用户名: 密码: 验证码:
铝氢化镁基储氢材料的合成、吸放氢性能及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能是解决化石能源枯竭与环境污染两大问题的理想选择,但安全和高效的储氢技术是目前氢能规模化应用的主要瓶颈。Mg(AlH4)2由于其较高的储氢容量,引起了人们的广泛关注,但其较高的吸放氢温度和较差的储氢可逆性,难以满足实用化的要求。加之Mg(AlH4)2的制备困难,目前尚未有商业化的试剂供应,严重制约了Mg(AlH4)2基高容量储氢材料的发展。针对这些问题,本文系统研究了Mg(AlH4)2的可控制备以及球磨处理、催化剂掺杂、反应物复合和纳米化对其结构和吸放氢性能的影响,并揭示了相关的作用机理。
     首先,发展了一种可控制备高纯度Mg(AlH4)2亚微米棒的方法,并系统研究了所制备样品的吸放氢热力学和动力学性能。所得Mg(AlH4)2亚微米棒的直径为0.5微米,纯度为96.1%。所得Mg(AlH4)2在加热时以三步放氢共放出9.0wt%的氢气。第一步放氢生成MgH2和Al,第二步放氢生成Al(Mg)固溶体和MgH2,第三步放氢生成Al3Mg2和Al(Mg)固溶体。由于第一步放氢为微放热反应,其无法在高氢压下实现可逆,仅后两步放氢可逆。动力学研究发现,所得Mg(AlH4)2的第一步放氢为扩散控制,具有较高的表观活化能,为123.0kJ mol-1,这是其起始放氢温度偏高的主要原因。
     其次,系统研究了球磨处理对Mg(AlH4)2储氢性能影响及其机理。结果发现,高能球磨能够明显降低Mg(AlH4)2的放氢温度。经球磨12小时后,Mg(AlH4)2的放氢温度降低了40℃。高能球磨从宏观到微观改变了Mg(AlH4)2的颗粒尺寸、晶粒尺寸、微应力和晶格畸变,随球磨时间的延长,减小了材料的颗粒尺寸和晶粒尺寸,增大了材料的微应力与晶格畸变。颗粒尺寸和晶粒尺寸的减小会缩短Mg(AlH4)2放氢反应中物质的扩散距离,微应力和晶格畸变的增加会增强Mg(AlH4)2放氢反应中物质的扩散性,它们的协同作用改善了Mg(AlH4)2放氢的动力学性能。此外,微应力和晶格畸变的增加还会升高Mg(AlH4)2的Gibbs自由能,从而改变了Mg(AlH4)2放氢的热力学性能。
     第三,研究了氟化钛掺杂对Mg(AlH4)2吸放氢性能的影响及其机理。研究发现,TiF3和TiF4掺杂都能够显著降低Mg(AlH4)2的放氢温度,其中TiF4的催化效果优于TiF3。2.5mol%的TiF4掺杂Mg(AlH4)2在40℃就开始放氢,82℃等温放氢时在100分钟内就可以放出4.0wt%的氢气,其原因是TiF4与Mg(AlH4)2在球磨过程中会发生反应,原位生成了催化活性物质Ti,并增加了Mg(AlH4)2的缺陷,从而改变了Mg(AlH4)2第一步放氢产物的形核长大模式,因此降低了Mg(AlH4)2第一步放氢的动力学势垒。但TiF4掺杂并不能改善Mg(AlH4)2的可逆性,2.5mol%的TiF4掺杂样品仍然只具有部分可逆性。
     第四,研究了Mg(AlH4)2/LiBH4复合体系的吸放氢性能及其机理。对不同摩尔比的Mg(AlH4)2-xLiBH4样品(x=2、4、6)的研究表明,随LiBH4含量的增力口,LiBH4样品第二步MgH2和Al的放氢温度降低,第三步Al3Mg2、 Al(Mg)和LiBH4的放氢温度升高。其中,MgH2和Al放氢温度降低的原因是:LiBH4对MgH2和AL的放氢有催化作用,而其含量的增加导致MgH2和Al的放氢动力学势垒降低;而Al3Mg2.Al(Mg)与LiBH4放氢温度的升高的原因是:LiBH4的增加改变了其反应路径,升高了反应焓变。此外,考察了Mg(AlH4)2制备过程中副产物NaCl或LiCl对Mg(AlH4)2-6LiBH4体系的影响。结果发现,NaCl会与LiBH4反应生成NaBH4和LiCl,改变了体系的化学组成;LiCl中的Cl-离子促进了Mg(AlH4)2-6LiBH4体系第二步MgH2与Al的放氢,同时LiCl阻碍了Mg(AlH4)2-6LiBH4体系第三步Al3Mg2、Al(Mg)和LiBH4的接触,从而抑制了其放氢。
     最后,发展了一种机械力驱动物理气相沉积(MFPVD)制备Mg(AlH4)2纳米棒的方法,揭示了纳米棒形成机理,并系统研究了相关材料的吸放氢性能。研究指出,高能球磨产生的机械力将具有一维链状结构的[Mg(AlH4)2(Et2O)]n配位聚合物气化后,其会在基底上一维自组装形成[Mg(AlH4)2(Et2O)]n纳米棒,然后热处理除去配体Et20,得到了Mg(AlH4)2纳米棒。所得Mg(AlH4)2纳米棒的直径为20-40纳米,具有较Mg(AlH4)2微米棒更优的储氢性能,尤其是所得Mg(AlH4)2纳米棒在吸放氢过程中都能保持纳米棒状形貌,表现出良好的循环稳定性。此外,通过相似的过程也成功制备了宽度为10-40纳米的LiBH4纳米带,说明了MFPVD方法具有一定的普适性,可以推广至其他具有特定形貌有机配位聚合物的配位氢化物。
Hydrogen energy is an ideal choice that can solve the problems of the depletion of fossil fuels and the contamination of environment. However, the technique of safe and efficient storage of hydrogen is the key barrier that prevents hydrogen energy from widespread utilization. Mg(AlH4)2attracts a lot of attention due to its relatively high hydrogen capacity, but the relatively high hydrogenation/dehydrogenation temperatures and poor reversibility cannot fulfill the requirements of practical application. Furthermore, the synthesis of Mg(AlH4)2is so difficult that Mg(AlH4)2is not commercially available until now, which severely hinders the development of Mg(AlH4)2-based hydrogen storage materials. In this paper, aiming at these problems, the controllable synthesis, high-energy ball milling, catalyst-doping, composite and nanosizing of Mg(AlH4)2were systematically investigated and the corresponding mechanisms were also revealed.
     First, a controllable synthesis method was developed to prepare high-purity Mg(AlH4)2submicron rods, and the hydrogen storage thermodynamics and kinetics of the as-prepared Mg(AlH4)2submicron rods were also systematically investigated. The diameter of the as-prepared Mg(AlH4)2submicron rods are0.5μm, and its purity is96.1%. The as-prepared Mg(AlH4)2release9.0wt%of hydrogen through a three-step reaction. MgH2and Al are formed after the first dehydrogenation step, and then Al(Mg) solid solution and MgH2are formed after the second dehydrogenation step, and finally Al3Mg2and Al(Mg) solid solution are formed after the third dehydrogenation step. The first dehydrogenation step is not reversible due to its exothermic nature, and the other two steps are reversible. Kinetic investigations indicate that the first dehydrogenation step of the as-prepared Mg(AlH4)2is a diffusion-controlled reaction with an relatively high apparent activation energy of123.0kJ mol-1, which is mainly responsible for its high on-set dehydrogenation temperature.
     Second, the effect of high-energy ball milling on the hydrogen storage properties of Mg(AlH4)2and its mechanism were systematically investigated. After milling for12h, the hydrogen desorption temperatures of Mg(AlH4)2is lowered by40℃. From macro-to micro-scale, high-energy ball milling changes the particle size, grain size, microstrain and lattice distortion of Mg(AlH4)2, specifically decreases the particle size and grain size and increases the microstrain and lattice distortion with prolonging the milling time. The decreases in particle size and grain size can shorten the diffusion distance of the species involved in the dehydrogenation reaction, and the increases in the microstrain and lattice distortion can enhance the diffusivity of the species involved in the dehydrogenation reaction, therefore synergically improve the dehydrogenation kinetics of Mg(AlH4)2.Moreover, the increases in the microstrain and lattice distortion can also raise the Gibbs free energy of Mg(AlH4)2, consequently changes the dehydrogenation thermodynamics of Mg(AlH4)2.
     Third, the effect of titanium fluoride on the hydrogen storage properties and its mechanism were investigated. It was found that doping with TiF3and TiF4can significantly reduce the dehydrogenation temperatures of Mg(AlH4)2, and the catalytic activity of TiF4is superior to that of TiF3.2.5mol%TiF4-doped Mg(AlH4)2starts to desorb hydrogen at40℃, and can release4.0wt%of hydrogen at82℃in100min. These is because TiF4can react with Mg(AlH4)2during milling, to in situ form the active catalyst Ti and increase defects, which change the nucleation and growth mode of the first-step dehydrogenation products of Mg(AlH4)2, and consequently lower the activation barrier of the first dehydrogenation step of Mg(AlH4)2.However, the reversibility of Mg(AlH4)2is not improved by doping with TiF4, as2.5mol%TiF4-doped Mg(AlH4)2is still partial reversible.
     Fourth, the hydrogen storage properties of Mg(AlH4)2/LiBH4composites and its mechanism were investigated. The research on the Mg(AlH4)2-xLiBH4composites with different molar ratio (x=2,4,6) revealed that with increasing the content of LiBH4, the dehydrogenation temperature of the second step of the Mg(AlH4)2-xLiBH4composite (the reaction of MgH2and Al) is lowered, and the dehydrogenation temperature of the third step (the reaction of Al3Mg2, Al(Mg) and LiBH4) is raised. The reason for the decrease in the reaction temperature of MgH2and Al is:LiBH4is a catalyst for the reaction of MgH2and Al, and the increased content of LiBH4lowers its kinetic barrier; the reason for the increase in the reaction temperature of Al3Mg2, Al(Mg) and LiBH4is:the increased content of LiBH4causes the change of the reaction path and raises the enthalpy change. Furthermore, the effect of byproduct NaCl or LiCl from the synthesis of Mg(AlH4)2on Mg(AlH4)2-6LiBH4composite was then investigated. It is found that NaCl can react with LiBH4to form NaBH4and LiCl, changing the chemical composition of the composite; Cl" ion in LiCl promotes the second dehydrogenation step of Mg(AlH4)2-6LiBH4composite (the reaction of and Al), and LiCl restrains the third dehydrogenation step of Mg(AlH4)2-6LiBH4composite by hindering the contact between Al3Mg2, Al(Mg) and LiBH4
     Finally, a mechanical-force-driven physical vapour deposition (MFPVD) method was developed to prepare Mg(AlH4)2nanorods; the formation mechanism was discussed; the hydrogen storage properties were also investigated systematically. It is found that the intense physical force from high-energy ball milling can vaporize the coordination polymer [Mg(AlH4)2(Et2O)]n which possesses a one-dimensional chain-like structure. Then the vaporized material can deposit onto the substrate and self-assemble one-dimensionally to form [Mg(AlH4)2(Et2O)]n nanorods. During successive heat treatment, the Et2O molecules were removed to form Mg(AlH4)2nanorods. The diameter of the as-prepared Mg(AlH4)2nanorods is20-40nm. The as-prepared Mg(AlH4)2nanorods exhibit superior hydrogen storage properties to the Mg(AlH4)2microrods, especially, the as-prepared Mg(AlH4)2nanorods can maintain their nanorod-like morphology during dehydrogenation and hydrogenation processes, consequently show excellent cycling stability. Moreover, LiBH4nanobelts with width of10-40nm were also successfully prepared by a similar process, indicating that the MFPVD method is general enough that can be extended to other complex hydrides which possess organic coordination polymers with unique morphology.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(3):345-359.
    [2]L. Schlapbach and A. Zuttel. Hydrogen-storage materials for mobile applications. Nature, 2001,414(6861):353-358.
    [3]雷永泉.新能源材料.天津:天津大学出版社,2000.
    [4]胡子龙.贮氢材料.北京:化学工业出版社,2002.
    [5]U. Eberle, M. Felderhoff and F. Schiith. Chemical and physical solutions for hydrogen storage. Angewandte Chemie-International Edition,2009,48(36):6608-6630.
    [6]J. Graetz. New approaches to hydrogen storage. Chemical Society Reviews,2009,38(1): 73-82.
    [7]IEA Hydrogen Co-Ordination Group. Hydrogen Production and Storage. http://www.iea.org/publications/freepublications/publication/hydrogen.pdf.
    [8]US DOE. Targets for onboard hydrogen storage systems for Light-Duty vehicles. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_sto rage_explanantion.pdf.
    [9]J. H. N. van Vucht, F. A. Kuijpers and H. C. A. M. Bruning. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Research Reports,1970,25(2):133-140.
    [10]J. J. Reilly and R. H. Wiswall. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorganic Chemistry,1968,7(11):2254-2256.
    [11]B. Bogdanovic and M. Schwickardi. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds,1997, 253:1-9.
    [12]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature,1997,386(6623):377-379.
    [13]G. Barkhordarian, T. Klassen and R. Bormann. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scripta Materialia,2003,49(3):213-217.
    [14]G. Barkhordarian, T. Klassen and R. Bormann. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. Journal of Alloys and Compounds,2004,364(1-2):242-246.
    [15]N. Hanada, T. Ichikawa and H. Fujii. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. Journal of Physical Chemistry B,2005,109(15):7188-7194.
    [16]L. Xie, Y. Liu, Y. T. Wang, J. Zheng and X. G. Li. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3. Acta Materialia,2007,55(13):4585-4591.
    [17]S. Isobe, A. Ono, H. Yao, Y. Wang, N. Hashimoto and S. Ohnuki. Study on reaction mechanism of dehydrogenation of magnesium hydride by in situ transmission electron microscopy. Applied Physics Letters,2010,96(22):223109.
    [18]R. W. P. Wagemans, J. H. van Lenthe, P. E. de Jongh, A. J. van Dillen and K. P. de Jong. Hydrogen storage in magnesium clusters:Quantum chemical study. Journal of the American Chemical Society,2005,127(47):16675-16680.
    [19]W. Y. Li, C. S. Li, H. Ma and J. Chen. Magnesium nanowires:Enhanced kinetics for hydrogen absorption and desorption. Journal of the American Chemical Society,2007, 129(21):6710-6711.
    [20]A. Zaluska, L. Zaluski and J. O. Strom-Olsen. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds,1999,288(1-2):217-225.
    [21]A. Zaluska, L. Zaluski and J. O. Strom-Olsen. Structure, catalysis and atomic reactions on the nano-scale:a systematic approach to metal hydrides for hydrogen storage. Applied Physics a-Materials Science & Processing,2001,72(2):157-165.
    [22]K. J. Jeon, H. R. Moon, A. M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan and J. J. Urban. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nature Materials,2011,10(4):286-290.
    [23]K.-F. Aguey-Zinsou and J.-R. Ares-Fernandez. Synthesis of colloidal magnesium:A near room temperature store for hydrogen. Chemistry of Materials,2008,20(2):376-378.
    [24]I. Saita, T. Toshima, S. Tanda and T. Akiyama. Hydriding chemical vapor deposition of metal hydride nano-fibers. Materials Transactions,2006,47(3):931-934.
    [25]L. Matsumoto, T. Akiyama, Y. Nakamura and E. Akiba. Controlled shape of magnesium hydride synthesized by chemical vapor deposition. Journal of Alloys and Compounds,2010, 507(2):502-507.
    [26]C. Zhu and T. Akiyama. Zebra-Striped Fibers in Relation to the H2 sorption properties for MgH2 nanofibers produced by a vapor-solid process. Crystal Growth & Design,2012,12(8): 4043-4052.
    [27]D.-W. Lim, J. W. Yoon, K. Y. Ryu and M. P. Suh. Magnesium nanocrystals embedded in a metal-organic framework:hybrid hydrogen storage with synergistic effect on physi-and chemisorption. Angewandte Chemie-International Edition,2012,51(39):9814-9817.
    [28]P. Vajeeston, P. Ravindran and H. Fjellvag. Theoretical investigations on low energy surfaces and nanowires of MgH2. Nanotechnology,2008,19(27):275704.
    [29]P. Srivastava and S. Kumar. Stability and size effect analysis of thin magnesium nanowires. International Journal of Nanoscience,2010,09(01&02):47-55.
    [30]F. M. Brower, N. E. Matzek, P. F. Reigler, H. W. Rinn, C. B. Roberts, D. L. Schmidt, J. A. Snover and K. Terada. Preparation and properties of aluminum hydride. Journal of the American Chemical Society,1976,98(9):2450-2453.
    [31]P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja and P. Jena. Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4. Nano Letters,2009,9(4):1501-1505.
    [32]B. Bogdanovic, R. A. Brand, A. Marjanovic, M. Schwickardi and J. Tolle. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. Journal of Alloys and Compounds,2000,302(1-2):36-58.
    [33]P. Wang and C. M. Jensen. Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off-the-shelf Ti powder. Journal of Physical Chemistry B,2004,108(40):15827-15829.
    [34]P. Wang, X. D. Kang and H. M. Cheng. Improved hydrogen storage of TiF3-Doped NaAlH4. ChemPhysChem,2005,6(12):2488-2491.
    [35]R. A. Zidan, S. Takara, A. G. Hee and C. M. Jensen. Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride. Journal of Alloys and Compounds,1999,285(1-2):119-122.
    [36]B. Bogdanovic, M. Felderhoff, A. Pommerin, F. Schuth and N. Spielkamp. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Advanced Materials, 2006,18(9):1198-1201.
    [37]Y. Liu, C. Liang, H. Zhou, M. Gao, H. Pan and Q. Wang. A novel catalyst precursor K2TiF6 with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH4. Chemical Communications,2011,47(6):1740-1742.
    [38]D. Sun, T. Kiyobayashi, H. T. Takeshita, N. Kuriyama and C. M. Jensen. X-ray diffraction studies of titanium and zirconium doped NaAlH4:elucidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties. Journal of Alloys and Compounds,2002,337(1-2):L8-L11.
    [39]J. Iniguez, T. Yildirim, T. J. Udovic, M. Sulic and C. M. Jensen. Structure and hydrogen dynamics of pure and Ti-doped sodium alanate. Physical Review B,2004,70(6):060101.
    [40]J. Iniguez and T. Yildirim. First-principles study of Ti-doped sodium alanate surfaces. Applied Physics Letters,2005,86(10):103109.
    [41]C. M. Araujo, R. Ahuja, J. M. O. Guillen and P. Jena. Role of titanium in hydrogen desorption in crystalline sodium alanate. Applied Physics Letters,2005,86:251913.
    [42]O. M. Lovvik and S. A. Opalka. Density functional calculations of Ti-enhanced NaAlH4. Physical Review B,2005,71(5):054103.
    [43]O. M. Lovvik and S. M. Opalka. Stability of Ti in NaAlH4. Applied Physics Letters,2006, 88(16):161917.
    [44]E. H. Majzoub and K. J. Gross. Titanium-halide catalyst-precursors in sodium aluminum hydrides. Journal of Alloys and Compounds,2003,356:363-367.
    [45]M. Felderhoff, K. Klementiev, W. Grunert, B. Spliethoff, B. Tesche, J. M. Bellosta von Colbe, B. Bogdanovic, M. Hartel, A. Pommerin, F. Schuth and C. Weidenthaler. Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate. Physical Chemistry Chemical Physics,2004,6(17):4369-4374.
    [46]J. Graetz, J. J. Reilly, J. Johnson, A. Y. Ignatov and T. A. Tyson. X-ray absorption study of Ti-activated sodium aluminum hydride. Applied Physics Letters,2004,85(3):500-502.
    [47]A. Leon, O. Kircher, J. Rothe and M. Fichtner. Chemical state and local structure around titanium atoms in NaAlH4 doped with TiCl3 using X-ray absorption spectroscopy. Journal of Physical Chemistry B,2004,108(42):16372-16376.
    [48]F. Fang, J. Zhang, J. Zhu, G. Chen, D. Sun, B. He, Z. Wei and S. Wei. Nature and role of Ti species in the hydrogenation of a NaH/Al mixture. Journal of Physical Chemistry C,2007, 111(8):3476-3479.
    [49]H. W. Brinks, C. M. Jensen, S. S. Srinivasan, B. C. Hauback, D. Blanchard and K. Murphy. Synchrotron X-ray and neutron diffraction studies of NaAlH4 containing Ti additives. Journal of Alloys and Compounds,2004,376(1-2):215-221.
    [50]H. W. Brinks, B. C. Hauback, S. S. Srinivasan and C. M. Jensen. Synchrotron X-ray studies of Al1-yTiy formation and re-hydriding inhibition in Ti-enhanced NaAH4. Journal of Physical Chemistry B,2005,109(33):15780-15785.
    [51]A. Leon, O. Kircher, M. Fichtner, J. Rothe and D. Schild. Evolution of the local structure around Ti atoms in NaAlH4 doped with TiCl3 or Ti13·6THF by ball milling using X-ray absorption and X-ray photoelectron spectroscopy. Journal of Physical Chemistry B,2006, 110(3):1192-1200.
    [52]A. Leon, G. Yalovega, A. Soldatov and M. Fichtner. Investigation of the nature of a Ti-Al cluster formed upon cycling under hydrogen in Na alanate doped with a Ti-based precursor. Journal of Physical Chemistry C,2008,112(32):12545-12549.
    [53]C. Weidenthaler, A. Pommerin, M. Felderhoff, B. Bogdanovic and F. Schuth. On the state of the titanium and zirconium in Ti-or Zr-doped NaAlH4 hydrogen storage material. Physical Chemistry Chemical Physics,2003,5(22):5149-5153.
    [54]Y. Suffisawat, P. Rangsunvigit, B. Kitiyanan, N. Muangsin and S. Kulprathipanja. Catalytic effect of Zr and Hf on hydrogen de sorption/absorption of NaAlH4 and LiAlH4. International Journal of Hydrogen Energy,2007,32(9):1277-1285.
    [55]B. Bogdanovic, U. Eberle, M. Felderhoff and F. Schuth. Complex aluminum hydrides. Scripta Materialia,2007,56(10):813-816.
    [56]J. Liu and Q. Ge. A precursor state for formation of TiAl3 complex in reversible hydrogen desorption/adsorption from Ti-doped NaAlH4. Chemical Communications,2006, (17): 1822-1824.
    [57]C. P. Balde, B. P. C. Hereijgers, J. H. Bitter and K. P. de Jong. Sodium alanate nanoparticles-Linking size to hydrogen storage properties. Journal of the American Chemical Society, 2008,130(21):6761-6765.
    [58]J. B. Gao, P. Adelhelm, M. H. W. Verkuijlen, C. Rongeat, M. Herrich, P. J. M. van Bentum, O. Gutfleisch, A. P. M. Kentgens, K. P. de Jong and P. E. de Jongh. Confinement of NaAIH4 in nanoporous carbon:impact on H2 release, reversibility, and thermodynamics. Journal of Physical Chemistry C,2010,114(10):4675-4682.
    [59]J. Wang, A. D. Ebner and J. A. Ritter. Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. Journal of the American Chemical Society,2006,128(17): 5949-5954.
    [60]X. Liu, H. W. Langmi, S. D. Beattie, F. F. Azenwi, G. S. McGrady and C. M. Jensen. Ti-Doped LiAlH4 for Hydrogen Storage:Synthesis, Catalyst Loading and Cycling Performance. Journal of the American Chemical Society,2011,133(39):15593-15597.
    [61]J. Graetz, J. Wegrzyn and J. J. Reilly. Regeneration of lithium aluminum hydride. Journal of the American Chemical Society,2008,130(52):17790-17794.
    [62]S.-S. Liu, L.-X. Sun, Y. Zhang, F. Xu, J. Zhang, H.-L. Chu, M.-Q. Fan, T. Zhang, X.-Y. Song and J. P. Grolier. Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4. International Journal of Hydrogen Energy,2009,34(19):8079-8085.
    [63]Z. Li, S. Liu, X. Si, J. Zhang, C. Jiao, S. Wang, S. Liu, Y.-J. Zou, L. Sun and F. Xu. Significantly improved dehydrogenation of LiAlH4 destabilized by K2TiF6. International Journal of Hydrogen Energy,2012,37(4):3261-3267.
    [64]J. R. A. Fernandez, F. Aguey-Zinsou, M. Elsaesser, X. Z. Ma, M. Dornheim and R. Bormann. Mechanical and thermal decomposition of LiAlH4 with metal halides. International Journal of Hydrogen Energy,2007,32(8):1033-1040.
    [65]M. Fichtner and O. Fuhr. Synthesis and structures of magnesium alanate and two solvent adducts. Journal of Alloys and Compounds,2002,345(1-2):286-296.
    [66]M. S. L. Hudson, H. Raghubanshi, D. Pukazhselvan and O. N. Srivastava. Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH4)3 and LiAlH4. International Journal of Hydrogen Energy,2010,35(5):2083-2090.
    [67]Y. F. Liu, F. H. Wang, Y. H. Cao, M. X. Gao, H. G. Pan and Q. D. Wang. Mechanisms for the enhanced hydrogen desorption performance of the TiF4-catalyzed Na2LiAlH6 used for hydrogen storage. Energy & Environmental Science,2010,3(5):645-653.
    [68]J. R. Ares, K.-F. Aguey-Zinsou, F. Leardini, I. Jimenez Ferrer, J.-F. Fernandez, Z.-X. Guo and C. Sanchez. Hydrogen Absorption/Desorption Mechanism in Potassium Alanate (KAlH4) and Enhancement by TiO3 Doping. Journal of Physical Chemistry C,2009, 113(16):6845-6851.
    [69]A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron and C. Emmenegger. Hydrogen storage properties of LiBH4. Journal of Alloys and Compounds,2003,356: 515-520.
    [70]P. Ngene, R. van den Berg, M. H. W. Verkuijlen, K. P. de Jong and P. E. de Jongh. Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy & Environmental Science,2011,4(10):4108-4115.
    [71]M. D. Riktor, M. H. Sorby, K. Chlopek, M. Fichtner, F. Buchter, A. Zuettel and B. C. Hauback. In situ synchrotron diffraction studies of phase transitions and thermal decomposition of Mg(BH4)2 and Ca(BH4)2. Journal of Materials Chemistry,2007,17(47): 4939-4942.
    [72]S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata and A. ZUttel. Dehydriding and rehydriding reactions of LiBH4. Journal of Alloys and Compounds,2005, 404:427-430.
    [73]J. J. Vajo, S. L. Skeith and F. Mertens. Reversible storage of hydrogen in destabilized LiBH4. The Journal of Physical Chemistry B,2005,109(9):3719-3722.
    [74]R. Gosalawit-Utke, J. M. B. von Colbe, M. Dornheim, T. R. Jensen, Y. Cerenius, C. B. Minella, M. Peschke and R. Bormann. LiF-MgB2 system for reversible hydrogen storage. Journal of Physical Chemistry C,2010,114(22):10291-10296.
    [75]F. E. Pinkerton and M. S. Meyer. Reversible hydrogen storage in the lithium borohydride-calcium hydride coupled system. Journal of Alloys and Compounds,2008, 464(1-2):L1-L4.
    [76]P. P. Yuan, B. H. Liu, B. J. Zhang and Z. P. Li. Reversible hydrogen storage composite based on 6LiBH4+CaF2. Journal of Physical Chemistry C,2011,115(14):7067-7075.
    [77]X.-D. Kang, P. Wang, L.-P. Ma and H.-M. Cheng. Reversible hydrogen storage in LiBH4 destabilized by milling with Al. Applied Physics a-Materials Science & Processing,2007, 89(4):963-966.
    [78]J. F. Mao, Z. P. Guo, H. K. Liu and X. B. Yu. Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system. Journal of Alloys and Compounds,2009, 487(1-2):434-438.
    [79]D. M. Liu, Q. Q. Liu, T. Z. Si, Q. G. Zhang, F. Fang, D. L. Sun, L. Z. Ouyang and M. Zhu. Superior hydrogen storage properties of LiBH4 catalyzed by Mg(AlH4)2-Chemical Communications,2011,47(20):5741-5743.
    [80]Y. Zhou, Y. Liu, W. Wu, Y. Zhang, M. Gao and H. Pan. Improved Hydrogen Storage Properties of LiBH4 Destabilized by in Situ Formation of MgH2 and LaH3. Journal of Physical Chemistry C,2012,116(1):1588-1595.
    [81]A. F. Gross, J. J. Vajo, S. L. Van Atta and G. L. Olson. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. Journal of Physical Chemistry C,2008,112(14): 5651-5657.
    [82]Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S.-i. Towata, A. Zuttel and S.-i. Orimo. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites:First-principles calculations and experiments. Physical Review B,2006, 74(4):045126.
    [83]Y. Nakamori, H. W. Li, K. Kikuchi, M. Aoki, K. Miwa, S. Towata and S. Orimo. Thermodynamical stabilities of metal-borohydrides. Journal of Alloys and Compounds, 2007,446:296-300.
    [84]K. Chlopek, C. Frommen, A. Leon, O. Zabara and M. Fichtner. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. Journal of Materials Chemistry,2007,17(33): 3496-3503.
    [85]R. J. Newhouse, V. Stavila, S.-J. Hwang, L. E. Klebanoff and J. Z. Zhang. Reversibility and improved hydrogen release of magnesium borohydride. Journal of Physical Chemistry C, 2010,114(11):5224-5232.
    [86]Y. Guo, X. Yu, W. Sun, D. Sun and W. Yang. The Hydrogen-Enriched Al-B-N System as an Advanced Solid Hydrogen-Storage Candidate. Angewandte Chemie-International Edition,2011,50(5):1087-1091.
    [87]P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan. Interaction of hydrogen with metal nitrides and imides. Nature,2002,420(6913):302-304.
    [88]P. Chen, Z. Xiong, G. Wu, Y. Liu, J. Hu and W. Luo. Metal-N-H systems for the hydrogen storage. Scripta Materialia,2007,56(10):817-822.
    [89]S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Ziittel and C. M. Jensen. Complex hydrides for hydrogen storage. Chemical Reviews,2007,107(10):4111-4132.
    [90]Z. T. Xiong, G. T. Wu, H. J. Hu and P. Chen. Ternary imides for hydrogen storage. Advanced Materials,2004,16(17):1522-1525.
    [91]W. F. Luo. (LiNH2-MgH2):a viable hydrogen storage system. Journal of Alloys and Compounds,2004,381:284-287.
    [92]H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujii. New metal-N-H system composed of Mg(NH2)2 and LiH for hydrogen storage. Journal of Physical Chemistry B, 2004,108(26):8763-8765.
    [93]Z. T. Xiong, J. J. Hu, G. T. Wu, P. Chen, W. F. Luo, K. Gross and J. Wang. Thermodynamic and kinetic investigations of the hydrogen storage in the Li-Mg-N-H system. Journal of Alloys and Compounds,2005,398(1-2):235-239.
    [94]H. Leng, T. Ichikawa and H. Fujii. Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. Journal of Physical Chemistry B,2006,110(26): 12964-12968.
    [95]J. Wang, T. Liu, G. Wu, W. Li, Y. Liu, C. M. Araujo, R. H. Scheicher, A. Blomqvist, R. Ahuja, Z. Xiong, P. Yang, M. Gao, H. Pan and P. Chen. Potassium-Modified Mg(NH2)2/2 LiH System for Hydrogen Storage. Angewandte Chemie-International Edition,2009,48(32): 5828-5832.
    [96]J. Wang, G. Wu, Y. S. Chua, J. Guo, Z. Xiong, Y. Zhang, M. Gao, H. Pan and P. Chen. Hydrogen Sorption from the Mg(NH2)2-KH System and Synthesis of an Amide-Imide Complex of KMg(NH)(NH2). Chemsuschem,2011,4(11):1622-1628.
    [97]J. Wang, P. Chen, H. Pan, Z. Xiong, M. Gao, G. Wu, C. Liang, C. Li, B. Li and J. Wang. Solid-Solid Heterogeneous Catalysis:The Role of Potassium in Promoting the Dehydrogenation of the Mg(NH2)2/2 LiH Composite. Chemsuschem,2013,6(11): 2181-2189.
    [98]Y. Liu, K. Zhong, K. Luo, M. Gao, H. Pan and Q. Wang. Size-Dependent Kinetic Enhancement in Hydrogen Absorption and Desorption of the Li-Mg-N-H System. Journal of the American Chemical Society,2009,131(5):1862-1870.
    [99]P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan. Interaction between lithium amide and lithium hydride. Journal of Physical Chemistry B,2003,107(39):10967-10970.
    [100]P. Chen, Z. Xiong, L. Yang, G. Wu and W. Luo. Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. Journal of Physical Chemistry B,2006,110(29):14221-14225.
    [101]Y. H. Hu and E. Ruckenstein. Ultrafast reaction between LiH and NH3 during H2 storage in Li3N. Journal of Physical Chemistry A,2003,107(46):9737-9739.
    [102]T. Ichikawa, N. Hanada, S. Isobe, H. Y. Leng and H. Fujii. Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. Journal of Physical Chemistry B,2004,108(23):7887-7892.
    [103]F. E. Pinkerton, G. P. Meisner, M. S. Meyer, M. P. Balogh and M. D. Kundrat. Hydrogen Desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. Journal of Physical Chemistry B,2005,109(1):6-8.
    [104]M. Aoki, K. Miwa, T. Noritake, G. Kitahara, Y. Nakamori, S. Orimo and S. Towata. Destabilization of LiBH4 by mixing with LiNH2. Applied Physics a-Materials Science & Processing,2005,80(7):1409-1412.
    [105]Y. E. Filinchuk, K. Yvon, G. P. Meisner, F. E. Pinkerton and M. P. Balogh. On the composition and crystal structure of the new quaternary hydride phase Li4BN3H10. Inorganic Chemistry,2006,45(4):1433-1435.
    [106]T. Noritake, M. Aoki, S. Towata, A. Ninomiya, Y. Nakamori and S. Orimo. Crystal structure analysis of novel complex hydrides formed by the combination of LiBH4 and LiNH2. Applied Physics a-Materials Science & Processing,2006,83(2):277-279.
    [107]W. S. Tang, G. Wu, T. Liu, A. T. S. Wee, C. K. Yong, Z. Xiong, A. T. S. Hor and P. Chen. Cobalt-catalyzed hydrogen desorption from the LiNH2-LiBH4 system. Dalton Transactions, 2008,18):2395-2399.
    [108]F. E. Pinkerton, M. S. Meyer, G. P. Meisner and M. P. Balogh. Improved hydrogen release from LiB0.33N0.67H2.67 with metal additives:Ni, Fe, and Zn. Journal of Alloys and Compounds,2007,433(1-2):282-291.
    [109]F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Rossler and G. Leitner. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochimica Acta,2002,391(1-2):159-168.
    [110]A. Gutowska, L. Y. Li, Y. S. Shin, C. M. M. Wang, X. H. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angewandte Chemie-International Edition,2005,44(23):3578-3582.
    [111]Z. T. Xiong, C. K. Yong, G. T. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Materials,2008,7(2):138-141.
    [112]X. Kang, Z. Fang, L. Kong, H. Cheng, X. Yao, G. Lu and P. Wang. Ammonia borane destabilized by lithium hydride:An advanced on-board hydrogen storage material. Advanced Materials,2008,20(14):2756-2759.
    [113]H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, B. L. Scott, M. E. Bowden, B. L. Davis and A. K. Burrell. Calcium amidotrihydroborate:A hydrogen storage material. Angewandte Chemie-International Edition,2007,46(47):8995-8997.
    [114]N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe and O. M. Yaghi. Hydrogen storage in microporous metal-organic frameworks. Science,2003,300(5622): 1127-1129.
    [115]A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi. Exceptional H-2 saturation uptake in microporous metal-organic frameworks. Journal of the American Chemical Society,2006, 128(11):3494-3495.
    [116]E. Wiberg and R. Bauer. ZUR KENNTNIS EINES MAGNESIUM-ALUMINIUM-WASSERSTOFFS MG(AIH4)2. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences,1950,5(7):397-398.
    [117]R. A. Varin, C. Chiu, T. Czujko and Z. Wronski. Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) Mg(AlH4)2 complex hydride. Nanotechnology,2005,16(10):2261-2274.
    [118]Y. Kim, E. K. Lee, J. H. Shim, Y. W. Cho and K. B. Yoon. Mechanochemical synthesis and thermal decomposition of Mg(AlH4)2. Journal of Alloys and Compounds,2006,422(1-2): 283-287.
    [119]V. Iosub, T. Matsunaga, K. Tange and M. Ishikiriyama. Direct synthesis of Mg(AlH4)2 and CaAlH5 crystalline compounds by ball milling and their potential as hydrogen storage materials. International Journal of Hydrogen Energy,2009,34(2):906-912.
    [120]M. Fichtner, O. Fuhr and O. Kircher. Magnesium alanate-a material for reversible hydrogen storage? Journal of Alloys and Compounds,2003,356:418-422.
    [121]A. Mamatha, B. Bogdanovic, M. Felderhoff, A. Pommerin, W. Schmidt, F. Schuth and C. Weidenthaler. Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates. Journal of Alloys and Compounds,2006, 407(1-2):78-86.
    [122]K. Komiya, N. Morisaku, Y. Shinzato, K. Ikeda, S. Orimo, Y. Ohki, K. Tatsumi, H. Yukawa and M. Morinaga. Synthesis and dehydrogenation of M(AlH4)2 (M=Mg, Ca). Journal of Alloys and Compounds,2007,446:237-241.
    [123]H. Noth, M. Schmidt and A. Treitl. Synthesis and structures of magnesium tetrahydridoaluminates. Chemische Berichte,1995,128(10):999-1006.
    [124]M. Fichtner, J. Engel, O. Fuhr, A. Gloss, O. Rubner and R. Ahlrichs. The structure of magnesium alanate. Inorganic Chemistry,2003,42(22):7060-7066.
    [125]A. Fossdal, H. W. Brinks, M. Fichtner and B. C. Hauback. Thermal decomposition of Mg(AlH4)2 studied by in situ synchrotron X-ray diffraction. Journal of Alloys and Compounds,2005,404:752-756.
    [126]M. Fichtner, O. Fuhr, O. Kircher and J. Rothe. Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. Nanotechnology,2003,14(7):778-785.
    [127]G. J. Lee, J. H. Shim, Y. W. Cho and K. S. Lee. Improvement in desorption kinetics of NaAlH4 catalyzed with TiO2 nanopowder. International Journal of Hydrogen Energy,2008, 33(14):3748-3753.
    [128]T. Sun, B. Zhou, H. Wang and M. Zhu. The effect of doping rare-earth chloride dopant on the dehydrogenation properties of NaAlH4 and its catalytic mechanism. International Journal of Hydrogen Energy,2008,33(9):2260-2267.
    [129]M. P. Pitt, P. E. Vullum, M. H. Sorby, H. Emerich, M. Paskevicius, C. E. Buckley, J. C. Walmsley, R. Holmestad and B. C. Hauback. Hydrogen Absorption Kinetics of the Transition-Metal-Chloride-Enhanced NaAlH4 System. Journal of Physical Chemistry C, 2012,116(27):14205-14217.
    [130]B. Bogdanovic, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte and F. Schuth. Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Advanced Materials,2003,15(12):1012-1015.
    [131]P. Wang, X. D. Kang and H. M. Cheng. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. Journal of Physical Chemistry B,2005,109(43):20131-20136.
    [132]X. D. Kang, P. Wang and H. M. Cheng. In situ formation of Ti hydride and its catalytic effect in doped NaAlH4 prepared by milling NaH/Al with metallic Ti powder. International Journal of Hydrogen Energy,2007,32(14):2943-2948.
    [133]V. P. Balema and L. Balema. Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides. Physical Chemistry Chemical Physics,2005,7(6):1310-1314.
    [134]M. Sterlin Leo Hudson, D. Pukazhselvan, G. Irene Sheeja and O. Srivastava. Studies on synthesis and dehydrogenation behavior of magnesium alanate and magnesium-sodium alanate mixture. International Journal of Hydrogen Energy,2007,32(18):4933-4938.
    [135]W. Luo and K. Stewart. Characterization of NH3 formation in desorption of Li-Mg-N-H storage system. Journal of Alloys and Compounds,2007,440(1-2):357-361.
    [136]M. Matsumoto, T. Haga, Y. Kawai and Y. Kojima. Hydrogen desorption reactions of Li-N-H hydrogen storage system:Estimation of activation free energy. Journal of Alloys and Compounds,2007,439(1-2):358-362.
    [137]J. Z. Hu, J. H. Kwak, Z. Yang, W. Osborn, T. Markmaitree and L. L. Shaw. Probing the reaction pathway of dehydrogenation of the LiNH2+LiHmixture using in situ H-1 NMR spectroscopy. Journal of Power Sources,2008,181(1):116-119.
    [138]X. Wan, T. Markmaitree, W. Osborn and L. L. Shaw. Nanoengineering-Enabled Solid-State Hydrogen Uptake and Release in the LiBH4 Plus MgH2 System. Journal of Physical Chemistry C,2008,112(46):18232-18243.
    [139]J. Z. Hu, J. H. Kwak, Z. Yang, X. Wan and L. L. Shaw. Direct observation of ion exchange in mechanically activated LiH+MgB2 system using ultrahigh field nuclear magnetic resonance spectroscopy. Applied Physics Letters,2009,94(14).
    [140]J. Z. Hu, J. H. Kwak, Z. Yang, X. Wan and L. L. Shaw. Detailed investigation of ion exchange in ball-milled LiH+MgB2 system using ultra-high field nuclear magnetic resonance spectroscopy. Journal of Power Sources,2010,195(11):3645-3648.
    [141]L. L. Shaw, X. Wan, J. Z. Hu, J. H. Kwak and Z. Yang. Solid-State Hydriding Mechanism in the LiBH4+MgH2 System. Journal of Physical Chemistry C,2010,114(17):8089-8098.
    [142]K.-B. Kim, J.-H. Shim, Y. W. Cho and K. H. Oh. Pressure-enhanced dehydrogenation reaction of the LiBH4-YH3 composite. Chemical Communications,2011,47(35): 9831-9833.
    [143]P. Mauron, M. Bielmann, A. Remhof, A. Zuettel, J.-H. Shim and Y. W. Cho. Stability of the LiBH4/CeH2 Composite System Determined by Dynamic pcT Measurements. Journal of Physical Chemistry C,2010,114(39):16801-16805.
    [144]Y. Zhang, Q. Tian, H. Chu, J. Zhang, L. Sun, J. Sun and Z. Wen. Hydrogen De/Resorption Properties of the LiBH4-MgH2-Al System. Journal of Physical Chemistry C,2009,113(52): 21964-21969.
    [145]C. Suryanarayana. Mechanical alloying and milling. Progress in Materials Science,2001, 46(1-2):1-184.
    [146]R. A. Varin, T. Czujko and Z. Wronski. Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology,2006,17(15):3856-3865.
    [147]H. Wu, W. Zhou, K. Wang, T. J. Udovic, J. J. Rush, T. Yildirim, L. A. Bendersky, A. F. Gross, S. L. Van Atta, J. J. Vajo, F. E. Pinkerton and M. S. Meyer. Size effects on the hydrogen storage properties of nanoscaffolded Li3BN2H8. Nanotechnology,2009,20(20): 204002.
    [148]V. Stavila, R. K. Bhakta, T. M. Alam, E. H. Majzoub and M. D. Allendorf. Reversible Hydrogen Storage by NaAlH4 Confined within a Titanium-Functionalized MOF-74(Mg) Nanoreactor. ACS Nano,2012,6(11):9807-9817.
    [149]K.-J. Jeon, H. R. Moon, A. M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan and J. J. Urban. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nature Materials,2011,10(4):286-290.
    [150]H. E. Kissinger. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 1957,29(11):1702-1706.
    [151]M. Avrami. Kinetics of phase change I-General theory. Journal of Chemical Physics,1939, 7(12):1103-1112.
    [152]A. T. W. Kempen, F. Sommer and E. J. Mittemeijer. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. Journal of Materials Science,2002,37(7):1321-1332.
    [153]J. W. Christian. Chapter 12-Formal Theory of Transformation Kinetics. The Theory of Transformations in Metals and Alloys. Oxford:Pergamon; 2002..
    [154]F. Izumi and T. Ikeda. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. In:R. Delhez, E. J. Mittemeijer, editors. European Powder Diffraction, Pts 1 and 22000. p.198-203.
    [155]P. Buchacher, W. Fischer, K. D. Aichholzer and F. Stelzer. Ring-opening polymerization of cycloolefins with MgCl2. Journal of Molecular Catalysis a-Chemical,1997,115(1): 163-171.
    [156]Y. Liu, J. Hu, G. Wu, Z. Xiong and P. Chen. Large amount of hydrogen desorption from the mixture of Mg(NH2)2 and LiAlH4. Journal of Physical Chemistry C,2007,111(51): 19161-19164.
    [157]A. Fossdal, H. W. Brinks, M. Fichtner and B. C. Hauback. Determination of the crystal structure of Mg(AlH4)2 by combined X-ray and neutron diffraction. Journal of Alloys and Compounds,2005,387(1-2):47-51.
    [158]H. Okamoto. Al-Mg (aluminum-magnesium). Journal of Phase Equilibria,1998,19(6): 598-598.
    [159]H. Gunaydin, K. N. Houk and V. Ozolins. Vacancy-mediated dehydrogenation of sodium alanate. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(10):3673-3677.
    [160]A. Zaluska, L. Zaluski and J. O. Strom-Olsen. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds,1999,288(1-2):217-225.
    [161]C. Lal and I. P. Jain. Effect of ball milling on structural and hydrogen storage properties of Mg-x wt% FeTi (x=2 & 5) solid solutions. International Journal of Hydrogen Energy,2012, 37(4):3761-3766.
    [162]K. Hoang and C. G. Van de Walle. Mechanism for the decomposition of lithium borohydride. International Journal of Hydrogen Energy,2012,37(7):5825-5832.
    [163]C. Liang, Y. Liu, Y. Jiang, Z. Wei, M. Gao, H. Pan and Q. Wang. Local defects enhanced dehydrogenation kinetics of the NaBH4-added Li-Mg-N-H system. Physical Chemistry Chemical Physics,2011,13(1):314-321.
    [164]F. J. Humphreys. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-I. The basic model. Acta Materialia, 1997,45(10):4231-4240.
    [165]R. A. Varin, C. Chiu, T. Czujko and Z. Wronski. Mechano-chemical activation synthesis (MCAS) of nanocrystalline magnesium alanate hydride Mg(AlH4)2 and its hydrogen desorption properties. Journal of Alloys and Compounds,2007,439(1-2):302-311.
    [166]P. Scardi, M. Leoni and R. Delhez. Line broadening analysis using integral breadth methods: a critical review. Journal of Applied Crystallography,2004,37(3):381-390.
    [167]G. K. Williamson and W. H. Hall. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica,1953,1(1):22-31.
    [168]N. Ishikawa, S. Yamamoto and Y. Chimi. Structural changes in anatase TiO2 thin films irradiated with high-energy heavy ions. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2006,250(1-2): 250-253.
    [169]T. J. Frankcombe. Proposed Mechanisms for the Catalytic Activity of Ti in NaAlH4. Chemical Reviews,2012,112(4):2164-2178.
    [170]J. Graetz and J. J. Reilly. Decomposition kinetics of the AlH3 polymorphs. Journal of Physical Chemistry B,2005,109(47):22181-22185.
    [171]Y. Liu, F. Wang, Y. Cao, M. Gao, H. Pan and Q. Wang. Mechanisms for the enhanced hydrogen desorption performance of the TiF4-catalyzed Na2LiAlH6 used for hydrogen storage. Energy & Environmental Science,2010,3(5):645-653.
    [172]A. Fossdal, H. W. Brinks, J. E. Fonnel(?)p and B. C. Hauback. Pressure-composition isotherms and thermodynamic properties of TiF3-enhanced Na2LiAlH6. Journal of Alloys and Compounds,2005,397(1-2):135-139.
    [173]G. Streukens, B. Bogdanovic, M. Felderhoff and F. Schuth. Dependence of dissociation pressure upon doping level of Ti-doped sodium alanate-a possibility for "thermodynamic tailoring" of the system. Physical Chemistry Chemical Physics,2006,8(24):2889-2892.
    [174]J. F. Mao, Z. P. Guo, H. Y. Leng, Z. Wu, Y. H. Guo, X. B. Yu and H. K. Liu. Reversible Hydrogen Storage in Destabilized LiAlH4-MgH2-LiBH4 Ternary-Hydride System Doped with TiF3. Journal of Physical Chemistry C,2010,114(26):11643-11649.
    [175]Y. Zhou, Y. Liu, W. Wu, Y. Zhang, M. Gao and H. Pan. Improved Hydrogen Storage Properties of LiBH4 Destabilized by in Situ Formation of MgH2 and LaH3. The Journal of Physical Chemistry C,2011,116(1):1588-1595.
    [176]B. Li, Y. Liu, Y. Zhang, M. Gao and H. Pan. Reaction Pathways for Hydrogen Uptake of the Li-Mg-N-Based Hydrogen Storage System. Journal of Physical Chemistry C,2012, 116(25):13551-13558.
    [177]H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi and S.-i. Orimo. Halide-Stabilized LiBHU, a Room-Temperature Lithium Fast-Ion Conductor. Journal of the American Chemical Society,2009,131(3):894-895.
    [178]J. Wang, Y. Du, L. Sun and X. Li. Effects of F and Cl on the stability of MgH2. International Journal of Hydrogen Energy,2014,39(2):877-883.
    [179]H. H. Giese, H. Noth, H. Schwenk and S. Thomas. Metal tetrahydridoborates and tetrahydridometallates.22-Structural chemistry of lithium tetrahydroborate ether solvates. European Journal of Inorganic Chemistry,1998,7:941-949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700