用户名: 密码: 验证码:
超声微泡介导白细胞介素-1受体拮抗蛋白基因转染兔软骨细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     骨关节炎(osteoarthritis, OA)是一种慢性、渐进性、退行性关节病变,是临床上最常见的关节疾病。随着我国人口老龄化和创伤发生率增高,OA已成为导致老龄者和创伤病人病废的最主要疾病之一。目前研究显示,OA是力学因素和生物学因素作用下软骨合成和降解偶联失衡的结果,细胞因子学说目前并不能解释OA中软骨破坏的全部原因。但是,不论软骨的哪个部位以何种形式发生退变,都不能脱离IL-1等炎症介质的作用。研究表明,IL-1能刺激软骨细胞、成纤维细胞和滑膜细胞分泌基质金属蛋白酶(matrix metalloproteinases, MMPs)、胶原酶和前列环素2 (prostaglandin E2, PGE2),加速软骨基质中蛋白多糖和Ⅱ型胶原的降解,并抑制蛋白多糖和Ⅱ型胶原的合成,改变和破坏了软骨细胞周围环境,促进软骨细胞的凋亡。
     几-1受体分为80kD和68kD两种,前者称为IL-1RⅠ,生物体内分布广泛,体外研究发现IL-1通过与软骨细胞膜上的IL-1RⅠ结合,经丝裂素原激活的蛋白激酶(mitogen-activated protein kinases, MAPKs)途径和NF-κB (nuclear factor-κB)途径进行细胞内信号传导,引起MMPs的表达升高、软骨细胞凋亡等一系列反应。白细胞介素受体拮抗蛋白(interleukin 1 receptor antagonist, IL-1Ra)是一种IL-1的天然拮抗剂,可竞争性结合细胞表面的IL-1RⅠ,从而阻断IL-1的生物学作用。然而,单纯依靠外源性IL-1Ra治疗OA,存在半衰期短,局部浓度低等缺点而限制了其使用。IL-1Ra基因治疗在OA病变处可长期稳定的表达IL-1Ra基因,以往的实验研究初步显示出良好的治疗作用。
     然而,成功的基因转染依赖于安全、高效的载体系统,当前基因载体主要有病毒载体和非病毒载体。病毒载体转染效率高,但其潜在致突变性和免疫原性限制了其安全使用;非病毒载体如脂质体和阳离子聚合物等较病毒载体安全,但其转染效率低且靶向性差。因此,寻找和建立无毒副作用又具有靶向性的高效基因载体已成为基因治疗研究亟待解决的关键问题。
     近年来,国内外的研究显示,通过超声介导携基因微泡破裂法,能促进目的基因安全而有效的定向转移,增加外源基因转染效率和表达水平,该方法有望为OA的基因治疗提供新的突破点。在以往的研究中,微泡提高基因转染效率从几倍到几百倍不等,除了与超声条件和微泡种类、浓度等因素有关外,也与基因、被转染细胞的种类有关。目前,有关超声介导微泡破裂促进基因转染的实验研究多集中于循环系统的缺血性心肌病、溶栓治疗、肿瘤基因治疗等方面,尚未见有关超声微泡转基因系统在骨相关细胞方面的应用。
     因此,本研究拟通过DNA重组技术,构建含增强型绿色荧光蛋白(enhanced green fluorescence protein, EGFP)报告基因的重组人IL-1Ra基因的真核表达质粒pEGFP-N1-hIL-1Ra,采用SonoVue脂质微泡为载体,以体外培养的兔软骨细胞为靶细胞,探讨超声介导微泡破裂促进hIL-1Ra基因转染兔软骨细胞的转染效率和可行性,优化该系统的各方面转染条件,为进一步的体内OA基因治疗奠定基础,进而为OA的治疗探索增效的新途径。
     实验一pEGFP-N1-hIL-1Ra真核表达质粒的构建和兔软骨细胞的体外培养
     目的构建含绿色荧光蛋白报告基因的真核表达质粒pEGFP-N1-hIL-1Ra,体外培养获得表型稳定的兔软骨细胞。
     方法通过RT-PCR扩增hIL-1Ra基因,并在两端添加HindⅢ和BamHⅠ酶切位点。将pEGFP-N1载体经BamHⅠ酶切后电泳鉴定,利用定向克隆技术将经HindⅢ和BamHⅠ双酶切后的hIL-1Ra基因片段和pEGFP-N1载体经T4连接酶进行连接,重组的pEGFP-N1-hIL-1Ra在大肠杆菌DH5α感受态细胞内扩增,经过酶切电泳鉴定和DNA测序证明质粒构建是否成功。选用出生28天的新西兰兔一只,取其胫骨和股骨远端的关节软骨,经0.2%Ⅱ型胶原酶消化、分离、培养原代软骨细胞。对原代和传代软骨细胞行Ⅱ型胶原和Ⅰ型胶原免疫组化染色鉴定。
     结果通过对重组质粒pEGFP-N1-hIL-1Ra进行酶切鉴定以及DNA序列测定分析,证明真核表达质粒pEGFP-N1-hIL-1Ra构建成功,开放阅读框架正确。体外培养软骨细胞5代以内能维持正常表型,分泌Ⅱ型胶原。
     结论利用DNA重组技术能成功将hIL-1Ra基因克隆入pEGFP-N1载体中,构建出真核表达质粒pEGFP-N1-hIL-1Ra,体外培养的软骨细胞在5代内可用于后续实验研究。
     实验二超声介导微泡破裂促进pEGFP-N1-hIL-1Ra转染兔软骨细胞的实验研究
     目的探讨超声介导下携白介素-1受体拮抗蛋白基因(hIL-1Ra)的SonoVue微泡体外转染兔软骨细胞的效率和表达情况。
     方法体外分离培养的兔软骨细胞,分为单纯质粒组(P)每孔加入50μg/ml质粒、微泡+质粒组(M+P)每孔加入30%携质粒微泡、超声+质粒组(U+P)每孔加入50μg/ml质粒,超声+微泡+质粒组(U+M+P)每孔加入30%携质粒微泡,其中(U+P)和(U+M+P)组以辐照强度1.5w/cm2,辐照时间30s进行超声照射。照射后48小时,荧光显微镜和流式细胞术检测转染效率,RT-PCR和Western blot技术检测hIL-1Ra基因的mRNA和蛋白表达,MTT比色法检测细胞生存率。
     结果(U+P)和(U+M+P)组能观察到绿色荧光蛋白的表达,U+M+P组转染效率较其它三组明显提高,其转染效率为11.6±1.0%. pEGFP-N1-hIL-1Ra质粒经超声微泡介导转染后可表达hIL-1Ra的mRNA和蛋白,其细胞生存率下降至75.8%。
     结论超声微泡可介导hIL-1Ra基因在兔软骨细胞内的转染和表达,可望成为OA基因治疗的新方法。
     实验三超声介导微泡破裂促进基因转染兔软骨细胞的参数优化的实验研究
     目的观察不同的超声声强、辐照时间、质粒浓度、微泡浓度和有无血清对基因转染效率和细胞生存率的影响,探讨超声介导SonoVue微泡系统转染兔软骨细胞的最佳条件。
     方法分别采用不同的超声声强0.5w/cm2、.0w/cm2、1.5w/cm2、2.0w/cm2,不同的辐照时间5s、10s、30s、60s、120s、180s,不同的质粒浓度5μg/ml、10μg/ml、20μg/ml、30μg/ml、50μg/ml、100μg/ml,不同的微泡浓度5%、10%、20%、30%、50%以及加入或不加入血清进行基因转染,以荧光显微镜和流式细胞术检测基因转染的效率,采用MTT比色法观察细胞生存率。
     结果在超声声强为1.5w/cm2,暴露时间为30s,微泡浓度为30%,DNA浓度为50μg/ml的条件下能获得理想的基因转染效率和细胞生存率,血清的存在对基因转染效率和细胞生存率无影响。
     结论超声介导微泡破裂技术在基因转染时会对细胞产生一定的损伤,合理把握该系统应用时的各项条件是提高转染效率和减小组织细胞损伤的关键。
Background
     Osteoarthritis(OA) is a chronic and degenerative disease of joint and is one of the most common joint disorders.OA is becoming one of the principal diseases leading to disability with aging of population and high incidence of trauma.Previous research in the field of OA has characterized that OA is the result of disequilibrium between cartilage degeneration and synthesis controlled by the mechanic and biologic factors.The effect of inflammation mediators,such as interleukin-1(IL-1),is necessary in the cartilage degeneration although cytokines is not enough.According to the previous researches,IL-1 stimulates chondrocytes,fibroblasts and synoviocytes to synthesize prostaglandin E2(PGE2),collagenases and matrix metalloproteinases (MMPs),and accelerates the degeneration of main compositions of cartilage,such as proteoglycan and type II collagen,destroys the environment of chondrocytes and promotes their apoptosis.
     There are two kinds of IL-1 receptors,80kD and 68kD in molecular weight respectively and the former is called IL-1R I expressing extensively in organisms.When coupled with IL-l,serine and threonine residues in IL-1R I are phosphorylated and IL-1R I become activated to signal transduction.It has been certificated that mitogen-activated protein kinases(MAPKs) and nuclear factor-KB(NF-κB) signaling pathways participate in the process IL-1 induced MMPs express and chondrocytes apoptosis.IL-1Ra is a naturally occurring protein that binds to the type I IL-1 cell surface receptor,preventing its ability to interact with IL-1. But relying on the exogenous IL-1Ra only,the effective time and local concentration of IL-1Ra are too limited that can hinder its affect. The transfer of gene encoding IL-1ra to the joint can be considered a new treatment candidate for OA because it can provide gene sustained synthesis at sites of lesions, which the previous experiment studys had showen therapeutic benefits.
     While, the success of gene therapy is largely dependent on the development of vectors or vehicles that can selectively and efficiently deliver a therapeutic gene to cells or target tissues safely. The main categories of techniques that have been used to deliver genes are viral vectors and nonviral vectors. Viral vectors are really efficient but they have limitations such as wild-type reversion and immunogenicity. Meanwhile, Non-viral delivery systems including Cationic phospholipids and cationic polymers for gene therapy are more safely than methods,while these techniques suffer from lower transfection efficiencies. The viral and non viral delivers all have merits and demerits, and developing a novel and effective method to deliver gene becomes a new aim of the gene therapy research.
     Recently, some studies demonstrate that ultrasound-mediated microbubble destruction can enhance the transfection efficieney and expression of the exogenous gene to a certain orientation safely and effectively.This method would become a new breakthrough of the gene therapy fo OA. In previous studies, the efficiency of microbubbles to enhance the gene transfer is from a range of times to hundreds of times, in addition to the conditions with ultrasound and microbubble type, concentration and other factors, but also with the genes, cells were transfected with the categories. At present, the ultrasound microbubble-mediated gene transfer focused on the ischemic cardiomyopathy in circulatory system, thrombolytic therapy, cancer gene therapy, et al.It has not yet to see on the ultrasound system in genetically modified bone-related cell applications.
     Therefore, this study planned to construct recombinant eukaryotic expression plasmid pEGFP-N1-hIL-1Ra containing the enhanced green fluorescence protein (EGFP) and the recombinant human interleukin 1 receptor antagonist (IL-1Ra) by gene recombination technology, investigate the transfection efficieney of IL-1Ra gene in rabbit chondrocytes by ultrasound-mediated microbubble destruction, optimized the parameter and condition of this gene deliver system,and evaluate its feasibility of this method used in OA gene therapy in vivo.
     Part 1 Construction of recombination eukaryotic expression vector pEGFP-N1-hIL-1Ra and cultivation of rabbit articular chondrocyte
     Objective To construct a eukaryotic expression vector containing the enhanced green fluorescence protein and recombinant human interleukin 1 receptor antagonist and culture rabbit articular chondrocyte which have stable phenotype.
     Method The HindⅢand BamH I primers specific for amplifying the DNA fragment encoding hIL-1Ra were designed and synthesized.The targeted DNA fragment was obtained from human totally RNA by RT-PCR. The pEGFP-N1 vector had been enzyme digestion by BamH I.Cutting pEGFP-N1 vector and hIL-1Ra with HindⅢand BamH,and using T4 ligase to connect the pEGFP-N1 vector and rhIL-1Ra.The recombinant plasmid pEGFP-N1-hIL-IRa was first propagated in E.coli 5α,and then was confirmed to contain hIL-1RacDNA sequence by agarose gel electrophoresis and DNA sequence analysis.Articular cartilage were removed from the distal end of tibia and femurs of the 28 days fatal New Zealand white rabbit,primary chondrocytes were digested with 0.2% typeⅡcollagenase. TypeⅠcollagen and typeⅡcollagen immunohistochemistry had been taked to the primary chondrocytes and passaged chondrocytes to make sure that whether the cell still has its phenotype.
     Result The construction of the recombinate eukaryotic expression plasmid pEGFP-N1-hIL-1Ra and the correction of the open reading frame were confirmed through restriction enzyme maping analusis and DNA sequencing.The chondrocytes can retain its phenotype and excrete typeⅡcollagen before five generations.
     Conclusion By gene recombinant technology,the hIL-1Ra gene can be cloned into pEGFP-N1 vector to construct the recombinant eukaryotic expression plasmid pEGFP-N1-hIL-1Ra The chondrocytes within five generations can be used in the later experiment.
     Part 2 Experimental Research of interleukin-1 receptor antagonist gene transfected into rabbit chondrocytes by ultrasound-mediated microbubble destruction
     Objective To explore the efficiency and expression of transfering of interleukin-1 receptor antagonist gene by ultrasound-mediated microbubbles destruction.
     Method Cultured rabbit chondrocytes in vitro were grouped to the followings. P group:plasmid DNA alone; M+P group:mirobubbles and plasmid DNA; U+P group: ultrasound irradiation and plasmid; U+M+P group:ultrasound irradiation, mirobubbles and plamid DNA. The ultrasound intensity was 1.5w/cm2, ultrasound exposure time was 60s. Forty-eight hours later, the transfering efficiency was observed under fluorescence microscopy and flow cytometry. RT-PCR and Western blot analysis was used to examined the expression of IL-1ra mRNA and protein. Cell viability was assayed by MTT.
     Result Green fluorescence was observed in U+P and U+M+P gruop by fluorescence microscopy.The transferring efficiency was highest in the U+M+P group, the trasfection expression rate is 11.6±1.0%. The IL-1ra expression increased after the ultrasound-mediated microbubbles irradiation.The survival rate of the chondrocytes reduced to 75.8%.
     Conclusion Ultrasound-mediated microbubbles destruction can increase the transfection of hIL-1ra gene in chondrocyte cells. It may become a novel method of gene therapy for cartilage lesions.
     Part 3 Optimization of parameters in ultrasound-mediated microbubble destruction enhance gene delivery in rabbit chondrocytes
     Objective To observe the the trasfection expression rate and survival rate of the chondrocytes in different parameters of intensity of ultrasound,times of irradiation, concentration of plasmid, concentration of microbubble and the presence of the serum or not.
     Method The gene transfection were act in the conditions of different intensity of ultrasound as 0.5w/cm2. 1.0w/cm2、1.5w/cm2、2.0w/cm2, different times of irradiation as 5s、10s、30s、60s、120s、180s, different concentration of plasmid as 5μg/ml、10μg/ml、20μg/ml、30μg/ml、50μg/ml、100μg/ml, different concentration of microbubble 5%、10%、20%、30%、50% respectively.The rate of gene transfection in rabbit chondrocytes was detected by fluorescence microscopy and flow cytometry.The survival rate of rabbit chondrocytes were evaluated by MTT.
     Result We can obtain a fine transfection efficiency and survival rate when intensity was 1.5w/cm2,duration was 30s,dose of plasmid and microbubble was 50μg/ml and 30%. The trasfection expression rate and survival rate of the chondrocytes has no significant difference whether the presence of the serum or not.
     Conclusion Ultrasound-mediated microbubble destruction may injured the chondrocytes.To chose a optimal parameters is the key of raise the trasfection expression rate and decrease the harmful of the cells.
引文
1.孙铁铮,吕厚山.骨关节炎的诊治与研究进展,继续医学教育,2005,9(3):47-56
    2.任志伟,俞永林,姜建元,等.骨关节炎相关性细胞因子研究进展,国外医学·骨科学分册,2005,26(4):234-237.
    3. Jacques C, Gosset M, Berenbaum F, et al. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation.Vitam Horm,2006,74:371-403.
    4. Kama E, Miltyk W, Palka JA, et al. Hyaluronic acid counteracts interleukin-1-induced inhibition of collagen biosynthesis in cultured human chondrocytes. Pharmacol Res,2006,54(4):275-281.
    5. Lopez-Armada MJ, Carames B, Martin MA, et al. Mitochondrial activity ismodulated by TNFalpha and IL-1beta in normal human chondrocyte cells.Osteoarthritis Cartilage,2006,14(10):1011-1022.
    6. Sanchez C, Mathy-Hartert M, Deberg MA, et al. Effects of rhein on human articular chondrocytes in alginate beads. Biochem Pharmaco,2003,65(3):377-388.
    7. De Isla NG, Yang JW, Huselstein C, et al. IL-1 beta synthesis by chondrocyte analyzed by 3D microscopy and flow cytometry:effect of rhein. Biorheology,2006, 43(3-4):595-601.
    8. Seetharaman R,Mora AL, Nabozny G, et al. Essential role of T cell NF-kappa B activation in collagen-induced arthritis.J Immunol,1999,163(3):1577-1583.
    9. Arend WP, Gabay C. Physiologic role of interleukin-1 receptor antagonist. Arthritis Res,2000,2(4):245-248.
    10. Jiang Y, Genant HK, Watt I,et al. A multicenter,double-blind, dose-ranging, randomized and placebo controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis:radiologic progression and correlation of Genant and Larsen scoring methods.Arthritis Rheum,2000,43(5): 1001-1009.
    11. Reinecke J, Koch H, Meijer H,et al. Current status of gene therapy for rheumatoid arthritis. BioDrugs,1999,11(2):103-114
    12. Nkai H, Storm TA, Kay MA. Inereasing the size of rAAV-mediated expression cassettes in vivo by internloleeular joining of two complementary vectors. Nat Biotechnol,2000,18(5):527-532.
    13. Drittnati L, Jenny C, Poulard K,et al.Optimised helper virus-free production of highquality adeno-assoeiated virus vectors.J Gene Med,2001,3(1):59-71.
    14. Sawehuk SJ, Boivin GP, Duwel LE, et al. Anti-T cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium.Hum Gene Ther,1996,7(4):499-506
    15. Hurtado Pico A, Wang X, Sipo I, et al.Viral and nonviral factors causing nonspecific replication of tumor and tissue sepicfic promoter dependent oncolytic adenovirus. Molular Therapy,2005,11(4):245-256
    16. Kobayashi N, Yasu T, Yamada S, et al.Endothelial cell injury in venule and capillary induced by contrast ultrasonography. Ultrasound Med Biol,2002,28(7): 949-956
    17. Newman CM, Lawire A, Brisken AF,et al.Ulrtasound gene therpay:on the road from concept to reality. Echoeardiography,2001,18(4):339-347.
    18. Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albuminmicrobubbles directs gene delivery to the myocardium. Circulation,2000, 101(22):2554-2556
    19. Endoh M, Koibuchi N, Sato M, et al. Fetalgene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther,2002,5(5):501-508
    20. Martin JKB.Science, medicine, and the future:Microbubble contrast agents:a new era in ultrasound.British Med J,2001,322(2):1222-1226.
    21. Dinarello CA. Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation. Curr Opin Pharmacol,2004,4(4):378-385
    22. Ghivizzani SC, Oligino TJ,Glorioso JC,et al. Direct gene delivery strategies for the treatment of rheumatoid arthritis. Drug Discovery Today,2001,6(5):259-267.
    23. Zhang X, Yu C, Xushi, et al. Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo. Biochem Biophys Res Commun,2006,341(1): 202-208
    24. Haupt JL, Frisbie DD, Mcllwraith CW,et al. Dual transduction of insulin-like growth factor-I and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model. J Orthop Res,2005,23(1):118-126
    25. Zhang X, Mao Z, Yu CJ, et al. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res, 2004,22(4):742-750
    26. Hiradie A, Yokoo N, Xin KQ, et al. Repair of articular cartilage defect by intraarticular administration of basic fibroblast growth factor gene, using adeno-associated virus vector. Hum Gene Ther,2005,16(12):1413-1421
    27. GreggAJ, Fortier LA, Mohammed HO, et al. Assessmentof the catabolic effects of interleukin-lbeta on proteoglycan metabolism in equine cartilage cocultured with synoviocytes. Am J Vet Res,2006,67(6):957-962.
    28. Xiang Y, Masuko-Hongo K, Sekine T, et al.Expression of proteinaseactivated receptors (PAR)-2 in articular chondrocytes ismodulated by IL-lbeta, TNF-alpha and TGF-beta. Osteoarthritis Cartilage,2006,14 (11):1163-1173.
    29. Sanchez C, Mathy-Hartert M, Deberg MA, et al. Effects of rhein on human articular chondrocytes in alginate beads. Biochem Pharmaco 1,2003,65(3):377-388.
    30. Ma Y, Thornton S, Boivin GP,et al. Altered susceptibility to collagen-induced arthritis in transgenic mice with aberrant expression of interleukin-1 receptor antagonist. Arthritis Rheum,1998.41(5):1798-1805.
    31. Abramson SB, Amin A. Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology,2002,41(9):972-980.
    32. Miller LC, Lynch EA, Isa S,et al.Balance of synovial fluid IL-1 beta and IL-1 receptor antagonist and recovery from Lyme arthritis.Lancet,1993,341(2): 146-148.
    33. Deleuran BW, Chu CQ, Field M, et al.Localization of interleukin-1 alpha,typel interleukin-1 receptor and interleukin-1 receptor antagonist in the synovial membrane and cartilage/pannus junction in rheumatoid arthritis.Br J Rheumatol, 1992,31(12):801-809.
    34. Gabay C, Marinova-Mutafchieva L, Williams RO, et al. Increased production of intracellular interleukin-1 receptor antagonist type Ⅰ in the synovium of mice with collagen-induced arthritis:a possible role in the resolution of arthritis.Arthritis Rheum,2001,44(2):451-62.
    35. Merhi-Soussi F, Kwak BR, Magne D,et al. Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc Res,2005,66(3):583-93.
    36. Nicklin MJ, Hughes DE, Barton JL, et al. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med,2000,191(2):303-312.
    37. Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med,2000,191(2):313-20.
    38. Nakae S,Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A,2003,100(10):5986-5890.
    39. Gouze JN, Gouze E, Palmer GD,et al. A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Res Ther,2003,5(5):301-309.
    40. Kary S, Burmester GR. Anakinra:the first interleukin-1 inhibitor in the treatment of rheumatoid arthritis. Int J Clin Pract,2003,57 (3):231-234.
    41. Smith MD, Barg E, Weedon H, et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis,2003,62(4):303-307.
    42. Gotoh M, Hamada K, Yamakawa H, et al. Interleukin-1-induced subacromial synovitis and shoulder pain in rotator cuff diseases. Rheumatology (Oxford),2001, 40(9):995-1001.
    43. Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Reviews,2002,13(4-5):323-340.
    44. Eisenberg SP, Evans RJ, Arend UP,et al. Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature,1990,34(25):341-346.
    45. Arend WP, Gabay C. Physiologic role of interleukin-1 receptor antagonist. Arthritis Res,2000,2 (4):245-248.
    46. Malyak M, Smith MF Jr,Abel AA, et al. The differential production of three forms of II-1 receptor antagonists by human neutrophics andmonocytes. J Immuno,1998, 161(4):2004-2010.
    47. Misteli T, SPeetor DL. APPlieations of the green fluoreseent protein in cell biology and biotechnology. Nat Bioteechnol,1997,15(10):961-964.
    48. Frisbie DD, Ghivizzani SC, Robbins PD, et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther,2002,9(1):12-20
    49. Sawchuk SJ, Boivin GP, Dumel LE, et al. Anti-T cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium. Hum Gene Ther,1996,7(4):499-506
    50.马丽,郭万首,潘林,等.白细胞介素-1受体拮抗蛋白间接体内转基因对骨关节炎软骨细胞凋亡的抑制作用.中华风湿病学杂志,2004,8(5):284-287
    51. Oligino TJ, Yao QP, Ghivizzani SC, et al. Vector systems for gene transfer to joints. Clin Orthop Res,2000,379(suppl):S17-S30
    52.杨高云,狄春辉,蒋明等.白介素1受体拮抗基因治疗小鼠Ⅱ型胶原关节炎的疗效观察.中华医学杂志,2002,7(14):990-994
    53.冯若,李化茂.声化学及其应用.合肥:安徽科技出版社,1992.67-151.54.
    54. Kondo I, Ohmori K, Oshita A, et al. Treatment of acute myocar-dial infarction by hepatocyte growth factor gene transfer:the firstdemonstration of myocardial transfer of a "functional" gene usinultrasonic microbubble destruction. J Am Coll Cardiol,2004,44 (3):644-653.
    55. Crum LA. Nueleation and stabilization of mierobubbles in liquids.Appi Sci Rse, 1982,38(1):101-115.
    56. Llndner JR, Dayton PA, Coggins MP, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation,2000, 102(5):531-538.
    57. Martin-Herranz A, Ahmad A, Evans HM, et al. Surface functionalized cationic lipid-DNA complexes for gene delivery:PEGylated lamellar complexes exhibit distinct DNA-DNA interaction regimes. BiophysJ,2004,86(2):1160-1168.
    58. Thomas M, Klibanov AM.Non-viral gene therapy:polycation-mediated DNA delivery. Appl Microbiol Biotechnol,2003,62(1):27-34.
    59. Wbodle MC, Collins LR, Sponsler E, et al. Sterically stabilized liposomes. Reduction in eleetrophoretic mobility but not electrostatic surface potential. Biophys J,1992,61(4):902-910.
    60.李玲,王志刚.超声微泡造影剂携带基因治疗及超声空化效应.临床超声医学杂志,2005,7(3):195-197.
    61.冉海涛,任红,王志刚,等.超声波空化效应对体外培养细胞细胞膜作用实验研究.中华超声影像学杂志,2003,12(8):499-501
    62. Taniyamay, Taehibana K, Hiraoka K, et al. Development of safe and effieient novel nonviral gene transfer using ultrasound enhancement of transfection effieieney of naked plasmid DNA in skeletal muscle. Gene Ther,2002,9(6):372-380.
    63. Wang X, Liang HD, Dong B, et al. Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice:Comparison between commercially available microbubble contrast agents. Radiology,2005,237:224-229.
    64.王兴华Optison增强质粒GFP转染小鼠骨骼肌机制的研究.中华超声影像学杂志,2007,16(9):810-812.
    65. Chen S, Shohet RV, Bekeredjian R, et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.J Am Coll Cardiol,2003,42(2):301-8
    66. Liang HD, Lu QL, Xue SA, et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med Biol,2004, 30(11):1523-1529
    67. Feril LB, Kondo T. Biological effects of low intensity ultrasound:the mechanism involved,and its implications on therapy and on biosafety of ultrasound. J Radiat Res,2004,45(4):479-89
    68. Rahim A, Taylor SL, Bush NL, et al. Physical parameters affecting ultrasound/ microbubblemediated gene delivery efficiency in vitro. Ultrasound Med Biol,2006, 32(8):1269-1279.
    69. Danielou G, Comtois AS, Dudley RW, et al. Ultrasound increases plasmid-mediated gene transfer to dystrophic muscles without collateral damage. Mol Ther,2002,6(5):687-693.
    70. Yoshiaki T, Katsuro T, Kazuya H, etal. Local Delivery of Plasmid DNA Into Rat Carotid Artery Using Ultrasound. Circulation,2002,105(10):1233-1239.
    71. Guo DP, Li XY, Sun P, et al. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells. Biochem Biophys Res Commun,2006,343(2):470-474.
    72. Mehier-Humbert S, Bettinger T,Yan F, et al. Ultrasound-mediated gene delivery: Kinetics of plasmid internalization and gene expression. J Control Release,2005, 104(1):203-211.
    1. Jacques C, Gosset M, Berenbaum F, et al. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm,2006,74:371-403.
    2. De Isla NG, Yang JW, Huselstein C, et al. IL-lbeta synthesis by chondrocyte analyzed by 3D microscopy and flow cytometry:effect of rhein. Biorheology,2006, 43(3-4):595-601.
    3. Wood DD, Ihrie EJ, Dinarello CA, et a.l Isolation of an interleukin-1 like factor from human joint effusions. Arthritis Rheum,1983,26(8):975-983.
    4. Landesberg R, Takeuchi E, Puzas JE. Differentialactivation by cytokines of mitogen-activated protein kinases in bovine temporomandibular joint disc cells.Arch OralBio,1999,44(1):41-48.
    5. Dozin B, Malpeli M, Camardella L, et al. Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines:molecular and cellular aspects. Matrix Bio,2002,21(5):449-459.
    6. Kama E, Miltyk W, Palka JA, et al. Hyaluronic acid counteracts interleukin-1-induced inhibition of collagen biosynthesis in cultured human chondrocytes. Pharmacol Res,2006,54(4):275-281.
    7. Lopez-Armada MJ, Carames B, Martin MA, et al. Mitochondrial activity ismodulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthritis Cartilage,2006,14(10):1011-1022.
    8. Gregg AJ, Fortier LA, Mohammed HO, et al. Assessment of the catabolic effects of interleukin-1 beta on proteoglycan metabolism in equine cartilage cocultured with synoviocytes. Am J Vet Res,2006,67(6):957-962.
    9. Xiang Y, Masuko-Hongo K, Sekine T, et al. Expression of proteinase activated receptors (PAR)-2 in articular chondrocytes ismodulated by IL-lbeta, TNF-alpha and TGF-beta. Osteoarthritis Cartilage,2006,14 (11):1163-1173.
    10. Sanchez C, Mathy-Hartert M, Deberg MA, et al. Effects of rhein on human articular chondrocytes in alginate beads. Biochem Pharmaco,l 2003,65(3):377-388.
    11. Eisenberg SP, Evans RJ, Arend UP, et al. Primary structure and functional expression from complementaryDNA of a human interleukin-11 receptor antagonist. Nature,1990,34(25):341-346.
    12. Diarello CA. Biologic basis for interleukin-1 in disease. Blood,1996,87(6): 2095-2147.
    13. Holtkamp GM, de Vos AF, Kijlatra A, et al. Expression of multiple forms of IL-1 receptor antagonist (IL-IRa) by human retinal pigment epithelial cells: indentification ofa new IL-lra exon. Eur J Immuno,l 1999,29(1):215-224.
    14. Malyak M, Smith MF Jr, Abel AA, et al. The differential production of three forms of Il-1 receptor antagonists by human neutrophics andmonocytes. J Immuno,1998, 161(4):2004-2010.
    15. Frisbie DD, Hivizzani SC, Obbins PD,et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine inteleukin-1 receptor antagonistgene. Gene Ther,2002,9(1):12-20.
    16.黄异飞,敖英芳,王梅,等.膝关节股骨外髁间侧壁软骨Ⅰ、Ⅱ型胶原和IL-1a、IL-1Ra分布的研究及其临床意义.中国运动医学杂志,2004,23(3):240-245.
    17.王寰,李强,吴小涛,等.白细胞介素-1受体对兔椎间盘髓核前列腺素和5-羟色胺代谢的影响.中国脊柱脊髓杂志,2004,14(1):26-28.
    18. Fernandes JC, Martel-Pelleter J, Pelleter JP. The role of cytokine in osteoathritis pathopysiology. Biorheology,2002,39(1-2):237-246.
    19. Dayerr JM, Feige U, Edwards CK,et al.Anti-interleukin-1 therapy in rheumatic diseases. Curr Opin Rheumato,2001,13(3):170-176.
    20. Murata M, Trahan C, Hirahanshi J, et al. Intracellular interleukin-1 receptor antagoist in osteoarthritis chondrocytes. Clin Orthop,2003,35 (409):285-295.
    21. Palmer G, Mezin F, Juge-Aubry CE, et al. Interferon bate stimulates interleukin-1 receptor antagonist production in human articular chondrocytes and synorial fibroblasts. Ann Reum Dis,2004,63(1):43-49.
    22. Vuolteenaho K, Moilemen J, Hamalainen M, et al. Regulation of nitric oxide production in osteoarthritic and rheumatoid cartilage. Role ofendogenous IL-1 inhibitor. Scand J Pheumato,2003,32(1):19-24.
    23. Abramson SB, Amin A. Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology(Oxford),2002,41(9):972-980.
    24. Bandara G, Mueller GM, Galea-Lauri J, et al. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc Natl Acad Sci USA,1993,90(22):10764-10768
    25. Femandes J, Tardif G, Martel-Pelletier J, et al. In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints:prevention of osteoarthritis progression. Am J Pathol,1999,154(4):1159-1169
    26. Ghivizzani SC,Oligino TJ,Glorioso JC,et al. Direct gene delivery strategies for the treatment of rheumatoid arthritis. Drug Discov Today,2001,6(5):259-267
    27. Zhang X, Yu C, Xushi, et al. Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo. Biochem Biophys Res Commun,2006,341(1): 202-208
    28. Frisbie DD, Ghivizzani SC, Robbins PD, et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther,2002,9(1):12-20
    29. Haupt JL, Frisbie DD, Mcllwraith CW,et al. Dual transduction of insulin-like growth factor-I and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model. J Orthop Res,2005,23(1):118-126
    30. Zhang X, Mao Z, Yu CJ, et al. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res, 2004,22(4):742-750
    31. Arend WP, Evans CH. Interleukin-1 receptor antagonist.In:Thomason AW,Lotz MT eds.The Cytokine Handbooks.Arademic Press:London,2003,669-708
    32. Evans CH, Ghivizzani SC, Hemdon JH,et al. Clinical trials in the gene therapy of arthritis. Clin Orthop,2000,379(Suppl):S300-S307
    33. Gouze E, Pawliuk R, Pilapil C,et al. In vivo gene delivery to synovium by lentiviral vectors. Mol Ther,2002,5(4):397-404
    34. Gouze E, Pawliuk R, Gouze JN, et al. Lentiviral-mediated gene delivery to synovium:potent intra-articular expression with amplification by inflammation. Mol Ther,2003,7(4):460-466
    35. Madry H, Cucchiarini M, Terwilliger EF, et al. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther,2003,14(4):393-402
    36. Robbins PD, Evans CH, Chernajovsky Y.Gene therapy for arthritis.Gene Ther,2003;10(10):902-911
    37. Evans CH,Gouze E,Gouze JN,et al. Gene therapeutic approaches-transfer in vivo. Adv Drug Deliv Rev,2006;58(2):243-258
    38. Chevalier X,Giraudeau B,Conrozier T,et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis:a multicenter study. J Rheumatol,2005,32(7):1317-1323
    39. Chevalier X, Marini-Portugal A, Conrozier T, et al. Comparison of hylan and hyaluronic acid for knee osteoarthritis:comment on the article by Juni et al. Arthritis Rheum,2008,58(5):1560-1562
    40. Ikeda T, Kudo T, Arai Y, et al. Adenovirus mediated gene delivery to the joints of guinea pigs. J Rheumatol,1998,25(9):1666-1673
    41. Brower-Toland BD, Saxer RA, Goodrich IR, et al. Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function. Hum Gene Ther,2001,12(2):117-129
    42. Sawchuk SJ, Boivin GP, Dumel LE, et al. Anti-T cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium. Hum Gene Ther,1996,7(4):499-506
    43.马丽,郭万首,潘林,等.白细胞介素-1受体拮抗蛋白间接体内转基因对骨关节炎软骨细胞凋亡的抑制作用.中华风湿病学杂志,2004,8(5):284-287
    44. Oligino TJ, Yao QP, Ghivizzani SC, et al. Vector systems for gene transfer to joints. Clin Orthop Res,2000,379(suppl):S17-S30
    45. Hiradie A, Yokoo N, Xin KQ, et al. Repair of articular cartilage defect by intraarticular administration of basic fibroblast growth factor gene, using adeno-associated virus vector. Hum Gene Ther,2005,16(12):1413-1421
    46. Tomita T, Hashimoto H, Tomita N, et al. In vivo direct gene transfer into articular cartilage by intraarticular injection mediated by HVJ (Sendai virus) and liposomes. Arthritis Rheum,1997,40(5):901-906
    1.周青,郝力丹,郭瑞强,黄从新,陈新军,陈金玲。心肌声学造影技术评价骨髓细胞移植于缺血心肌的促微血管新生效应。中华超声影像学杂志,2005,14(1): 55-58.
    2. Porter TR, Iversen PL, Li S, et al. Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albuminmicrobubbles. Ultrasound Med,1996,15:577-584.
    3. Allan Lawrie, Axel F. Brisken,Sheila E. Francis, David I. Tayler, Janet Chamberlain, David C. Crossman, David C. Cumberland, Christopher M. Newman. Ultrasound enhances reporter gene expression after transfection ovascular cellsin vitro. Circulation,1999,99:2617-2620.
    4. Zhao YZ, Luo YK, Zhang Y, Mei XG, Tang J. Property and contrast-enhancement effects of lipid ultrasound contrast agent:a preliminary experimental study. Ultrasound Med Bio,2005,31:537-543.
    5. Price RJ, Kaul S. Contrast ultrasound targeted drug and gene delivery:an update on a new therapeutic modality. Cardiovasc Pharmascol Therapeut,2002,7:171-180.
    6. Tsutsui JM, Xie F, Porter RT. The use ofmicrobubbles to target drug delivery. Cardiovasc Ultrasound,2004,2:23.
    7. PittWG, Husseini GA, Staples BJ. Ultrasonic drug delivery—a general review. Expert Opin Drug Deliv,2004,1:37-56.
    8. ZhaoYZ, LuoYK, Tang J, Mei XQZhang Y,Lin Q. Echogenic phospholipids-based gas-filled microbubbles as delivery system of antisense oligodeoxynucleotides. Yao Xue Xue Bao.2006,41(9):899-904.
    9. Unger EC, Matsunaga TO, McCreey TP, et al. Therapeutic applications of microbubbles. Eur J Radiol,2002,42(2):160-168.
    10. Lindner JR. Evolving applications for contrast ultrasound. Am J Cardial,2002, 90(1 OSuppl1):72-80.
    11. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol,1997,23(6):953-959.
    12. Miller DL, Quddus J. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast agent gas bodies. Ultrasound Med Biol,2000,26(4):661-667.
    13. Miller DL, Pislaru SV, Greenleaf JE. Sonoporation:mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet,2002,27(1-6):115-134.
    14. Brujan EA. The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med Biol,2004,30(3):381-387.
    15. Chen S,Shohet RV, Bekeredjian R, et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardial,2003,42(2): 301-308.
    16. Stride E, Saffari N. On the destruction of microbubble ultrasound contrast agents. Ultrasound Med Biol,2003,29 (4):563-573.
    17. Li P, Cao LQ, Dou CY, et al. Impact of myocardial contrast echocardiography on vascular permeability:an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound Med Biol,2003,29(9):1341-1349.
    18. Lawrie A, Brisken AF, Francis SE, et al. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther,2000,7(23):2023-2027.
    19. Lawrie A, Brisken AF, Francis SE, et al. Ultrosound-enhanced transgene expression in vascular cells is not depend-ent upon cavitation-induced free radicals. Ultrasound Med Biol,2003,29(10):1453-1461.
    20. ZhaoYZ, LuoYK, Tang J, Mei XQZhang Y,Lin Q. Echogenic phospholipids-based gas-filled microbubbles as delivery system of antisense oligodeoxynucleotides.Yao Xue Xue Bao,2006,41(9):899-904.
    21. ZhaoYZ, Zhang Y, Mei XG, Luo YK,Tang J. Progress on microbubble ultrasound contrast agent. ForeignMed Sci (Pharm),2003,30:298-302.
    22. Kuo JH, JanMS, SungKC. Evaluation of the stability of polymer-based plasmid DNA delivery systems after ultrasound exposure. Int J Pharm,2003,257:75-84.
    23. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV. Ultrasound-targeted microbubble destruction can repeatedly directhighly specific plasmid expression to the heart.Circulation,2003,108:1022-1026.
    24. Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am CollCardio,l 2003,42:301-308.
    25. Bekeredjian R, Chen S, Pan W, Grayburn PA, Shohet RV.Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med Bio,l 2004,30:539-543.
    26. Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH, Grayburn PA. Echocardiographic destruction of albuminmicrobubbles directs gene delivery to the myocardium. Circulation,2000,101:2554-2556.
    27. Beeri R, Guerrero JL, Supple G, Sullivan S, Levine RA, Hajjar RJ. New efficient catheter-based system formyocardial gene delivery.Circulation,2002,106: 1756-1759.
    28. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, Aoki M, Ogihara T, Yasufumi K, Morishita R. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation,2002,105:1233-1239.
    29. Manome Y, Nakamura M, Ohno T, Furuhata H. Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cellsin vitroandin vivo. Human Gene Ther,2000,11:1521-1528.
    30. HuberPE, PfistererP.In vitroandin vivotransfection of plasmid DNA in the Dunning prostate tumorR3327-AT1 is enhanced by focused ultrasound. Gene Ther,2000,7: 1516-1525.
    31. Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earls R, Wilson E, McCreery T, Unger E, Rolland A, Sullivan SM.Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration.Gene Ther,2000,7:1833-1839.
    32. McCreery TP, Sweitzer RH, Unger EC, Sullivan S. DNA delivery to cellsin vivoby ultrasound. MethodsMol Bio,l 2004,245:293-298.
    33. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR.Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Bio,l 2003,29:1759-1767.
    34. Schratzberger P, Krainin JG, Schratzberger G, Silver M, Ma H, Kearney M, Zuk RF, Brisken AF, Losordo DW, Isner JM.Transcutaneous ultrasound augments naked DNA transfection of skeletalmuscle. MolTher,2002,6:576-583.
    35. Endoh M, Koibuchi N, Sato M, Morishita R, Kanzaki T, Murata Y, Kaneda Y .Fetalgene transfer by intrauterine injection with microbubble-enhanced ultrasound. MolTher,2002,5:501-508.
    36. Zhao YZ, Liang HD, Mei XG, et a.l Preparation, characterization andin vivoobservation of phospholipid-based gas-filled microbubbles containing hirudin. UltrasoundMed Bio,l 2005,31:1237-1243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700