanocrystalline MoS_2 and WS_2 in a Microwave Plasma[J].Materials Letters,1998,35:236-244.
    [84]Yadong D.Li,Xiaolin L.Li,Rongrui R,He,Jing Zhu,Zhaoxiang X.Deng.Artificial lamellar mesostructures to WS_2 nanotubes[J].J.Am.Chem.Soc.2002,124:1411-1416.
    [85]Gaosheng Chu,Guozhu Bian,Yilu Fu,Zhicheng Zhang.Preparatiion and Structunal Characterization of Nano-sizes Amorphous Powders of MoS_2 by r-Irradiation Method[J].Materials Letters,2000,43:81-86.
    [86]M.Jose-Yacaman,H.Lopez,P.Santiago,et al,Studies of MoS_2 structures produced by electron irradiation[J].Appl.Phys.Lett.,1996,69:1065-1069.
    [87]Xiangying Chen,Xiong Wang,Zhenghua Wang,Weichao Yu and Yitai Qian.Direct sulfidization synthesis of high-quality binary sulfides(WS_2,MoS_2,and V_5S_8) from the respective oxides[J].Mater.Chem.Phys.,2004,87:321-337.
    [88]Noriaki Sano,Haolan Wang,Manish Chhowalla et al.Fabrication of inorganic molybdenum disulfide fullerenes by arc in water[J].Chemical Physics Letters,2003,368:331-337.
    [89]Claire J.Carmalt,Christopher W.Dinnage and Ivan P.Parkin.Thio sol-gel synthesis of titanium disulfide from titanium thiolates[J].Mate.Chem.,2000,10:2823-2826.
    [90]Jun Chen,Su-Long Li,Zhao-Liang Tao et al.Synthesis of TiSe_2 Nanotubes/Nanowires[J].Chem.Commun.,2003,8:980-981.
    [91]Pavel Afanasiev,Christophe Geantet,Cecile Thomazeau and Bernadette Jouget,Molybdenum polysulfide hollow microtubules grown at room temperature from solution[J].Chem.Commun,2000,10:1001-1002
    [92]Wen Zhang Shu,Bao He Chang,Yan Qiu Zhu et al.Alternative route to molybdenum disulfide nanotubes[J].J.Am.Chem.Soc.,2000,122:10155-10158.
    [93]Wen Kuang Hsu,Yan Qiu Zhu,Nan Yao et al.Ti-doped MoS_2 nanostructures[J].Adv.Funct.Mater.,2001,11:69-74.
    [94]Ro th sch ild A,Sloan J,Tenne R.Grow th of WS_2 nanotubes phases[J].J.Am.Chem.Soc.,2000,122:5169-5179.
    [95]Feldm an Y,Wasserm an E,Sro lovitz D J,et al.High rate,gas-phase grow th of MoS_2nested inorganic fullerenes and nanotubes[J].Science,1995,267:222-225.
    [96]HSU W K,CHANG B H,ZHU Y Q,et al.An alternative route to molybdenum disulfide nanotubes[J].J.Am.Chem.Soc.,2000,122:10155-10158.
    [97]Sen R,Govindaraj A,Suennaga K,et al.Encapsulated and hollow closed-cage structures of WS_2 and MoS_2 prepared by laser ablation at 450-1050℃[J].Chem Phy Lett.,2001,340:242-248.
    [98]Chhowalla M,Amaratunga G A J.Thin films of fullerene-like MoS_2 nanoparticles with ultra-low friction and wear[J].Natu re,2000,407:164-167.
    [99]Zelensi C M,Dorhout P K.Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS_2[J].J.Am.Chem.Soc.,1998,120:734-742.
    [100]Nath M,Govindaraj A,R ao C.N.R.Simple synthesis of MoS_2 and WS_2 nanotubes[J].Adv.Mater.,2001,13(4):283-283.
    [101]中国机械工程学会摩擦学学会《润滑工程》编写组编.润滑工程[M].北京:机械工业出版社,1986.
    [102]陈卫祥,涂江平,马晓春等.Ni-P无机类富勒烯WS_2纳米材料化学复合镀层的制备及其摩擦学性能初步研究[J].化学学报,2002,60(9):1722-1726.
    [103]L.Rapoport,V.leshchinsky,I.Lapsker.et al.Tribological properties of WS_2 nanoparticles under mixed lubrication[J].Wear,2003,255:785-793.
    [104]陈之战,施尔畏,元如林,郑燕青.水热结晶学[M].第九版.北京:科学出版社,2004.
    [105]L.Rapoport,M.Lvosky,I.Lapsker et al.Friction and wear of bronze powder composites including fullerene-like WS_2 nanoparticles[J].Wear,2001,249:150-157.
    [106]Rapoport L,Lvosky M,Lapsker I et al.slow release of fullerene-like WS_2 nanoparticles from Fe-Ni-graphite matrix:a self lubricating nanocomposite[J].Nano Letters,2001,1:137-140.
    [107]L.Rapoport,O.Nepomnyashchy,A.Verdyan et al.Polymer Nanocomposites with Fullerene-like Solid Lubricant[J].Adv.Eng.Mater.2004,6:44-48.
    [108]R.Sidney,H.Cohen,Y.Feldman,et al.Nanotribology of novel metal dichalcogenides[J].Applied Surface Science,1999,149:603-607.
    [109]R.Greenberg,G.Halperin,I.Etsion et al.The Effect of WS_2 Nanoparticles on Friction Reduction in Various Lubrication Regimes[J].Tribology Letters,2004,17(2):179-186.
    [110]J.J.Hu and J.S.Zabinksi.Nanotribology and lubrication mechanisms of inorganic Fullerene-like MoS_2 nanoparticles investigated using lateral force microscopy(LFM)[J].Tribology Letters.2005,18:2-6.
    [111]L.Joly-Pottuz,F.Dassenoy,M.Belin,B.Vzcher,J.M.Martin and N.Fleischer.Ultralow-friction and wear properties of IF-WS_2 under boundary lubrication[J].Tribology Letters,2005,18(4):453-462.
    [112]Y.Q.Zhu T Sekine,N Fleischer and R Tenne et al.Shock-absorbing and failure mechanisms of WS_2 and MoS_2 nanopartides with fullerene-like structures under shock wave pressure[J].Journal of the American Chemical Society,2001,127(46):16263-16272.
    [113]赵朋,姚燕燕,田晓珍等.纳米科技重大发现-富勒烯结构二硫化钼类纳米材料的研究进展[J].中国钼业,2004,28(1):30-32.
    [114]L.Rapoport,N.Fleischer,R.Tenne.Fullerene-like WS_2 nanoparticles:superior lubricants for harsh conditions[J].Adv.Mater.,2003,15:651-655.
    [115]A.A.Voevodin,J.P.O'Neill,J.S.Zabinski.Nanocomposite tribological coatings for aerospace applicantions[J].Surface and Coating Technology,1999,119:36-45.
    [116]S.R.Cohen,L.Rapoport,E.A.Ponomarev et al.The tribological behavior of type Ⅱ textured MX_2(M=Mo,W;X=S,Se) films[J].Thin Solid Films,1998,324:190-197.
    [117]Maja Remskar,Ales Mrzel et al.Metal-Alloyed NbS_2 Nanotubes Synthesized by the Self-Assembly of Nanoparticles[J].Adv.Mater,2002,14(9):680-684.
    [118]西村允,王安钧.固体润滑概论(1)[J].摩擦学学报,1986,03:175-176.
    [119]J.Chen,L.Suo-Long,T.Zhan-Liang et al.Low-temperature synthesis of titanium disulfide nanotubes[J].Chem.Commun.,2003,8:980-981.
    [120]J.Chen et al.Titanium disulfide nanotubes as Hydrogen-Storage Materials[J].J.Am.Chem.Soc.2003,125:5284-5285.
    [121]M.Nath,C.N.R.Rao.Nanotubes of the disulfides of groups 4 and 5 metals[J].Pure Appl.Chem,2002,74(9):1545-1552.
    [122]Manashi Nath,Swastik Kar,C.N.R.Rao et al.Superconducting NbSe_2 nano-structures[J].Chemical Physics Letters,2003,368:690-695.
    [123]Raybaud,J.Hafner,G.Kresse,H.Toulhoat.Structural and Electronic Properties of the MoS_2(1010) Edge-surface[J].Surface Science,1998,407:237-250.
    [124]Yan V.Zubanichus,Yurii L,Slovokhotov,Patti J.Schilling,etc.X-ray absorption fine structure study of the atomic and electronic structure of molybdenum disulfide intercalation compounds with transition metals[J].Inorganica Chimica Acta.1998,280:211-218.
    [125]E.Benavente,M.A.Santa Ana,F.Mendizabal,G.Gonzalez,Coordination,Chemistry Reviews.Intercalation Chemistry of Molybdenum[J].Coordination Chemistry Reviews,2002,224:87-109.
    [126]A.S.Golu,I.B.Shumilova,Y.V.Zubavichus,Yu.L.Slovokhotov,etc.FromSingle-layer Dispersions of Molybdenum Disulfide Towards Ternary Metalsulfieds:relncorporating Copper and Silver into A MoS_2 Matrix[J].Solid State Ionics,1999,122:137-139.
    [127]Y.Q.Zhu,W.K.Hsu.AlterativeRoute to NbS_2 nanotubes[J].J.phys.Chem.B,2002,106:7923-7626.
    [128]Xingcai Wu,Yourong Tao,Xiaokang Ke,et al.Catalytic synthesis of long NbS_2 Nanowire strands[J].Materials Research Bulletin.
    [129]张克从,乐漶.生长科学与技术(上)[M].北京:科学出版社,1997.
    [130]孙院军,王林,孙军,唐丽霞,陈强,罗建海.前驱粉团聚度对钼粉及后期制品性能的影响[J].中国钼业.2006,30(1):32.
    [131]卢寿慈.粉体加工技术[M].北京:轻工业出版社,1999.
    [132]温诗铸,杨沛然等.弹性流体动力润滑[M].北京:清华大学出版社,1992年.
    [133]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004年:229.
    [134]L.Margulis,G.Salitra,M.Taliankar et al.Nested fullerene-like structures[J].Nature,1993,365:113-114.
    [135]Rapoport.L,leshchinsky V,Lapsker.I et al.Tribological properties of WS_2 nanopartieles under mixed lubrication[J],wear,2003,255:785-793.
    [136]Golan Y,Drummond C,Homyonfer M,et al.Microtribology and direct force measurement of WS_2 nested fullerene-like nanostructure[J].Adv Mater,1999,11:934-934.
    [137]Golan Y,Drummond C,Israelachvili J et al.In situ imaging of shearing contacts in the surface forces apparatus[J].Wear,2000,245:190-195.
    [138]U.S.Schwarz,S.Komura and S.A.Safran.Deformation and tribology of multi-walled hollow nanoparticles[J].Europhys,2000,50:762-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700