用户名: 密码: 验证码:
铋基复合氧化物微纳米材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料被誉为“二十一世纪最有前途的材料”,对纳米材料的研究如今已经发展成为一门包括物理学、化学、材料科学以及生命科学等多学科交叉的科学。由于纳米材料在环境、能源、信息技术、生物技术、军事装备、航空航天等方面的潜在应用前景,近年来有关纳米材料的制备及表征已成为科学领域的研究热点之一。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定了基础,也极大丰富了纳米科学的研究内涵。本论文以铋基复合氧化物纳米材料为研究对象,通过合成工艺设计,制备了三种形貌各异的铋基复合氧化物纳米材料,并对其形成机理、光学性能以及光催化性能进行了系统的研究,主要工作包括以下几个方面:
     (1)首次采用水热法制备了花状Bi2SiO5纳米材料,利用XRD, SEM, TEM和FT-IR对Bi2SiO5纳米材料的晶体结构、颗粒形貌和化学组成进行了表征,通过分析不同时间段获得的Bi2SiO5产品的形貌,得出了其“成核-溶解-再结晶”的生长机理,测试了材料的PL发光光谱,并对其发光机理展开了讨论。
     (2)采用水热法制备了空心球、花状等不同形貌Bi2WO6纳米晶体,利用XRD,SEM, TEM和BET对Bi2WO6纳米材料的晶体结构、颗粒形貌和比表面积进行了表征,结果显示Bi2WO6纳米空心球拥有超高的比表面积(45.0 m2/g),并以罗丹明B (RhB)溶液为目标降解物模拟污染源,研究了不同形貌Bi2WO6纳米晶体的光催化性能,结果表明空心球结构Bi2WO6纳米材料有较高的催化效率。
     (3)首次采用水热法合成了巢状铬酸铋纳米晶,利用XRD, SEM, TEM等方法对Bi16CrO27纳米材料的晶体结构、颗粒形貌等性质进行了表征,考察了不同试验条件对样品形貌的影响,得出了其“成核-定向生长-自组装-熟化”的生长机理,并研究了不同温度煅烧下的Bi16CrO27纳米晶的光激发光性能,结果表明材料的发光强度与煅烧温度成正比。
Nanomaterials are known as'the most promising material of the 21 century'. The research of nanomaterials has now developed into an interdisciplinary science including physics, chemistry, materials science and life science. Owing to it's potential applications in the environmental science, energy, information technology, biotechnology, military, aerospace and other aspect, nanomaterials has attracted more and more attentions in the material research field. Discovering the new phenomena, understanding the new laws, making the new concepts and establishing the new theories in the field of nanotechnology has not only laid a foundation for establishing the scientific system of nanomaterials, but also greatly enriched the content of nanoscience research. This paper studies the Bi-based composite oxide nanomaterials. We have prepared three kinds of Bi-based composite oxide nanomaterials with different morphologies through the synthesis process designing, and systematically studied their formation mechanisms, optical properties and photocatalytic properties. The main contents and major results are given as follows:
     (1) Successfully synthesized the flower-like Bi2SiO5(BSO) nanomaterials via a hydrothermal route for the first time. The obtained products were systematically studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The results indicated that the nucleation and growth of the flowerlike nanostructures were dominated by a'nucleation-dissolution-recrystallization' growth mechanism. We also tested the room-temperature photoluminescence spectra of BSO nanoflowers and discussed their luminescence mechanisms.
     (2) Hollow sphere-like and flower-like Bi2WO6 nanocrystals have been successfully prepared by a hydrothermal route. The obtained products were systematically studied by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) and UV-vis absorption spectroscopy. The ultrahigh BET specific surface area of ca.45.0 m2/g is displayed for the Bi2WO6 hierarchical hollow spheres, which is much higher than that for all the previously reported Bi2WO6 products. Rhodamine B (RhB) was selected as a representative pollutant to evaluate the photocatalytic efficiency of catalysts; it is shown that the Bi2WO6 hierarchical hollow spheres exhibit an excellent photocatalytic activity in the photodegradation of RhB under visible light irridiation.
     (3) Nest-like Bi16CrO27 nanomaterials have been successfully synthesized via a hydrothermal route for the first time. The obtained products were systematically studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). It was demonstrated that the concentrations of PVP and CH3COOH play important roles in the formation of the as-prepared nanonests. The results indicated that the nucleation and growth of the nestlike nanostructures were dominated by a'nucleation-growth-assembly-ripening'growth mechanism. Room-temperature photoluminescence spectra of the nest-like Bii6CrO27 nanomaterials calcined at different temperature were also recorded. The results indicated that the luminous intensity is directly proportional to the calcined temperature.
引文
[I]Karthikeyan J., Berndt C. C., Tikkanen J., et al. Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors[J]. Nanostruct. Mater.,1997,8:61-74.
    [2]张立德.纳米材料研究的新进展及在21世纪的战略地位[J].中国粉体技术,2000,6:1-5.
    [3]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:48-74.
    [4]朱静,范守善,李亚栋,等.纳米材料和器件,[M].北京:清华大学出版社,2003.
    [5]Xia Y. N., Yang P. D., Sun Y. G., et al. One-dimensional nanostructures:Synthesis, characterization, and applications[J]. Adv. Mater.,2003,15:353-389.
    [6]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [7]Yoffe A. D. Low dimensional systems quantum size effects and electronic properties of semiconductor microcrystallites (Zero-dimensional Systems) and some quasi-2-dimensional systenms[J]. Advan. Phys.,1993,42:173-266.
    [8]Ball P., Garwin L. Science at the atomic scale[J]. Nature,1992,355:761-766.
    [9]Pipa V. I., Mitin V. V., Stroscio M. Photon in a semibounded dielectric and the surface effect on spontaneous emission in nanostructures[J]. Phys. Rev. B.,2002,65:235308.
    [10]Auer S., Frenkel D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy [J]. Nature,2001,413:711-713.
    [11]Sung I. H., Lee H. S., Kim D. E. Effect of surface topography on the frictional behavior at the micro/nano-scale[J]. Wear,2003,254:1019-1031.
    [12]Roser M., Fischer D., Kissel T. Surface-modified biodegradable albumin nano-and microspheres. Ⅱ:effect of surface charges on in vitro phagocytosis and biodistribution in rats[J]. Euro. J. Pharm. Biopharm.,1998,46:255-263.
    [13]Klabunde K. J., Stark J., Koper O., et al. Nanocrystals as stoichiometric reagents with unique surface chemistry[J]. J. Phys. Chem.,1996,100:12142-12153.
    [14]Brus L. E. Electronic wave functions in semiconductor clusters:experiment and theory[J]. J. Phys. Chem.,1986,90:2555-2560.
    [15]Linderoth S., Morup S. Ultrasmall iron particles prepared by use of sodium amalgam[J]. J. Appl. Phys.,1990,67:4496-4498.
    [16]Awschalom D. D., McCord M. A., Grinstein G. Observation of macroscopic spin phenomena in nanometer-scale magnets[J]. Phys. Rev. Lett.,1990,65:783-786.
    [17]Fu S. Y., Pan Q. Y., Huang C. J., et al. A preliminary study on cryogenic mechanical properties of epoxy blend matrices and SiO2/epoxy nanocomposites[J]. Key. Engin. Mater., 2006,312:211-216.
    [18]Chen Z. K., Yang J. P., Ni Q. Q., et al. Reinforcement of epoxy resins with muti-walled carbon nanotubes for enhancing cryogenic mechanical properties[J]. Polymer,2009,50: 4753-4759.
    [19]Takagi M. Electron-diffraction study of liquid-solid transition of thin metal films[J]. J. Phys. Soc. Japan.,1954,9:359-363.
    [20]Shi F. G. Size dependent thermal vibrations and melting in nanocrystals[J]. J. Mater. Res., 1994,9:1307-1313.
    [21]吴锦雷.纳米材料的电学、光学和电光性能及应用前景[J].真空电子技术,2002,23(4):1-5.
    [22]Qin Y., Wang X. D., Wang Z. L. Microfiber-nanowire hybrid structure for energy scavenging[J]. Nature,2008,451:809-813.
    [23]朱路平.微纳米结构磁性材料的设计、制备及磁性能研究[D].中国科学院研究生院博士学位论文.北京,2008,5.
    [24]王涛.Co、 Co-Cu纳米线及铁氧体纳米管阵列的结构与磁性研究[D].兰州大学博士学位论文.兰州,2005,5.
    [25]Gong W., Li H., Zhao Z., et al. Ultrafine particles of Fe, Co, Ni ferromagnetic metals[J]. J. Appl. Phys.,1991,69:5119-5121.
    [26]Colvin V. L., Schlamp M. C., Alivisatos A. P., et al. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature,1994,370: 354-357.
    [27]Zhang L. S., Wang W. Z., Zhou L., et al. Bi2WO6 nano-and microstructures:shape control and associated visible-light-driven photocatalytic activities[J]. Small,2007,3:1618-1625.
    [28]Schwitzgebel J., Ekerdt J. G., Gerischer H., et al. Role of the oxygen molecule and of the photogenerated electron in Ti02-photocatalyzed air oxidation reactions[J]. J. Phys. Chem., 1995,99:5633-5638.
    [29]Linsebigler A. L., Lu G. Q., Yates J. T. Photocatalysis on TiO2 surface:principles, mechanisms, and selected results[J]. Chem. Rev.,1995,95:735-758.
    [30]Li Q. W., Luo G. A., Li J., et al. Preparation of ultrafine MnO2 powders by the solid state method reaction of KMnO4 with Mn(II) salts at room temperature[J]. J. Mater. Process. Technol.,2003,137:25-29.
    [31]Joshia U. A., Chung S. H., Lee J. S. Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios[J]. J. Solid. State. Chem.,2005,178:755-760.
    [32]范景莲,曲选辉.高能球磨钨基高密度合金超细粉末的烧结[J].中南工业大学学报,1998,29(5):450-453.
    [33]Tan O. K., Cao W., Hu Y., et al. Nano-structured oxide semiconductor materials for gas-sensing applications[J]. Cera. Int.,2004,30:1127-1133.
    [34]Yao W. T., Yu S. H., Zhou Y., et al. Formation of uniform CuO nanorods by spontaneous aggregation:selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process[J]. J. Phys. Chem. B,2005,109:14011-14016.
    [35]刘建伟,刘有智,张艳辉.超重力技术制备纳米氧化锌的工艺研究[J].化学工程师,2001,5:22-23.
    [36]武秀兰,王若兰,朱振峰,等.高温自蔓延法合成ZnCr2O4绿色尖晶石型陶瓷色料[J].中国陶瓷,2005,41(2):43-44.
    [37]Liu Y., Koep E., Liu M. L. A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition[J]. Chem. Mater.,2005,17:3997-4000.
    [38]Rajaram P., Goswami Y. C., Rajagopalan S., et al. Optical and structural properties of SnO2 films growth by a low-cost CVD technique[J]. Mater. Lett.,2002,54:158-163.
    [39]Sundqvist J., Ottosson M., Harsta A. CVD of epitaxial SnO2 films by the SnI4/O2 precursor combination[J]. Chem. Vap. Deposition,2004,10:77-82.
    [40]Bedoya C., Condorelli G. G., Anastasi G., et al. MOCVD of bismuth oxide:transport properties and deposition mechanisms of the Bi(C6H5)3 precursor[J]. Chem. Mater.,2004,16: 3176-3183.
    [41]Lu Y., Yin Y., Mayers B. T., et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano. Lett.,2002,2:183-186.
    [42]Miao Z., Xu D., Ouyang J., et al. Electrochemically induced sol-gel preparation of single crystalline TiO2 nanowires[J]. Nano. Lett.,2002,2:717-720
    [43]Chang Y. S., Chang Y. H., Chen I. G., et al. Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique[J]. J. Cryst. Growth.,2002,243:319-326.
    [44]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报(自然科学版),2005,28(1):5-10.
    [45]谭斌源,刘继泉.均相沉淀法制取纳米氧化镍[J].青岛化工学院学报:自然科学版,1998,19(2):194-195.
    [46]陈凡,励亮,孙晓宇等.均相沉淀法制备纳米硫化亚铁[J].复旦学报(自然科学版),2003,42(3):315-318.
    [47]马亚鲁.化学共沉淀法制备镁铝尖晶石粉末的研究[J].无机盐工业,1998,30(1):3-5.
    [48]张恒,董新法,林维明.共沉淀法制备Cu掺杂的钙钛矿型混合导体透氧材料[J].材料科学与工程学报,2006,24(6):821-825.
    [49]黄菁菁,徐祖顺,易昌凤.化学共沉淀法制备纳米四氧化三铁粒子[J].湖北大学学报(自然科学版),2007,29(1):50-52.
    [50]Wang Y., Jiang X., Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions[J]. J. Am. Chem. Soc., 2003,125:16176-16177.
    [51]Zhang Y. G., Wang S. T., Qian Y. T., et al. Complexing-reagent assisted synthesis of hollow CuO microspheres[J]. Solid-State Sci.,2006,8:462-466.
    [52]Yan P., Xie Y., Qian Y. T., et al. A cluster growth route to quantum-confined CdS nanowires[J]. Chem. Comm.,1999,14:1293-1294.
    [53]Liu L., Kou H. Z., Mo W., et al. Surfactant-assisted synthesis of a-Fe2O3 nanotubes and nanorods with shap-dependent magnetic properties[J]. J. Phys. Chem. B,2006,110: 15218-15223.
    [54]Guo L., Ji Y. L., Xu H., et al. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure[J]. J. Am. Chem. Soc.,2002,124:14864-14865.
    [55]Rabenau A. The role of hydrothermal synthesis in preparative chemistry[J]. Angew. Chem. Int. Ed. Engl.,1985,24:1026-1040.
    [56]Jiang Y., Wu Y., Qian Y. T., et al. Hydrothermal preparation of uniform cubic-shaped PbS nanocrystals[J]. J. Cryst. Growth.,2001,231:1-2.
    [57]Liu Y. F., Zhan J., Ren M., et al. Hydrothermal synthesis of square thin flake CdS by using surfactants and thiocarbohydrate[J]. Mater. Res. Bull.,2001,36:1231-1236.
    [58]Fan H., Zhang Y., Liang J., et al. Formation of CdSe nanorod-assembled microtubes in an ethanolamine-PEG solution[J]. Chem. Lett.,2006,35:1212-1213.
    [59]Chen D., Shen G. Z., Tang K. B., et al. Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route[J]. J. Cryst. Growth.,2003,234:225-228.
    [60]Sun X. M., Li Y. D. Ga2O3 and GaN semiconductor hollow spheres[J]. Angew. Chem. Int. Ed. Engl.,2004,43:3827-3831.
    [61]Wang X., Li Y. D. Selected-control hydrothermal synthesis of alpha-and beta-MnO2 single crystal nanowires[J]. J. Am. Chem. Soc.,2002,124:2880-2881.
    [62]Peng Q., Dong Y. J., Li Y. D. ZnSe semiconductor hollow microspheres[J]. Angew. Chem. Int. Ed. Engl.,2003,42:3027-3030.
    [63]荆象阳.铋系薄膜的制备及其介电、铁电性能的研究[D].山东大学博士学位论文.济南,2009,4.
    [64]Zylberberg J., Belik A. A., Muromachi E. T., et al. Bismuth aluminate:A new high-Tc lead-free piezo-/ferroelectric[J]. Chem. Mater.,2007,19:6385-6390.
    [65]王媛玉,吴家刚,吴浪等.钪酸铋基高温压电材料的研究与进展[J].材料导报,2007,21(1):27-29.
    [66]柏朝辉,巴学魏,贾茹等.硅酸铋(BSO)纳米粉体的制备与表征[J].无机化学学报,2006,22(7):1327-1329.
    [67]梁达文,白守礼,杨东等.溶胶-凝胶法合成纳米复合氧化物的表征及应用[J].自然科学进展,2005,15(6):764-768.
    [68]Skorikov V. M., Zakharov I. S., Volkov W., et al. Optical properties and photoconductivity of bismuth titanate[J]. Inorg. Mater.,2001,37(11):1149-1154.
    [69]Kudo A., Omori K., Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. J. Am. Chem. Soc.,1999, 121:11459-11467.
    [70]Li Y. Y., Liu J. P., Huang X. T. Synthesis and visible-light photocatalytic property of Bi2WO6 hierarchical octahedron-like structures[J]. Nanoscale. Res. Lett.,2008,3:365-371.
    [71]Kim H. G., Hwang D. W., Lee J. S. An undoped, single-phase oxide photocatalyst working under visible light[J]. J. Am. Chem. Soc.,2004,126:8912-8913.
    [72]Zou Z. G., Ye J. H., Abe R., et al. Photocatalytic decomposition of water with Bi2InNbO7[J]. Catal. Lett.,2000,68:235-239.
    [73]Zou Z. G., Ye J. H., Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=A13+, Ga3+ and In3+)[J]. Chem. Phys. Lett.,2001,333: 57-62.
    [74]Zou Z. G., Ye J. H., Arakawa H. Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst[J]. International Journal of Hydrogen Energy.,2003,28:663-669.
    [75]Yao W. F., Xu X. H., Wang H., et al. Photocatalytic property of perovskite bismuth titanate[J]. Appl. Catal. B:Environmental.,2004,52:109-116.
    [76]Ishii M., Kobayashi M. Single crystals for radiation detectors[J]. Prog. Cryst. Growth. Charact.,1991,23:245-311.
    [77]徐学武,廖晶莹.硅酸铋(Bi12SiO20)晶体生长的研究进展[J].无机材料学报,1994,9(2):129-138.
    [78]Firsov A. V., Skorokhodov N. E., Astafev A. V., et al. Growth and some properties of bismuth germanium oxide (Bi2GeO5) and bismuth silicon oxide (Bi2Si05)[J]. Kristallografiya, 1984,29(3):509.
    [79]Aurivillius B., Lindblom C. I. The crystal structure of Bi2GeO5[J]. Acta. Chem. Scand.,1964, 18(6):1555.
    [80]费一汀,范世,孙仁英,等Bi2SiO5的亚稳定相平衡的研究[J].硅酸盐学报,1999,27(2):230-236.
    [81]Ishii M., Harada K., Hirose Y., et al. Development of BSO (Bi4Si3O12) crystal for radiation detector[J]. Opti. Mater.,2002,19:201-212.
    [82]Ballman A. A. The growth and properties of piezoelectric bismuth germanium oxide Bi12GeO20[J]. J. Cryst. Growth.,1967,1:37-40.
    [83]Whiffin P. A. C., Bruton T. M., Brice J. C., et.al. Simulated rotational instabilities in molten bismuth silicon oxide[J]. J. Cryst. Growth.,1976,32:205-210.
    [84]Brice J. C. The cracking of Czochralski-grown crystals[J]. J. Cryst. Growth.,1977,42: 427-430.
    [85]Tanguay A. R., Mroczkowski S., Barker R. C. The Czochralski growth of optical quality bismuth silicon oxide (Bi12SiO20)[J]. J. Cryst. Growth.,1977,42:431-434.
    [86]Fan S. J., Sun R. Y., Wu J. D., et al. The Eleventh International Conference on Crystal Growth, Advance Program,1995, p.30.
    [87]Ishii M., Kobayashi M., Yamaga I. Heavy scintill, in:Sci. Ind. Appl. Proc. "Cryst.2000" Int. Workshop,1992, p.427.
    [88]Takamori T., Boland J. J. Platinum erodion during the growth of sillenite-type crystals[J]. J. Mater. Sci. Lett.,1991,10:972-974.
    [89]张爱琼,徐家跃,范世.Bi12SiO20晶体下降法生长及PT包裹缺陷研究.[J].化学研究,2004,15(3):1-5.
    [90]Loro H., Vasquez D., Camarillo G. E., et al. Experimental study and crystal-field modeling of Nd3+(4f3) energy levels in Bi4Ge3012 and Bi4Si3O12[J]. Phys. Rev. B,2007,75:125405.
    [91]Kozhbakhteeva D. E., Leonyuk N. I. Hydrothermal synthesis and morphology of eulytite-like single crystals[J]. J. Opto. Adv. Mater.,2003,5:621-625.
    [92]Kijima T., Ishiwara H. Ultra-thin ferroelectric films modified by Bi2Si05[J]. Ferroelectrics, 2002,271:289-295.
    [93]Kijima T., Matsunaga H. Preparation of Bi4Ti3O12 thin film on Si(100) substrate using Bi2SiO5 buffer layer and its electric characterization[J]. Jpn. J. Appl. Phys.,1998,37: 5171-5173.
    [94]Gou L. F., Murphy C. J. Solution-phase synthesis of Cu2O nanocubes[J]. Nano. Lett.,2003,3: 231-234.
    [95]Rabenau A. The role of hydrothermal synthesis in preparative chemistry[J]. Angew. Chem. Int. Ed.,1985,24:1026.
    [96]Xi G. C., Xiong K., Zhao Q. B., et al. Nucleation-dissolution-recrystallization:A new growth mechanism for t-selenium nanotubes[J]. Cryst. Growth. Des.,2006,6:577-582.
    [97]Zhu L. P., Xiao H. M., Fu S. Y. Template-free synthesis of monodispersed and single-crystalline cantaloupe-like Fe2O3 superstructures[J]. Cryst. Growth. Des.,2007,7: 177-182.
    [98]Pacholski C., Kornowski A., Weller H. Self-assembly of ZnO:from nanodots to nanorods[J]. Angew. Chem. Int. Ed.,2002,41:1188-1191.
    [99]Bandini E., Beneventi P., Bersani D., et al. FT-IR spectroscopy of tetrahedrally coordinated impurities in sillenites[J]. Mikrochim. Acta.,1997, (Suppl.14):489-490.
    [100]Bordem O. M. Vibrational spectra of thin eulytine films[J]. J. Appl. Spectrosc.,1997,64: 476-479.
    [101]Xu L., Shen J. M., Lu C. L., et al. Self-assembled three-dimensional architectures of Y2(WO4)3:Eu:controlled synthesis, growth mechanism, and shape-dependent luminescence properties[J]. Cryst. Growth Des.,2009,9:3129-3136.
    [102]Fuentes O. R., Aguilera E. S., Velasquez C., et al. Characterization of spray deposited bismuth oxide thin films and their thermal conversion to bismuth silicate[J]. Thin Solid Films, 2005,478:96-102.
    [103]Wang X., Zhuang J., Peng Q., et al. A general strategy for nanocrystal synthesis[J]. Nature, 2005,437:121-124.
    [104]Xia Y. N., Yang P. D. Guest editorial:chemistry and physics of nanowires[J]. Adv. Mater., 2003,15:351-352.
    [105]Zhu L. P., Xiao H. M., Zhang W. D., et al. Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route[J]. Cryst. Growth. Des.,2008,8:1113-1118.
    [106]Luo Y. S., Li S. Q., Ren Q. F., et al. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route[J]. Cryst. Growth. Des.,2007,7:87-92.
    [107]Giljohann D. A., Mirkin C. A. Drivers of biodiagnostic development[J]. Nature,2009,462: 461-464.
    [108]Soulantica K., Erades L., Sauvan M., et al. Synthesis of indium and indium Oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing[J]. Adv. Funct. Mater.,2003,13:553-557.
    [109]Grinis L., Kotlyar S., Ruhle S., et al. Conformal nano-sized inorganic coatings on mesoporous TiO2 films for low-temperature dye-sensitized solar cell fabrication[J]. Adv. Funct. Mater.,2010,20:282-288.
    [110]Wang Y. Q., Zhang Z. J., Zhu Y., et al. Nanostructured VO2 photocatalysts for hydrogen production[J]. ACS. Nano.,2008,2:1492-1496.
    [111]Li J. L., Liu L., Yu Y., et al. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method[J]. Electrochem. Commun.,2004,6:940-943.
    [112]Cumberland S. L., Hanif K. M., Strouse G. F., et al. Inorganic clusters as single-sourceprecursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterial[J]. Chem. Mater.,2002,14:1576-1584.
    [113]Li H. X., Wu J., Wang Z. G., et al. High-density InAs nanowires realized in situ on (100)InP[J]. Appl. Phys. Lett.,1999,75(8):1173-1175.
    [114]Feng X. M., Liu Y. G., Lu C. L., et al. One-step synthesis of AgCl/polyaniline core-shell composites with enhanced electroactivity [J]. Nanotechnology,2006,17:3578-3583.
    [115]Xie B., Wu Y., Qian Y. T., et al. Shape-controlled synthesis of BaWO4 crystals under different surfactants[J]. J. Cryst. Growth,2002,235:283-286.
    [116]Zhang F., Sfeir M. Y., Misewich J. A., et al. Room-temperature preparation, characterization, and photoluminescence measurements of solid solutions of various compositionally-defined single-crystalline alkaline-earth-metal tungstate nanorods[J]. Chem. Mater.,2008,20: 5500-5512.
    [117]Grzechnik A., Crichton W. A., Syassen K., et al. A new polymorph of ZrW2O8 synthesized at high pressures and high temperatures[J]. Chem. Mater.,2001,13:4255-4259.
    [118]Ricote J., Pardo L., Castro A., et al. Study of the process of mechanochemical activation to obtain aurivillius oxides with n=1[J]. J. Solid State Chem.,2001,160:54-61.
    [119]McDowell N. A., Knight K. S., Lightfoot P. Unusual high-temperature structural behaviour in ferroelectric Bi2WO6[J]. Chem. Eur. J.,2006,12:1493-1499.
    [120]Newkirk H. W., Quadfing P., Liebertz J., et al. Growth, crystallography and dielectric properties of Bi2WO6[J]. Ferroelectrics,1972,4:51-55.
    [121]Yao W. F., Iwai H. D., Ye J. H. Effects of molybdenum substitution on the photocatalytic behavior of BiVO4[J]. Dalton Trans.,2008:1426-1430.
    [122]Li G. Q., Yan S. C., Wang Z. Q., et al. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3[J]. Dalton Trans.,2009,38:8519-8524.
    [123]Kudo A., Omori K., Kato H. Development of a new type of protease inhibitors, efficacious against FIV and HIV variants[J]. J. Am. Chem. Soc.,1999,121:1145-1155.
    [124]Hoffmann M. R., Martin S. T., Choi W., et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96.
    [125]Yu J. G., Xiong J. F., Cheng B., et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders[J]. J. Solid State Chem.,2005,178:1968-1972.
    [126]Yu S. H., Liu B., Mo M. S., et al. General synthesis of single-crystal tungstate nanorods/nanowires:A facile, low-temperature solution approach[J]. Adv. Funct. Mater., 2003,13:639-647.
    [127]Zhang C., Zhu Y. F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chem. Mater.,2005,17:3537-3545.
    [128]Li Y. Y, Liu J. P., Huang X. T. Synthesis and visible-light photocatalytic property of Bi2WO6 hierarchical octahedron-like structures[J]. Nanoscale. Res. Lett.,2008,3:365-371.
    [129]Li Y. Y., Liu J. P., Huang X. T., et al. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres[J]. Cryst. Growth Des.,2007,7:1350-1355.
    [130]Ma D. K., Huang S. M., Chen W. X., et al. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates:controlled synthesis, photocatalytic activities, and wettability[J]. J. Phys. Chem. C.,2009,113,4369-4374.
    [131]Zhang L. S., Wang W. Z., Chen Z. G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts[J]. J. Mater. Chem., 2007,17:2526-2532.
    [132]Shang M., Wang W. Z., Xu H. L. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG[J]. Cryst. Growth Des,2009,9:991-996.
    [133]Tang J. W., Zou Z. G., Ye J. H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal. Lett.,2004,92:53-56.
    [134]Kudo A., Tsuji I., Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation[J]. Chem. Commun.,2002,17:1958-1959.
    [135]Tsunekawa S., Fukuda T., Kasuya A. Blue shift in ultraviolet absorption spectra of monodisperse CeO2-x nanoparticles[J]. J. Appl. Phys.,2000,87:1318-1321.
    [136]Arslan M., Duymusu H., Yakuphanoglu F. Optical properties of the poly(N-benzylaniline) thin film[J]. J. Phys. Chem. B.,2006,110:276-280.
    [137]Zhang L. S., Wang W. Z., Zhou L., et al. Bi2WO6 nano-and microstructures:shape control and associated visible-light-driven photocatalytic activities[J]. Small,2007,3:1618-1625.
    [138]Wang K. G., Glicksman M. E., Lou C. G. Correlations and fluctuations in phase coarsening[J]. Phys. Rev. E,2006,73:061502.
    [139]Zhang Z., Sun H., Shao X., et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures[J]. Adv. Mater.,2005,17:42.
    [140]Zhang Z. P., Shao X. Q., Yu H. D., et al. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures[J]. Chem. Mater.,2005,17:332.
    [141]Fu H. B., Zhang S. C., Xu T. G., et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products[J]. Environ. Sci. Technol.,2008,42: 2085.
    [142]Li X. F., Fan T. X., Zhou H., et al. Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates[J]. Adv. Funct. Mater.,2009,19:45.
    [143]Zhou H., Fan T. X., Li X. F., et al. Biomimetic photocatalyst system derived from the natural prototype in leaves for efficient visible-light-driven catalysis[J]. J. Mater. Chem., 2009,19:2695.
    [144]Yu X. X., Yu J. G., Cheng B., et al. Synthesis of hierarchical flower-like AIOOH and TiO2/AIOOH superstructures and their enhanced photocatalytic properties [J]. J. Phys. Chem. C.2009,113:17527.
    [145]Sun S. H., Murray C. B., Weller D., et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science,2000,287:1989-1992.
    [146]Jin R., Cao Y. W., Mirkin C. A., et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science,2001,294:1901-1903.
    [147]Jiang P., Bertone J. F., Colvin V. L. A lost-wax approach to monodisperse colloids and their crystals[J]. Science,2001,291:453-457.
    [148]Huang Y., Duan X., Cui Y., et al. Logic gates and computation from assembled nanowire building blocks[J]. Science,2001,294:1313-1317.
    [149]Puntes V. F., Krishnan K. M., Alivisatos A. P. Colloidal nanocrystal shape and size control: the case of cobalt[J]. Science,2001,291:2115-2117.
    [150]Murphy C. J., Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Adv. Mater.,2002,14:80-82.
    [151]Hu C. G., Liu H., Dong W. T., et al. La(OH)3 and La2O3 nanobelts-Synthesis and physical properties[J]. Adv. Mater.,2007,19:470-473.
    [152]Wang Z. L., Song J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science,2006,312:242-246.
    [153]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [154]Luo Y. S., Li S. Q., Ren Q. F., et al. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route[J]. Cryst. Growth. Des.,2007,7:87-92.
    [155]Zhu L. P., Xiao H. M., Zhang W. D., et al. One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route[J]. Cryst. Growth. Des.,2008,8:957-963.
    [156]Chen J. I. L., Kumar M. M., Ye Z. G. A new ferroelectric solid solution system of LaCrO3-BiCrO3[J]. J. Solid. State. Chem.,2004,177:1501-1507.
    [157]Sugawara F., Iiida S. Magnetic properties and crystal distortions of BiMnO3 and BiCrO3[J]. J. Phys. Soc. Japan.,1968,25:1553-1558.
    [158]Sarawadekar R. G., Jayaraman S. Bismuth chromate in delay compositions[J]. Defence Science Journal,1992,42:177-181.
    [159]Gerault Y., Riou A., Cudennec Y., et al. Structure of Bi2(CrO4)2Cr2O7[J]. Revue. Chimie. Minerale.,1987,24:631-640.
    [160]Aurivillius B., Lowenhielm A. The crystal structure of the orthorhombic modification of BiOHCrO4 a refinement of the structure of monoclinic BiOHCrO4[J]. Acta. Chem. Scand., 1964,18:1937-1957.
    [161]Sugawara F., Iida S., Syono Y., et al. New magnetic perovskites BiMnO3 and BiCrO3[J]. J. Phys. Soc. Japan.,1965,20:1529.
    [162]Grins J., Esmaeilzadeh S., Hull S. Structure and ionic conductivity of Bi6Cr2015, a new structure type containing (Bi12O14) n8n+ columns and CrO42- tetrahedra[J]. J. Solid State Chem.,2002,163:144-150.
    [163]Warda S. A., Pietzuch W., Massa W., et al. Color and constitution of Cr-VI-doped Bi2O3 phases:The structure of Bi14CrO24[J].J.Solid State Chem.,2000,149:209-217.
    [164]Kumada N., Takei T., Kinomura N., et al. Preparation and crystal structure of a new bismuth chromate:Bi8(CrO4)O11[J]. J. Solid State Chem.,2006,179:793-799.
    [165]谢鸿,陈哲,严有为.彩色PDP纳米荧光粉的研究.[J].材料导报,2006,20(6):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700