用户名: 密码: 验证码:
连续配筋混凝土路面横向裂缝分布和冲断预估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲断是连续配筋混凝土路面(CRCP)的最主要的病害,主要发生在密集裂缝处,与平均裂缝间距和平均裂缝宽度没有相关性,论文研究了温降和干缩作用下横向裂缝的纵向分布,在此基础上进行冲断预估,具有重要的理论意义和使用价值。
     对耒宜高速、G210铜川段、山西省道孙吴线二级公路和粤赣高速四条公路的CRCP进行了路况调查,发现冲断占到影响行车的病害的90%以上,而且这四条路密集裂缝处的冲断分别占到各条路冲断总量的100%、44%、50%和63%,说明应该以冲断作为CRCP的设计指标,而且应该根据横向裂缝的纵向分布进行冲断预估。
     根据钢筋与混凝土间的粘结滑移本构关系及地基摩阻力的线性分布假设,建立了CRCP温降和干缩应力的计算模型与应力平衡微分方程,并求得CRCP在降温和干缩条件下混凝土和钢筋的应力及位移计算公式,采用有效弹性模量法考虑了混凝土的应力松弛。分别采用CPS4单元和B21单元对混凝土和钢筋进行离散,采用水平弹簧单元模拟钢筋与混凝土之间的粘结滑移,采用水平和竖向弹簧模拟基层与混凝土板之间的关系,对参数取值进行了论证,建立了CRCP有限元模型。对CRCP在降温作用下的应力应变进行了分析,并给出了应力和应变的云图。参数敏感性分析表明,混凝土弹性模量、地基摩阻力系数和混凝土热膨胀系数是温降和干缩作用下CRCP计算分析的主要参数,需要考虑它们的变异性来预估CRCP的横向裂缝的纵向分布。
     采用Monte-Carlo的方法,考虑混凝土强度和基层摩阻力的变异性以及平均气温逐月变化,以凝结温度与月平均气温之差的月变化作为环境荷载,采用自编程序对CRCP横向开裂进行了预估。分析表明混凝土横向开裂在100天左右趋于稳定,并对裂缝间距进行了统计,在此基础上对裂缝宽度进行了分析。
     确定了将非线性温度分布转化为线性温度分布的计算公式,提出了将湿度梯度转化为温度梯度进行计算的分析方法。采用有限元软件建立了车辆荷载、温度梯度和湿度梯度作用下CRCP应力分析模型,其中充分考虑了裂缝间的传荷能力、基层与面层间的摩阻系数的影响,并进行了钢筋等效和厚度等效。
     通过参数敏感性分析确定四个重要结构参数:传荷系数、裂缝间距、温度梯度和板厚。对参数取不同的值进行研究,给出不同传荷能力下的诺谟图。给出了冲断预估程序,根据密集裂缝间距计算出CRCP顶部临界横向拉应力后,根据损伤线性累积定理可预估出是否会发生冲断,进而结合横向裂缝纵向的非均匀分布可以确定出冲断的数量。
     改变混凝土组成、基层类型、钢筋防护方法、纵横向钢筋的夹角、纵向钢筋的埋置深度、主动控制裂缝间距等因素,修筑了11个CRCP试验段,测试了混凝土的抗压强度、抗拉强度、抗弯拉强度、抗压模量和抗弯拉模量,调查了各试验段裂缝发展状况,进行了FWD测试,并对比分析了各因素对于CRCP性能的影响。结果表明:混凝土材料、纵横向钢筋的夹角和基层类型对于密集裂缝的影响大于混凝土面板和基层之间的夹层的影响,1~5m的主动控制裂缝间距可以有效防止自然裂缝的产生。另外,对于车辆荷载和环境荷载作用下CRCP的应力应变进行了测试。结果表明,在进行环境荷载作用下CRCP应力应变分析时,混凝土与钢筋不是完全粘结的,裂缝处不能采用固定或自由边界条件,测试出的裂缝处钢筋的应力可以直接体现在裂缝处边界条件中;在车辆荷载和环境荷载作用下,CRCP内的混凝土和钢筋的测试结果与理论分析结果比较接近,说明理论分析模型比较合理。
Punchout is the main distress of continuously reinforced concrete pavement, and often occurs at cluster cracks. It is not relative to average crack spacing and average crack width. In the dissertation, the distribution of transverse cracks along pavement longitudinal direction because of temperature drop and shrinkage is studied, then punchout is predicted on this basis. That study has important theoretical significance and practical value.
     Field investigations are carried out on the CRC pavements along several highways which include Leiyi Expressway,210 second class highway, Sunwu second class highway and Yuegan Expressway. Results show that the punchout is up to 90% of the distress which affect riding safety and comfort and the number of punchouts in cluster cracks regions in each of these four highways is 100,44,50 and 63 percent of the total number of punchout in each highway, respectively. So punchout should become one design index of CRCP and punchout prediction should be based on the longitudal direction of transverse cracks.
     According to the bond-slip constitutive relation between the reinforced bar and concrete and the linear calculation model between the subgrade and concrete, the equilibrium differential equations are established for the analysis of the stress caused by temperature drop and shrinkage in CRCP. The analytic solution is derived and the formula is provided to calculate the CRCP stress and displacement under the temperature drop and shrinkage. The creep of concrete is accounted for by effective modulus method. The finite element model is established. The concrete slab is discretized by CPS4; reinforcing steels are modeled by B21; and the bond slip between concrete and the steel bar is modeled by horizontal springs, the underlying layers are modeled by vertical springs, and the frictional resistance at the interface between concrete and base is modeled by horizontal springs. Analysis on the stress and displacement of CRCP under temperature drop is carried out and the contours of the stress and displacement are given. Sentivity study show that, elasticity modulus of concrete, bond-slip coefficient between concrete and base and expansion coefficient of concrete are key parameters. Their variation should be accounted for when the longitudal distribution of transverse cracks is predicted.
     Using Monte-Carlo method, considering the variation of the concrete strength and bond-slip coefficient between concrete and base, the longitudal distribution of transverse cracks is predicted, in which, the average air temperature is changed monthly, and the temperature load is also changed monthly relative to setting temperature. Analysis show that the growth rate of transverse cracks will become very small in approximately 100 days. Crack spacing is counted, and crack width is analyzed accordingly.
     The formulas used to get the equivalent linear temperature from the nonlinear temperature distribution are established and the method of transforming moisture gradient to temperature gradient is proposed. Considering the effects of load transfer efficiency (LTE) at the transverse cracks and the friction coefficient between banes course and concrete slab, the mechanical response analysis is carried out on the CPCP under temperature gradient, moisture gradient and vehicle load, in which the equivalent slab thickness and equivalent steel concept are used.
     Considering the changes of load transfer coefficients of the cracks, crack spacing, temperature gradient and slab thickness, the stress nomograms of CRCP under vehicle load and temperature gradient are given. The procedure of punchout prediction is given. When the critical transverse stress on the top of CRCP is calculated out in cluster cracking region, it can be determined whether the punchout will occur. Then the number of punchout can be predicted according to the longitudal distribution of transverse cracks.
     Eleven test sections were designed and constructed, in which concrete material, base, the erosion prevention of steel, the angle between transverse steel and longitudinal steel, the depth of longitudinal reinforcement, and the distance of cracks active controlled varied. The compressive strength, tensile strength, flexural strength, compressive modulus and flexural modulus of concrete were tested. The cracks in early age were surveyed and Falling Weight Deflectometer tests were carried out. Results show that, concrete material, the angle between transverse steel and longitudinal steel and base have more effects on cluster cracking than the separating layer between concrete slab and base does, and active crack with the spacing of 1 m to 5 m can prevent the occurrence of natural cracks between active cracks. For CRCP systems under environmental loads, the strains and stresses in CRCP in early age due to environmental loads were measured. Results show that, when analysis on the early age behavior of CRCP under environmental loads, the steel is not completely bonded with concrete, the perfectly free or restrained boundary condition across cracking is not true, and the longitudinal steel strains across cracking will help develop proper boundary condition across cracking. On the other hand, for the CRCP under vehicle loads and environmentalloads, the test results of concrete strains and steel strains are much closer to the theoretical analysis results which illustrate that the theory analysis models are reasonable.
引文
[1]Cho Y.-H., Dossey T., and McCullough B. F.. Early Age performance of CRCP with different types of aggregate. TRR 1568, TRB, National Research Council, Washington D.C.,1997:35-43.
    [2]Hawks N. F., Teng T. P.. Distress identification manual for the long-term pavement performance program. Report SHRP-P-338, Washington D. C.,1993.
    [3]Gharaibeh N. G., Darter M. I., Heckel L. B.. Field performance of continuously reinforced concrete pavement in Illinois. Report IHR-540, Illinois cooperative highway research program,1999.
    [4]LaCoureiere S.A., Darter M.I., and Smiley S. A.. Structural distress mechanisms in continuously reinforced concrete pavement. Transportation Engineering Series N.o 20, University of Illinois at Urbana-Champaign,1978.
    [5]Zollinger D. G., and Barenberg E. J. Continuously reinforced pavements:punchouts and other distresses and implications for design, project IHR-518, Illinois Cooperative Highway Research Program, university of Illinois at Urbana-Champaign,1990.
    [6]Zollinger, D. G., Buch N., Xin D., and Soares J.. Performance of volume Ⅵ— continuously reinforced concrete pavement design, construction, and performance. Final report, FHWA-RD-98-102, PCS/Law Engineering,1999
    [7]Selezneva, O.I., Darter M.I., Zollinger D.G., and Shoukry S.. Characterization of transverse cracking spatial variability:using of LTPP Data for CRCP design. TRR 1849, TRB, Washington D.C.,2003:147-155.
    [8]Darter, M.L., LaCourseiere S.A., and Smiley S.A.. Field performance of continuously reinforced concrete pavement in Illinois. TRR 715, TRB, Transportation Research Board, Washington, D.C.,1999.:44-50.
    [9]McCullough B.F., and Moody E.D.. Development of load transfer coefficients for use with the AASHTO guide based on field measurement. Proceedings,5th International conference on concrete pavement design and rehabilitation, April 1993.
    [10]Selezneva O.I., Zollinger D., Darter M.. Mechanistic analysis of factors leading to punchout development for improved CRCP design procedures. Proceedings of the 5th international conference on concrete pavements, Orlando, FL, September,2001.
    [11]Selezneva O., Rao C., et al. Development of a mechanistic-empirical structural design procedure for continuously reinforced concrete pavements. TRB 2004 Annual Meeting CD-ROM, TRB, National Council, Wasington, D. C.,2004.
    [12]Kohler E. and Roesler J.. Non-destructive testing for crack width and variability on continuously reinforced concrete pavements. TRB 2006 Annual Meeting CD-ROM, TRB, National Research Council,2006.
    [13]Kohler E. R., Roesler J. R.. Crack width measurements in continuously reinforced concrete pavements. Journal of Transportation Engineering, ASCE,2005,131 (9) 645-652.
    [14]McCullough B.F., Zollinger D.G., and Dossey T. Evaluation of the performance of Texas pavements made with different coarse aggregates. Research Report 3925-1, Center for Transportation Research, The University of Texas at Austin,1999.
    [15]Zollinger D. G., Buch N., Xin D., and Soares J.. Performance of continuously reinforced concrete pavements:Volume VII:summary. Final report, FHWA-RD-98-102, PCS/Law Engineering,1999.
    [16]Roesler J. R., Popovics J. S., et al. Longitudinal Cracking Distress on Continuously Reinforced Concrete Pavements in Illinois. Journal of Performance of Constructed Facilities, ASCE,2005,19 (4):331-338.
    [17]Nam J.-H., Kim S.-M., Won M. C.. Measurement and analysis of early-age concrete strains and stresses in continuously reinforced concrete pavement under environmental loading. TRR 1947, TRB, National Research Council,2006:79-90.
    [18]Gharaibeh N.G., Darter M. I., and Heckel L. B.. Field performance of CRCP in Illinois. Report FHWA-IL-UI-268, Illinois Department of Transportation,1999.
    [19]Simpson, A.L., Rauhut, J.b., Jordahl, P. R., et al. Sensitivity analysis for selected pavement distresses. Report ShRP-P-393, Strategic Highway Research Program,1994.
    [20]NCHRP 1-37A. Guide for mechanistic-empirical design of new and rehabilitated structures. Final Report.2004.
    [21]Jeong J-H; Zollinger D.G.. Characterization of stiffness parameters in design of continuously reinforced and jointed pavements. TRR 1778, TRB, National Research Council, Wasington, D.C.,2001:54-63.
    [22]Hughes B.. A new look at rigid concrete pavement design. Proceedings of the institution of civil engineers. Transport 156, Issue 1,2003:29-36.
    [23]Colley B. E. and Humphrey H. A.. Aggregate interlock at joints in concrete pavements. Highway Research Record, No.189, Highway Research Board, Washington, D.C., 1967.
    [24]McCullough B. F., Dossey T.. Controlling early-age cracking in continuously reinforced concrete pavement:observations from 12 years of monitoring experimental test sections in Houston, Texas. TRR 1684, TRB, National Research Council, Washington D. C., 1999:35-43.
    [25]Jimenez M., McCullough B. F., Hankins K.. Monitoring of siliceous river gravel and limestone 2 years after placement, and development of a crack width model for the CRCP-7 model. CTR Research report 1244-4. University of Texas at Austin, March 1992.
    [26]Suh, Y. -C., and Hankins K.. Early-age behavior of continuously reinforced concrete pavement and calibration of the failure prediction model in the CRCP-7 Program. CTR Research Report 1244-3. University of Texas at Austin, March 1992.
    [27]Darter, M.I.. Report on the 1992 U.S. Tour of European concrete highways. Report FHWA-SA-93-012, Federal Highway Administration, Washington, D. C.,1992.
    [28]Hall K. T., Darter M. I., Hoerner T. E., and Khazanovich L. LTPP data analysis-phase I: validation of guidelines for k-value selection and concrete pavement performance prediction. Technical Report FHWA-RD-96-198, Federal Highway Administration, McLean, VA.,1997.
    [29]Won, M., Hankins K., and McCulluough B.F.. Mechanistic analysis of continuously reinforced concrete pavements considering material characteristics, variability and fatigue. Report No.1169-2, Center for Transportation Research, University of Texas at Austin, April 1990.
    [30]Tang T., Zollinger D. G., and McCullough B. F.. Field tests and analysis of concrete pavements in Texarkana and L Porte, Texas. Research Report 1244-7, Texas Transportation Institute, Texas A&M University, College Station, TX.,1996.
    [31]Darter, M. I. (1988). CRCP distress study on Ⅰ-77 Fairfield and Chester Counties, South Carolina. ERES Consultants, Inc., Champaign, IL.
    [32]Heckel L.. Performance problems of open-graded drainage layers under Continuously Reinforced Concrete Pavements in Illinois. TRR 1596, TRB, National Research Council, Wasington, D. C.,1997:51-57.
    [33]Johunston D. P., Surdahl R. W.. Effects of base type on modeling long-term pavement performance of continuously reinforced concrete sections. TRR 1979, TRB, National Research Council, Wasington D. C.,2006:93-101.
    [34]McCullough B. F., Ayyash A. A., Hudson W R., et al. Design of continuously reinforced concrete pavements for highways. Report No.1-15, Center for Transportation Research, University of Texas at Austin.,1975.
    [35]Won M. C., Hankins K; and McCulough B. F.. Mechanistic analysis of continuously reinforced concrete pavements considering material characteristics, variability and fatigue. Report No.1169-2, Center for Transportation Research, University of Texas at Austin., 1991.
    [36]Dossey T., and McCullough B. F.. Characterization of concrete properties with age. Report No.1244-2, Center for transportation research, University of Texas at Austin., 1991.
    [37]Won M.C., Dossey T. et al. CRCP-8 Program user's guide. Center for Transportation Research, University of Texas at Austin.,1995.
    [38]Kim S. M., Won M. C., and McCullough B. F.. Development of a finite element program for continuously reinforced concrete pavements. Report No.1758-s, Center for transportation research, University of Texas at Austin.,1997.
    [39]Kim S. M., Won M. C. and McCullough B. F.. Numerical modeling of continuously reinforced concrete pavement subjected to environmental loads. TRR 1629, TRB, National Research Council,1998:76-89.
    [40]Kim S. M., Won M. C. and McCullough B. F.. CRCP-9:Improved computer program for mechanistic analysis of continuously reinforced concrete pavements. Report No.1831-2, Center for TransportationResearch, University of Texas at Austin.,2001.
    [41]Kim S. M., Won M. C. and McCullough B. F.. CRCP-9 computer program user's guide. Report No.1831-3, Center for Transportation Research, University of Texas at Austin., 2001.
    [42]Kim S. M., Won M. C. and McCullough B. F.. Three-dimensional nonlinear finite element analysis of continuously reinforced concrete pavements.1831-1, Center for Transportation Research, University of Texas at Austin.,2000.
    [43]Kim S. M., Won M. C. and McCullough B. F.. Three-dimensional analysis of continuously reinforced concrete pavements. TRR 1730, TRB, National Research Council, 2000:43-52.
    [44]Kim S.-M., Won M.C., McCullough B.F.. Mechanistic modeling of continuously reinforced concrete pavement. ACI Structural Journal,2003,100 (5):674-682.
    [45]Khazanovich L., Selezneva O. I., et al. Development of rapid solution for prediction of critical continuously reinforced concrete pavement stress. TRR 1778, TRB, Transportation Research Board, Washington, D.C.,2001:54-72.
    [46]Haque M. E., Zamen M., Soltani A. A.. Cracking characteristics of model continuously reinforced concrete pavements. TRR 1629, TRB, Transportation Research Board, Washington, D.C.,1998:90-98.
    [47]Nishizawa T., Shimeno S., et al. Study on thermal stresses in continuously reinforced concrete pavement. TRR 1629, TRB, Transportation Research Board, Washington, D.C.,1998:99-107.
    [48]Vetter C. P. Stresses in reinforced concrete due to volume changes. ASCE, Proceedings, Paper No.1848, February,1933.
    [49]Reis E.E., Mozer A.C., et al. Causes and control of cracking in concrete reinforced with high-strength steel bars-a review of research, Engineering Experiment Station Bulletin 479, College of Engineering, University of Illinois,2000.
    [50]Schindler A.K., Henry C.P., and McCullough B.F.. Validation of CRCP-8 to predict long term transverse crack spacing distributions in continuously reinforced concrete pavements" proceedings TRB 2000,2000.
    [51]Buch N. J.. Development of empirical-mechanical based faulting models in the design of plain jointed concrete pavements. Ph.D. Dissertation, Texas A&M University, August 1995.
    [52]Ioannides, A. M. Dimensional analysis in NDT rigid pavement evaluation. ASCE, Journal of Transportation Engineering.1990,116 (1):23-36.
    [53]Zuk W.. Analysis of special problems in continuously reinforced concrete pavements. Highway Research Board, Bull.214, Highway Research Board, Washington, D. C.,1959: 1-21.
    [54]Sato R., Hachiya Y., and Kawakami A.. Development of new design method for control of cracking in continuously reinforced concrete pavement. Proc.,4th Int. Conf. Concrete pavement design and rehabilitation, Purdue Univ., West Lafayette, Ind,1989.
    [55]Van Wijk A. J. and Lovell C. W.. Prediction of subbase erosion caused by pavement pumping. TRR 1099, TRB, National Research Council, Washington, D.C.,1986:45-57.
    [56]Van Wijk A. J. Rigid Pavement Pumping:(1) subbase erosion and (2) Economic modeling. Joint highway research project File 5-10. School of Civil Engineering, Purdue University, West Lafayette, Ind., May 16,1985.
    [57]Walton S., Bradberry T.. Feasibility of a concrete pavement continuously reinforced. ConMat'05, Vancouver, Canada, August 2005.
    [58]Folliard K.J., Whitney D. P., et al. Fibers in continuously reinforced concrete pavements: a summary. Report 0-4392-S, Center for Transportation Research, the University of Texas at Austin,2006.
    [59]Kohler E., Roesler J.. Active crack control for Continuously Reinforced Concrete Pavements. TRB 2004 Annual Meeting CD-ROM, TRB, National Research Council, Washington D.C.,2004.
    [60]McCullough B.F., Dossey T.C.. Considerations for high-performance concrete paving: recommendations from 20 years of field experience in Texas. TRR 1684, TRB, National Research Council, Washington D.C.,1999:17-24.
    [61]胡长顺,曹东伟,张洪亮等.连续配筋混凝土路面设计理论与方法研究.国家自然科学基金报告,长安大学,2000.
    [62]田寅春,胡长顺,等.连续配筋混凝土路面荷载应力分析.西安公路交通大学学报,2000,20(3):9-13.
    [63]田寅春.连续配筋混凝土路面设计理论与方法研究.硕士士学位论文,西安:西安公路交通大学,1999.
    [64]王虎,胡长顺,王秉纲.连续配筋混凝土路面在横向荷载作用下的解析解.西安公路交通大学学报,1999,19(4):1-5,21.
    [65]王虎.连续配筋混凝土路面静动力学计算与分析.博士士学位论文,西安:长安大学,2001.
    [66]王虎,胡长顺,王秉纲.简支梁梁桥端处桥面连续铺装层结构计算分析.西安公路交通大学学报,2000,20(4):4-6.
    [67]王虎,胡长顺,王秉纲.连续配筋混凝土路面荷载应力精确解.中国公路学报,2000,13(2):3-6.
    [68]王虎,胡长顺,王秉纲.连续配筋混凝土路面动荷响应分析.工程力学,2001,18(5):119-126
    [69]曹东伟,胡长顺.CRCP混凝土温度松弛应力分析.中国公路学报,2001,14(1):1-4.
    [70]曹东伟,胡长顺.连续配筋混凝土路面温度应力分析.西安公路交通大学学报,2001,21(2):4-8.
    [71]曹东伟.连续配筋混凝土路面结构研究.博士士学位论文,西安:长安大学,2001
    [72]曹东伟,胡长顺.受地基约束时的连续配筋混凝土路面温度应力分析.第九届全国结构工程学术会议论文集,工程力学(增刊),2000,成都.
    [73]曹东伟,胡长顺.考虑地基—混凝土非线性相互作用关系的CRCP端部锚固力计算方法.长安大学学报(自然科学版),2002,22(2):1-5.
    [74]曹东伟,胡长顺.连续配筋混凝土路面端部锚固力计算方法.西安建筑科技大学学报,2000,32(3):300-303.
    [75]张洪亮,胡长顺.连续配筋混凝土路面端部锚固力研究.重庆交通学院学报,2002,21(1):30—33.
    [76]张洪亮,胡长顺.连续配筋混凝土路面凸形地梁锚固有限元分析.长安大学学报(自 然科学版),2002,22(3):1-5.
    [77]张洪亮.连续配筋混凝土路面端部锚固结构研究.硕士学位论文,西安:长安大学,2000.
    [78]曹东伟,景彦平等.CRCP施工技术研究.公路交通科技,19(5):55-58.
    [79]胡长顺,李成才等.连续配筋混凝土路面试验路研究.公路,2001,(7):28-32.
    [80]胡长顺,曹东伟.连续配筋混凝土路面结构设计理论与方法研究.交通运输工程学报,2001,1(2):57-62.
    [81]陈云鹤庞有师,邓学钧.连续配筋混凝土路面结构总应力的计算方法.华东公路,2000,(5):45-46.
    [82]曹东伟,胡长顺.连续配筋混凝土路面裂缝间距的可靠性分析.交通运输工程学报,2001,1(3):40-44.
    [83]曹东伟,王秉纲等.连续配筋混凝土路面的配筋设计方法.公路,2001,(12):13-16.
    [84]连续配筋混凝土加铺层结构研究.《水泥混凝土路面改造技术研究》之分报告三.长安大学,2003.
    [85]丁润铎.连续配筋混凝土基层结构设计方法研究.硕士学位论文,西安:长安大学,2006.
    [86]马庆雷.基于刚性基层的沥青路面结构研究.博士学位论文,西安:长安大学,2006.
    [87]巨锁基,李宇峙.局部脱空条件下CRCP荷载应力分析.公路交通科技,2005,22(5):20-25.
    [88]肖秋明,查旭东,张起森.连续配筋混凝土路面一维非线性力学分析.长沙交通学院学报,2004,20(3):20-26.
    [89]阳宏毅.连续配筋混凝土复合式路面层间应力分析与结合技术研究.硕士学位论文,长沙:长沙理工大学,2005.
    [90]苏清贵,张起森.连续配筋混凝土路面的端部位移.中外公路,2002,22(3):19-21.
    [91]李卓,查旭东,张起森.连续配筋混凝土路面早期横向开裂分析.中外公路,2003,23(2):26-28.
    [92]肖秋明.连续配筋混凝土路面宽翼缘工字梁接缝损坏原因分析.中外公路,2005,25(6):30-32.
    [93]查旭东,张起森等.高速公路连续配筋混凝土路面施工技术研究.中外公路,2003,23(1):1-4.
    [94]肖秋明,王文强.基于可拓方法的连续配筋混凝土路面裂缝宽度评价.铁道科学与 工程学报,2006,3(1):87-91.
    [95]陈云鹤,邓学钧,周早生.连续配筋混凝土路面温度应力的弹性解.应用力学学报,2000,17(4):76-80.
    [96]唐益民,黄晓明,邓学钧.连续配筋水泥混凝土路面荷载应力分析.岩土工程学报,1996,18(6):88-95.
    [97]陈云鹤,邓学钧等.连续配筋混凝土路面早期裂缝宽度分析.中国公路学报,1998,11(增刊):37-42.
    [98]黄晓明,唐益民等.连续配筋混凝土路面端部锚固原理研究.东南大学学报,1996,26(4):106-110.
    [99]王铁成,赵会强,戎贤.连续配筋混凝土机场道面节点的动载响应分析.河北工业大学学报,2005,34(6):76-81.
    [100]ARA,Inc.,ERES Division 505 West University Avenue Champaign,ILLinois 61820,Guide for Mechanistic-Empirical Design of New And Rehabilitated Pavement Structure.AppendixLL:Pouchouts Continuously Reinforced Concrete Pavement[Z].July 2003
    [101]LevKhazanovich,Ph.D.OlgaI.SeleznevaH.ThomasYu,P.E.MichaelI.Darter.Ph.D.,P.E.,De velopment of Rapid Solutions for Prediction of Critical CRCP Stresses[J].Wshington,D.C.Transportation Research Board 80th Annual Meeting,January 7-11,2001,Paper NO.01-0358
    [102]jian-ming LING,Sheng-fei GUAN,Analysis on Load Transfer Efficiency of Doweled Joints in PCC Pavement[J].Shanghai:Tongji University,2009
    [103]刘文,凌建明,赵鸿铎.考虑接缝影响的机场水泥混凝土道面结构响应.公路交通科技,2007,24(12):15-23
    [104]周正峰,凌建明,袁捷.机场水泥混凝土道面接缝传荷能力分析.土木工程学报,2009,42(2):112-118
    [105]李文科.连续配筋混凝土复合式路面(CRC+AC)层间结合与施工关键技术研究.湖南:长沙理工大学,2009.
    [106]Glisic B, Simon N. Monitoring of concrete at very early age using stiff SOFO sensor. Cement and Concrete Composites,2000,22:115-119.
    [107]查旭东.连续配筋混凝土路面横向开裂发展规律.交通运输工程学报,2008,8(2):65-68.
    [108]顾星宇,董乔,倪富健.连续配筋水泥混凝土路面裂缝发展规律研究.公路交通科 技,2007,24(6):37-45.
    [109]高英,黄晓明,陈锋锋.基于可靠度的连续配筋混凝土路面配筋率设计方法.东南大学学报(自然科学版),2009,39(4):835-839.
    [110]刘朝晖,林佛光,华正良.连续配筋混凝土复合式沥青路面温度应力分析.交通科学与工程,2009,25(1):5-9.
    [111]倪富健,卢杨,董乔等.沥青混凝土与连续配筋混凝土复合式路面承载力分析.交通运输工程学报,2007,7(1):43-48.
    [112]刘朝晖,郑建龙,华正良.CRC+AC刚柔复合式路面结构与工程应用.公路交通科技,2008,25(12):59-64.
    [113]刘寒冰,张云龙,魏志刚.连续配筋混凝土路面早期裂缝.交通运输工程学报,2008,8(2):59-64.
    [114]钟春玲,刘寒冰,张云龙等.考虑地基摩阻作用的CRCP温度应力非线性分析.吉林大学学报(工学版),2008,38(增刊):74-79.
    [115]申爱琴.水泥与水泥混凝土.北京:人民交通出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700