用户名: 密码: 验证码:
坡缕石纳米在PF复合中的分散问题及其对摩擦制动件性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展和进步,生产领域对机械装置、交通运输工具等的速度、负荷和安全性要求越来越高,因此对运转机械的制动材料的使用要求也越来越高。摩擦制动材料中的基体树脂的性能对其性能具有重要影响,本文就摩擦制动材料的酚醛基体树脂(PF)的纳米复合改性技术中纳米粒子分散这一关键问题进行了研究,获得较佳的分散工艺及其参数,提高了摩擦制动件的高温摩擦磨损性能。
     本研究使用的坡缕石矿物有着优良的物理化学性能,其纳米制备以及分散在摩擦PF中能够起到对树脂改性的作用,能够提高树脂的抗热衰退性能,坡缕石纳米分散均匀的PF树脂耐热性获得显著提高其摩擦磨损性能得到大幅改善。
     本文介绍了通过实验研究,所制定的坡缕石矿物纳米制备的合理工艺方案:干-湿法球磨,得到纳米化率较高的球状或短针状的纳米粒子。
     针对坡缕石特殊的晶体结构,研究出利用硅烷偶联剂对坡缕石纳米粒子表面进行修饰改性的工艺,使纳米坡缕石和硅烷偶联剂形成化学键连接,获得有利于同酚醛树脂结合的聚合体。通过对照实验得出合理的修饰改性工艺参数。
     另外,本文还进一步研究了利用超声波的“空化作用”在PF合成的某阶段适时对坡缕石纳米颗粒进行分散的效果,得出合适的超声分散工艺参数,获得最佳的分散效果。通过TEM表征分析,可以看出对坡缕石纳米表面进行修饰后添加至PF所得到的树脂以及采用超声波分散的树脂均比未作任何分散处理添加纳米的树脂分散性要高,故而同时采用表面修饰和超声波作用两种方法可获得纳米较好的分散效果。
     本文利用不同分散状况的纳米复合PF制备的摩擦制动带在定速摩擦磨损实验机上进行对比测试实验,获得相关的摩擦磨损性能数据。通过对比分析结果为:经过纳米复合改性PF树脂所获得的抗热衰退性能提高,且磨损率降低;分散状况较好的PF树脂所制备出的摩擦制动带的抗热衰退性能提高,且磨损率降低。
With the development of economic, higher speed, more load and better security of transport and other machines are required in morden industry. Friction materials for brake system should be designed to maintain stable and reliable friction force at wide ranges of pedal pressure, vehicle speed, temperature and others. Matrix resin performance is a major impact for materials of Brake. This paper concentrates upon improving the phenolic resin that is base of the brake by nano-materials modifying. It is a key point for nano-material diepersed in PF. The process performances were stuied in this paper, also brake friction and wear properties is improved in high temperature.
     Palygorskite mineral have excellent properties in physical and chemical. Nano-Palygorskite dispersing in PF uniformly can improve the PF that will be given better friction performances just like heat resistant, anti-wear and so on, those performances are need in brake.
     To get the proper process about making nano-palygorskite material, comparison experiments were used dry, wet and dry-wet milling process. And results show that the dry-wet milling process received nano-particles that like ball and shot needles, also its nano-rate is higher than others.
     Palygorskite has special crystal structure that contains many hydroxyls. KH550-a kind of silane coupling agent was used to connect with nano- palygorskite that contain many hydroxyls in its surface. So palygorskite nanoparticles surface was modified by KH550, they linked with chemical bond. This construction will improve combination with polymer resin. Reasonable modifications of parameters were received in this paper.
     Ultrasonic has been used for dispersing the nano-palygoskite in PF system. Change process parameters, and then obtain the best dispersed parameters. Later test with TEM shown that the nano-palygorskite was scattered well under both modified and ultrasonic. So palygorskite nanoparticles can be distributed fairly well under surface modified and ultrasonic.
     Sever pieces of brake were made by different methods of modified PF in the experiments. Then those brake tests were carried out, access to relevant friction and wear performance. Through comparative analysis, the results are shown: modified PF obtained better performances of the heat resistant and wear rate, also dispersion of different PF prepared for the friction brake-received by the friction and wear properties are differences, palygorskite Nano-dispersion of good friction brake performance and recession-resistant, and wear rates lower.
引文
[1]马保吉,朱均。摩擦制动系统摩擦表面的摩擦学研究。机械科学与技术。1999.1,Vol.18No.1:14-16
    [2]王一中,董华,余鼎声。尼龙6/凹凸棒土纳米复合材料的合成[J]。合成树脂及塑料,1997,14(2):16
    [3]王平华,徐国永。聚丙烯/凹凸棒土纳米复合材料力学性能和力学性能研究[J]。塑料工业,2003,316:13-14
    [4]王兆滨,等。.硼/酚醛/桐油纳米SiO_2杂化材料的制备及其红外表征[J],贵州工业大学学报,2005,34(1):51
    [5]王宗光。发展我国摩阻材料的建议[J],摩擦密封材料文集,1990,6:117-123
    [6]王益庆,张立群,张慧峰,等。凹凸棒土/橡胶纳米复合材料结构和性能研究[J]。北京化工大学学报,1999,26 3:25-29
    [7]王满力,肖峰,周元康,李超。纳米坡缕石/桐油酚醛的原位聚合及其表征[J]。塑料工业,第34卷第11期,2006年11月:4-6。
    [8]冉松林,沈上越,汤庆国,刘新海。坡缕石/聚合物纳米复合材料的研究进展[J]。地球科学与环境学报,Vol.26 No.4 Dec.2004:28-31
    [9]冯启明,周玉林,郑自立。坡缕石粘土的硅烷偶联剂表面改性研究,矿产综合利用,1996NO.6 38-41。
    [10]叶江华,纳米TiO2改性薄木的研究,福建农林大学,2006
    [11]田煦,郑自立,易发成。中国坡缕石矿石特征及物化性能研究[J],矿产综合利用,1996No.6,1-3
    [12]任显诚,等。中国塑料,20009(1):22
    [13]刘晓洪,苟筱辉,王远亮。钼酚醛树脂的合成与性能研究p],武汉纺织工学院学报.1997,10(3):30-33
    [14]刘颖,王长葆,王建华。Fe304超细粉分散体系的制备[J],功能材料,1999,30(1):24
    [15]孙静,高镰,郭景坤。分散剂用量对几种纳米氧化错粉体尺寸表征的影响[J],
    [16]朱燕萍,徐连来,李长福。纳米颗粒团聚问题的研究进展[J],天津医科大学学报,
    [17]吴人杰等。高聚物的表面与界面[M]。北京:科学出版社,1998:299-302
    [18]吴纪森。有机硅及其应用[M].北京:科学技术文献出版社,1990:309
    [19]吴纪森。有机硅应用.成都:电子科技大学出版社,2000.154,151
    [20]吴增刚,周持兴。悬浮缩聚法制备酚醛树脂蒙脱土纳米复合材料[J]。功能高分子学报。2001.14(4):449-452
    [21]宋晓岚,邱冠周,杨振华,曲鹏。水相介质中纳米CeO_2的分散行为[J],稀有金属,2005,29(2):167-172
    [22]张元民。石棉摩擦材料的结构与生能[J],北京:中国建筑工业出版社,1982
    [23]张立德,牟手美。纳米材料学[M].辽宁科学技术出版社,1994
    [24]张启卫,章永化,周文富,等。改性凹凸棒土填充硬质PVC的制备与性能研究[J]。中国塑料,2002,16(9):49-52
    [25]张皓,郝恩才,杨柏等。ZnSe:Cu纳米晶/聚电解质多层膜制备和结构研究[J]。高等学校化学学报 2000,(11):1766-1770
    [261李光亮。有机硅高分子化学。北京::科学出版社,1998.23
    [27]杨合情,张良莹,姚熹。膜模拟化学在纳米材料中的应用研究[J]。材料研究学报,1999,13(6):561-568
    [28]杨利营,盛京,王雪梅等。离子体引发原位聚合制备凹凸棒土/聚苯乙烯纳米复合物[J]。功能高分子学报,2002,15(3):245-250
    [29]杨德安,梁辉,贾静,等。纳米凹凸棒土对碳纤维/BMI树脂复合材料的增强与增韧[J]。天津大学学报(自然科学版),2000,33(4):523-525
    [30]苏正涛,刘君,孔毅。硅橡胶-金属高温硫化粘接的研究.粘接,1999,20(2)5
    [31]苏志强,刘云芳,魏强,张洋,沈曾民。碳纳米管改性酚醛树脂的研究[J],炭素技术,2002,118(1):8-11
    [32]苏堤,李度成,潘运娟。国外汽车摩擦材料的发展现状和趋势[J],汽车研究与开发,2001,(4):45-48
    [33]陈汉汛,朱攀。制动器热衰退机理的研究与分析。拖拉机与农用运输车[J],2006.8第33卷第4期:34-36
    [34]周元康等,贵州坡缕石矿物纳米的干式制备及其在酚醛树脂中的分散状态表征[J],贵州工业大学学报2006.1235(6)6-7
    [35]周重光,李桂芝,爱军。有机硅改性酚醛树脂热稳定性的研究高分子材料科学与工程[J],2000,16(1):164-165,168
    [36]易发成,刘谏,李虎杰,等。坡缕石的稳定性探讨[J],矿产综合利用,1996,N06,13-15
    [37]郑自立,田煦,蔡克勤,等。中国坡缕石晶体化学研究[J],矿物学报,Jun,1997,Vol.17,No.2:107-114
    [38]郑自立,田煦。苏皖凹凸棒石矿物红外光谱特征研究[J],岩石学报1990(2):80-85
    [39]俞忠新,黄雅伦,王来芝。我国汽车摩擦材料的现状与发展[J],武汉汽车工业大学学报,1999,20(1):23-27
    [40]荣俊峰,景振华,洪晓宇等。聚乙烯/凹凸棒石纳米复合材料的研究[J],乙烯工业,2005,17(1):26-29.
    [41]赵颖,高新来。汽车摩擦材料用酚醛树脂的研究概况[J],化学与粘合,1999(2):93-95
    [42]郭卫东,唐颂超,周达飞等,纳米Si0:在MMA单体中在位分散聚合的研究[J],材料导报,2000,14(10):71
    [43]郭江山,曾秋梅,王淑华,张洋。插层聚合线性酚醛树脂/有机改性蒙脱土纳米复合材料的研究[J],北京化工大学学报。2001,28(2):34-36
    [44]郭新涛。复合材料摩擦片热衰退机理初步研究[J]。玻璃钢/复合材料。2002.6:15-16。
    [45]顾澄中,胡福增。含硼摩阻材料的开发[J],非金属矿,1996(3):54-57
    [46]高良。芳烷基-酚醛树脂的改性研究[J],玻璃钢厂复合材料,1994,(1):14-17
    [47]高翔,毛立新,马军朋等。凹凸棒土表面改性及其对聚丙烯力学性能的影响[J],塑料,2004,33(3):34-39.
    [48]崔文龙,张春燕。贵州大方坡缕石除铁增白研究[J],建材地质,1996年第4期:39-40
    [49]盛刚,马保吉等。制动摩擦材料研究的现状与发展[J].西安工业学院学报,2000,20(5):130-131
    [50]盛淼,杜中杰,荣峻峰等。聚乙烯/凹凸棒石纳米复合材料的微观结构与力学性能[J],高分子材料科学与工程2005,19(2):1152-18.
    [51]阎业海,刘金阁,赵彤,等。一种适用于树脂传递模塑工艺的双马来酞亚胺改性酚醛树脂[J],高技术通讯,2002,(5):56-59
    [52]曾泽斌,田达晰。摩擦材料的研究现状[J],重型汽车,1999,(2):19-20
    [53]程劲松。坡缕石吸水性能简析[J],贵州轻工科研所
    [54]缪爱花,袁才登,姜东峰。双酚A型含氮酚醛树脂的合成及应用研究[J],热固性树脂,2003,18(1):18-20
    [55]Adada A,et al.Polym Prepr,1987,28:447
    [56]C.Snryanaryana,[J]Int.Mater.Rev.,2995,40:41
    [57]Cha J A,Stueeky G D,Morse D E,etal.Nature,2000,(403):289-291
    [58]Eigler D M,Schweizer E K Positioning Single Atoms with a Scanning,Tunneling Microscopes.Nature,1990,344:524-52
    [59]Espiard P,Guyot A.Poly(ethyl acrylate) latexes encapsulating nanoparticles of Silica.Grafting Process onto Silica.Polymer,1995.36(23):4 391.
    [60]Fendler J H,Membrane Mimetic.Approach to Advanced Materials Springer Verlag Berlin Heidelberg,1994,Chapter 2
    [61]Furuichi N,Kurokawa Y,Fujita K,et al.J Mater Sci 1996,31:4307
    [62]Green M L,Rhine W F,Calvert Petal.Preparation poly(ethylene glycol) grafted Alumna.J.Mater.Sci.Lellers,1993,12:1 425
    [63]Haydn H.Murrary.Trasitional and new application for kaolin,smectite,and palygorskite:a general overview.Applied clay science,17(2000) 207-221
    [64]Hisato Hayashi,etal.Irffared study of sepiolite and palygorskite on Heating[J].Amer Miner,1969,Vo153:1613-1624
    [65]Hoyer,P.;Weller,H.,Size Dependent Redox Potentials of Quantized Zinc Oxide measured with an Optically Transparent Thin Layer Electrode.
    [66]J.C.Yu,J.Yu,W.Ho,L.Zhang,Preparation of highly photocatalytic active nano-sized TiO2particles via ultrasonic irradiation,Chem.Commun.,2001,1942-1943.
    [67]K.S.Suslick,M.Fang and T.Hyeon,Sonochemical Synthesis of Iron Colloids,J.Am.Chem.Soc.,1996,118:11960-11961.
    [68]K.S.Suslick,S.B.Choe,A.A.Cichowlas and M.W.Grinstaff,"Sonochemical synthesis of amorphous iron,Nature,1991,353:414-416.
    [69]Lai Shi-Quan,etc.[J].Tribology International,2005,5:1-7.
    [70]Lai Shi-Quan,etc.[J].Macromolecular Materials and Engineering 2004,289:916-922.
    [71]LiqunZhang,Yizhong Wang,Yiqing Wang,etal.Morphology and Mechanical properties of clay-rubber nanocomposite[J]Journal of AppliedPolymerScience,2000,78(11):1873-18781
    [72]Liu Y J,Rosidian A,Lenahan K,etal.Smart Mater Struct,1999,8:100-105.
    [73]Lu J,LinB,Yang H,etai.Surface modifieation of CrSi2 nanocrystals with polymer coating.J.Materials Science Letters,1998,17:1605-1607
    [74]Mamin H J.Thermal Writing Using a Heated Atomic Force Microscopy Tip.Appl.Phys.Lett.,1996,69:433-435
    [75]P.Knott,J.G.Nam J.S.Lee,[J].Metal.Mater.Trans.,2000;31:503
    [76]Ploog K.Microscopical Structuring of Solids by Molecular Beam Epitaxy-Spatiaily Resolved Materials Synthesis.Angew.Chem.lnt.Ed.Engi.,1988,27:593-758
    [77]Plueddenmann E P,硅烷和酞酸偶联剂,梁发思等译.上海:科学技术出版社,1987.
    [78]R.Birringer,H.Gleiter.H.P.Klein and P.Marcyardt[J].Phys.Rev.Lett.102A(1984):365
    [79]RongJ,Li H,Jing,etal.Novel organic/inorganic nanocomposite of polyethylene.I.Preparation via in situ polymerization approach.Journal of Applied Polymer Science,2001,82 8:1829-1837
    [80]Sellinger A,Weiss P M,Nguyen A,etal.Nature,1998,(394):256-260
    [81]Solomom D H,Rosser Mn J.Reaction catalyzed by minerals:part.Polymerization of styrene [J].Journal of Applied Polymer Science,1965,(9):1261-1271
    [82]Sysel P,Pulec R,Marysks M.Polym J,1997,29(7):607
    [83]Thomas G.W.Donald E.L,and Mary T.D.[J].Am.Chem.Soc.,103,18(1981),5301-5307
    [84]VanScoyoc GE,Sernoc C J,Ahlrichs JL.structural changes in palygorskite daring dehydration and dehydroxylation.Amer.Miner,1979,Vol 64:215-223
    [85]W.Huang,X.Tang,Y Wang,Y Koltypin and A.Gedanken,Selective synthesis of anatase and ruffle via ultrasound irradiation,Chem.Commun.,2000,1415-1416.
    [86]Yu.Koltypin,S.I.Nikitenko and A.Gedauken,The sonochemical preparation of tungsten oxide nanoparticles,J.Mater.Chem.,2002,12:1107-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700