用户名: 密码: 验证码:
脉冲激光冲击成形的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冲击是一个复杂的瞬态过程,涉及到传热学、动力学、材料科学、激光技术和计算机技术等多门学科。激光辐射到金属靶材表面后,在极短的时间内,激光的被吸收、等离子体的产生、等离子膨胀爆炸形成冲击波、冲击波的约束和冲击载荷下板材的动态响应过程,以及激光冲击波对材料的微观组织的影响和材料的力学性能的变化等等诸多因素相互影响。激光冲击成形变形场的分布和动态响应的过程是研究激光冲击成形的一个关键问题,由于成形过程耦合因素多,加载时间极短,甚至短到纳秒级,以往的研究对许多影响冲击处理的因素作了大量的假设和一些定性的分析,对激光冲击成形的成形机理、变形场的理论计算和模拟、冲击成形处理的规律需要开展进一步深入的研究。单脉冲的激光冲击成形的研究可以更加简明更加直观地反映出激光冲击波的作用机理,建立板材变形量与激光参数、约束边界、材料的性能和作用时间等参数的关系,为分析各种参数对成形过程的影响提供有力的依据。单脉冲激光冲击成形的动态响应过程的分析和理论模型的建立,也为未来加工过程中各个参数的合理优化、板材变形过程的有效控制、分析和实现大面积金属板料的激光冲击成形奠定基础。
     本文通过对单脉冲激光冲击板材的变形过程的推导分析,提出了激光冲击板材的初速度分布假设;应用等效恒载荷简化计算,建立了单脉冲激光冲击下板材的变形场理论解析模型,并实验验证了数学模型的准确性;采用有限元仿真对激光冲击成形进行数值模拟,分析了激光冲击成形的特点;通过数学模型和有限元仿真相结合,讨论了影响激光冲击成形变形场分布的主要加工参数和激光参数,分析了激光冲击的动态响应过程,重点分析了速度,位移,应变,应变率的空间分布和随时间的历史分布;研究了激光冲击成形对材料主要性能的的影响。主要的研究工作如下:
     1.建立了激光冲击成形变形场的数学模型
     建立了以周边环形约束、中心区域受激光冲击的板材变形分析模型,基于冲量定理,在冲击加载区域,将冲击瞬间的力作用转化为板材发生塑性变形的初始动量,根据板厚与约束圆周直径的相对值,只考虑板材塑性变形的动力学弯曲响应。在激光冲击成形中,将成形过程分为两个相,分别对两个相的变形进行了分析计算,在计算的过程中,引入等效载荷以简化计算。通过黄铜和TA2板材的激光冲击成形实验验证了数学模型的准确性。
     2.激光冲击成形的数值模拟
     建立了激光冲击成形的数值仿真模型用于研究激光冲击成形动态响应过程和成形规律。模型采用显式动态分析,有效解决激光冲击成形中载荷高、结构响应变化快的问题,以提高激光冲击成形预测的精确性。分析了激光冲击成形中的瞬态响应过程,主要包括板材的速度、位移、应变以及应变率的空间和时间分布。
     3.激光冲击主要参数对冲击成形影响的研究
     研究了不同工艺参数和变形场的对应关系。结合激光冲击成形的理论与实验研究,总结了板材厚度、激光能量、板材屈服强度等主要参数对变形场的影响规律,改变了过去只依靠少量的实验结果就对某单一影响因素进行预测的方法。掌握了这些规律,可以同时预测多个工艺参数对变形场的影响,也可以通过目标变形来规划激光冲击工艺参数。
     4.研究了激光冲击成形处理对金属材料性能的影响
     研究了激光冲击成形对材料的表面形貌的变化。约束层和表面涂层是激光冲击成形中的两个重要影响因素,分析了约束层和表面涂层的选择和主要相关参数。比较了没有涂层,涂层厚度不足和合理的表面涂层对激光冲击效果的不同影响。通过实验对比研究了激光冲击对材料表面显微硬度、材料的金相的影响。
Laser Shock Forming (LSF) of metal sheet is a new and competitive laser based manufacturing technology. The dynamic response of the metal sheet and the deformation field are two key problems in the research of LSF rescently. LSF is a very complicated dynamic process. Lots of science and technology such as the diathermaneity,dynamics, material science, laser technology and computer science are all involved in LSF.. The laser irradiates on the metal sheet. And in a very short time, the absorption of the laser energy, the production and the combustion of the plasma, the expansion and the production of the laser shock waves, the confinement of the waves, the procession of the dynamical response of the sheet to the laser shock loads, the effect of the laser shock waves on the material microstructure, the change of the mechanical capability of the material and etc, all these factors have effect on each other. Although some theories, experiments and simulation of the LSF have been performed by some researchers and some important accomplishments are achieved, lots of supposion of the influencing factors and some simplified analysis are made because of too many interactional factors and the extremely short time about nanoseconds. The deforming mechanism of the LSF treatment, the mathematical computation and simulation of the displacement field and the discipline of the LSF are all need further research. The research of LSP with single laser pulse can simplify the model and display the mechanism directly. The relationship among the displacement of the sheet, the laser parameters, the confined conditions, the material properties and the loading time can be established and offers strong proof for the analysis of process of LSP.
     In this paper, through the analysis of the deforming procession of the metal sheet, reasonable supposition of velocity field is made. Applying equivalent constant load to simplify the computation, the mathematical model with single laser pulse of the displacement field is established and its precision is validated by experiments; applying finite elements, the numerical simulation is used to analyze the procession and results of the LSF. Combining the mathematical model and the numerical simulation, the main parameters of process are discussed and the dynamic process of the LSF treatment is analyzed. In the analysis, the deforming time, the displacement history, the strain and the strain rate are intensively discussed. In the end of the paper, the effect of the LSF on the material is studied. The main research work is listed as the following:
     1. The mathematical model of the LSF displacement field was established. Selecting the LSF with single laser pulse as the research object, the dynamic response of the metal sheet to the LSF load and the mechanism of the plastic deforming with high strain rate are studied. When the pressure generated by the laser shock waves is bigger than the dynamic yield strength of the structure, the plastic deformation is occurred. In the LSF treatment, the load time is extremely short and the reasonable muzzy velocity model is established. The process of the LSF can be divided into two phases. And then the displacement of the two phases is discussed and computed. In the process of the computation, the equivalent constant load is used to simpfy the work. In the end of this part, select the metal sheet of Brass and TA2 as the object, the precision of the computation is validated by experiments.
     2. The numerical simulation of the LSF treatment. According to the features of the LSF, the numerical simulation research is done to study the LSF. How to choose the parameter of the FEM model is analyzed. Comparing the simulated results with experiments, the precision and reliability are validated. The displacement history and the energy history of the structure changed with time are analyzed, which will be beneficial to the research of dynamic response of LSF.
     3. The effect of the main LSF parameters is studied. In the LSF treatment, given the main parameters such as the material properties and the size of metal sheet, the displacement field is mainly determined by the laser energy and the size of the laser pulse. In order to study the effect of different parameters, the dynamic deforming process is analyzed with the numerical simulation and mathematical model. And then the displacement field can be predicted with the LSF treatment parameters. The parameters can also be specified with the objective displacement field. The relation of the parameters and the displacement field is studied qualitatively.
     4. The effect on the mechanic properties is studied. The surface quality of the LSF is examined and analyzed. The confining layer and the coating, which are two important factors in the treatment, are discussed. Three conditions, without coating, insufficient and reasonable coating are compared according to the experimental results. The investigation shows that the surface quality and the microstructure have no remarkable change; LSF is a mechanical process, not a thermal process and no visible ablation is observed. The micro-hardness of brass specimen increases by about 10~20% after the LSP treatment and the TA2 specimen has no obvious change.
引文
1.虞钢,虞和济,集成化激光智能加工工程,冶金工业出版社,2002
    2.左铁钏,施定远,陈铠,激光加工技术的优势及在工业生产中的应用,激光杂志1999,20(4) :8~9
    3. Laser Shock Processing Increases the Fatigue Life of Metal Parts, From Materials and Processing Peport, 6(6) 3~5(Sept.1991)
    4.白新德,徐建,范毓殿,激光表面改性技术在改善材料抗腐蚀性能上的应用,1998,Vol.38,No.12:65~68
    5.江海河,激光加工技术应用的发展及展望,光电子技术与信息,2001年8月,Vol.4:1~12
    6.李立均,现代激光加工及其装备,北京:北京理工大学,1993
    7.徐恒钧,国外激光表面处理的进展,北京工业大学学报,1998年9月,Vol.24 No.3:130~136
    8.李俊昌著,激光的衍射及热作用计算,科学出版社,2002
    9.邓树森,我国激光加工技术的发展近况,激光与红外,1994,23:21~24
    10.中科院上海光机所,我国激光发展的战略研究,上海科技文献出版社,1988
    11.俞汉青,陈金德著,金属塑性成形原理,机械工业出版社,2004
    12.周建忠,周明,肖爱民,杨继昌,张永康,约束层的厚度和柔性对激光冲击强化效果的影响,应用激光,February, 2002, Vol.22, No.1:7~9
    13. H.Podlesak, T.Schnick, L.pawlowski, Microcopy study of Al-Sic Particulate composites processed by laser shocks, Surface and Coating Technology. 124(2000):32~78
    14. E.Auroux, M.Boustie, P.Peyre, et al. Debonding study of Ni-base substrate/Pt coatings interfaces using laser shock waves: characterization of the targets and experimental study, Surface and Coatings Technology 138(2001) 267~277
    15. L.Berthe, A.Sollier, P.Peyre, R.Fabbro, The generation of laser shock waves in a water-confinement regime with 50 ns and 150 ns XeCl excimer laser pulses
    16.汤祖尧。讨论我国的激光加工市场,激光与红外,1998,28(2):77~80
    17.郑立中,激光集锦:激光技术在汽车工业中的应用研讨会,1998,8(2):1~8
    18.王广龙,周建忠,张兴权,基于激光喷丸的金属板料成形新技术,第五届全国光子学大会会议论文集,安徽黄山
    19.张兴权,周建忠,王广龙,激光喷丸技术及其应用,制造业自动化,2005,27(10):26~28
    20.石岩,刘菊岗,李建华等,无约束层激光冲击薄板的疲劳寿命,武汉科技大学学报(自然科学版),June,2000. Vol. 23, No.2:147~149
    21. J.M.Yang, Y.C.Her, Nanlin Han, et al, Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes, Materials Sciences and Engineering A298(2001)296~299
    22.俞汉青,陈金德著,金属塑性成形原理,机械工业出版社,2004
    23. Wang fei, Yao zhenqiang, Hu Jun. Experimental and numerical simulation research on laser shock forming of TA2 Titanium sheet,ACTA Metallurgica SINCA, 2006,19(5):347~354
    24. Y Namba, Laser forming of Metals and alloy. Ln: Proc. of LAMP’87, Osaka, 1987:601~606
    25.陈敦军,吴诗惇,向毅斌等,钛合金板材激光完全成形的研究,航空学报,2001,22(2):187~189
    26.季忠,刘庆斌,吴诗淳,金属薄板的激光成形技术,激光与光电子学进展,1995,(11):24~25
    27.季忠,吴诗淳,板料的快速激光成形技术及其应用,中国机械工程,1996,7(6):54-55
    28.王秀凤,林道胜,王秀彦,板料激光弯曲的实验研究,锻压机械,1999,34(3):8~10
    29. Li, W., and Yao, Y. L., "Numerical and Experimental Study of Strain Rate Effects in Laser Forming," ASME Trans. J. of Manufacturing Science and Engineering, Vol. 122, No. 3, 2000, pp. 445-451
    30. Li, W., and Yao, Y. L., "Laser Forming with Constant Line Energy," Int. J. Advanced Manufacturing Technology, Pergamon, Vol. 17, 2001, pp. 196-203
    31. Chen, K., and Yao, Y. L.,“Interactive Effects of Reactivity and Melt Flow in Laser Machining,”Int. J. High Temperature Material Processes, Special Issue on Laser Materials Processing, edited by Yao, Y. L., invited paper, Vol. 4, No.2, 2000, pp.227-252
    32. Bao, J., and Yao, Y. L., "Analysis and Prediction of Edge Effects in Laser Bending," ASME Trans. J. of Manufacturing Science and Engineering, Vol. 123, No. 1, 2001, pp. 53-61
    33. Li, W., and Yao, Y. L., "Laser Bending of Tubes: Mechanism, Analysis, and Prediction," ASME Trans. J. of Manufacturing Science and Engineering, Vol. 123, No. 4, 2001, pp. 674-681
    34. Allan H.Clauer, Barry P.Fairand, Ben A. Wilcox. Laser shock hardening of weld zones aluminum alloys. Metallurgical Transaction. Volume 8A, December 1977
    35. B.P.Fairand and A.H.Clauer L, Laser generation of high-amplified stress waves in materials J. Appl. Phys, 50(3), March 1979,1497~1502
    36. Zhang, W., and Yao, Y. L.,“Micro-scale Laser Shock Processing: Modeling, Testing, and Microstructure Characterization,”SME J. of Manufacturing Processes, Vol. 3, No.2, 2001, pp. 128-143
    37. Zhang, W., and Yao, Y. L.,“Micro-scale Laser Shock Processing of Metallic Components,”ASMETrans. J. of Manufacturing Science and Engineering, Vol. 124, No. 2, May 2002, pp. 369-378
    38.周建忠,张永康,周明等,激光冲击成形技术的研究,激光技术,December,2002, Vol.26, No.6:478~480
    39.周建忠,周明,肖爱民,杨继昌,张永康,约束层的厚度和柔性对激光冲击强化效果的影响,应用激光,February, 2002, Vol.22, No.1:7~9
    40. Wang fei, Yao zhenqiang. Effects on microstructure and properties of brass treated by laser shock processing,Journal of Shanghai Jiaotong University. 2007,12(2):243~246
    41.王飞,姚振强,激光冲击成形的仿真与实验研究,上海交通大学学报,2006,40(9):1465~1468
    42.吉维民,周建忠,戴亚春,张永康,ANSYS/LSDYNA在金属板料激光冲成形过程模拟中的应用研究,2004,24(1):2~6
    43.周中坚,卢耀祖,机械与汽车结构的有限元分析,同济大学出版社,1996
    44.王家金,激光加工技术,北京:中国计量出版社,1992
    45.关振中,激光加工工艺手册,北京:中国计量出版社,1998
    46. Wang fei, Yao zhenqiang. Numerical simulation research on laser shock forming of thin metal sheet, Journal of Shanghai Jiaotong University. 2007,12(4): 492~496
    47.王飞,姚振强,黄铜激光冲击强化的实验研究,激光技术,2006,30(5):511~513
    48. Ballard P. Contraintes residuelles induites par impact rapide. Application au choc-laser. In: Metallurgy. Paris (France): Ecole Polytechnique France; 1991, p. 217
    49.周建忠,杨继昌,周明,张永康等,约束层刚性对激光诱导冲击波影响的研究,中国激光,November, 2002, Vol.A29, No.11:1041~1044
    50.姚振强,Yao Lawrence,王飞等,先进激光制造研究新进展,机械工程学报,2003,39(12):57~61
    51.周建忠,张莹,金属板料的激光冲击成形技术,金属成形工艺,2002,20(1):26~30
    52.周建忠,张永康,周明等,激光冲击成形技术的研究,激光技术,December,2002, Vol.26, No.6:478~480
    53.周建忠,张永康,杨继昌.基于激光冲击波的板料塑性成形新技术[J ].中国机械工程, 2002, 13 (22): 1938~1940
    54. Anderholm NC. Laser-generated stress waves. Applied Physics Letters 1970;16:113–5
    55. Fairand BP, Clauer AH, Jung RG, Wilcox BA. Quantitative assessment of laser-induced stress waves generated at confined surfaces. Applied Physics Letters 1974;25:431–3
    56. Fairand BP, Clauer AH. Use of laser generated shocks to improve the properties of metals and alloys.Industrial Applications of High Power Laser Technology 1976;86:112–9
    57. B.P.Fairand and A.H.Clauer L, Laser generation of high-amplified stress waves in materials J. Appl. Phys, 50(3), March 1979,1497~1502
    58. Allan H.Clauer, Craig T.Walters, and Stephan C.ford, The effects of laser shock processing on the fatigue properties of 2024-T3 Aluminum1983, ASM International, Materials Park, OH
    59. B.P.Fairand, A.H.Clauer, Laser generated stress waves: their characteristics and their effects to materials, Laser-Solid Interactions and Laser Processing(1978)
    60. Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J. Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics 1990;68:775–84
    61. Fabbro R, Peyre P, Berthe L, Sherpereel X. Physics and applications of laser-shock processing. Journal of Laser Applications 1998;10:265–79
    62. R. Fabbro, J.Fournier , Physical Study of Laser-produced plasma in confined geometry, J. Appl. Phys., 1990,68(2):775~784
    63. P.Perye. R.Fabbro., Laser Shock Pressing: a Review of the Physics and Application. Optical and Quantum Electronics, 1995, 27:1213~1229
    64. Fairand BP, Clauer AH, Wilcox BA. Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy. Metallurgical Transactions A 1977;8A:119–125
    65. Fairand BP, Clauer AH. Applications of laser-inducedstress waves. Presented at Lasers in Modern Industry Seminar; 1978
    66. Berthe L, Fabbro R, Peyre P, Bartnicki E. Wavelength dependence of laser shock wave generation in the water confinement regime. Journal of Applied Physics 1999;85:7552–5
    67. Peyre P, Berthe L, Scherpereel X, Fabbro R. Laser-shock processing of aluminum coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour. Journal of Materials Science 1998;33:1421–9
    68. Fabbro R, Peyre P, Berthe L, Sherpereel X. Physics and applications of laser-shock processing. Journal of Laser Applications 1998;10:265–79
    69. J.E.Masse. et al. Laser generation of stress waves in metal. Surface and coating Technology, 1995, 70:231~235
    70. Gerland M, Hallouin M, Presles HN. Comparison of two new surface treatment processes, laser induced shock waves and primary explosive: application to fatigue behaviour. Materials Science and Engineering 1992;156A:175–82
    71. Grevey D, Maiffredy L, Vannes AB. Laser shock ona TRIP alloy: mechanical and metallurgicalconsequences. Journal of Materials Science 1992;27:2110–6
    72. Wenwu Zhang, Y.Lawrence Yao, Microscale laser shock processing-modeling, testing, and microstructure Characterization. Journal of Manufacture Processes
    73. Whnwu Zhang, Y.Lawrence Yao, Micro Scale Laser Shock Processing of Metallic Components. Journal of Manufacturing Science and Engineering. May 2002, Vol.124:369~378
    74. Zhang, W., Yao, Y. L., and Chen, K.,“Modeling and Analysis of UV Laser Micromachining of Copper,”Int. J. Advanced Manufacturing Technology, Pergamon, Vol. 18, 2001, pp.323-331
    75. Zhang, W., and Yao, Y. L.,“Micro-scale Laser Shock Processing of Metallic Components,”ASME Trans. J. of Manufacturing Science and Engineering, Vol. 124, No. 2, May 2002, pp. 369-378
    76.洪昕,王声波,郭大浩等,强激光驱动高压冲击波特性研究,中国激光,August,1998,Vol.A25, No.8:743~747
    77.刘世伟,郭大浩,王声波等,试验参数对激光冲击强化效果的影响,中国激光,October,2000, Vol.A27, No.10:937~940
    78.於自岚,高传玉等,激光冲击区表面质量的人工神经网络研究,激光技术,February, 2001, Vol. 25, No.1:1~6
    79.张永康,周建忠,周明,激光冲击成形新概念,2001年中国机械工程学会年会暨第九届全国特种加工学术年会论文集,北京,2001
    80.高长伟,钛合金板激光冲击成形基础研究,南京航空航天硕士论文,2005
    81. P Peyre, L Berthe, R Fabbro, Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6~3 ns laser pulses in a confined regime with water. J.Phys. D: Appl. Phys. 33(2000)498~503. Printed in the UK
    82. R. Fabbro, J.Fournier , Physical Study of Laser-produced plasma in confined geometry, J. Appl. Phys., 1990,68(2):775~784
    83. Peyre P, Fabbro R, Merrien P, Lieurade HP. Laser shock processing of aluminum alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering 1996;A210:102–113.
    84. Gerland M, Hallouin M. Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses. Journal of Materials Science 1994;29:345–51
    85. Peyre P, Fabbro R, Berthe L, Dubouchet C. Laser shock processing of materials, physical processes involved and examples of applications. Journal of Laser Applications 1996;8:135–41
    86. Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E. Shock waves from a water-confined laser-generated plasma. Journal of Applied Physics 1997;82:2826–32
    87. Peyre P, Berthe L, Scherpereel X, Fabbro R. Laser-shock processing of aluminum coated 55C1 steel inwater-confinement regime, characterization and application to high-cycle fatigue behaviour. Journal of Materials Science 1998;33:1421–9
    88.袁钢,强激光作用下金属板料在等离子体点燃阀值附近力学效应研究,中国科学技术大学博士学位论文,1988
    89.周建忠,张永康,周明,等.单次激光冲击下板料变形的理论分析[J ].中国激光, 2005, 32 (1) : 135~138
    90.周建忠,张永康,杨继昌,等.基于激光冲击波的板料塑性成形新技术[J ].中国机械工程, 2002, 13 (22): 1 938~1 940
    91.张永康,高立,杨超君,激光冲击TA2板料变形的理论分析和实验研究[J ].中国激光, 2006, 33 (9) : 1282~1287
    92. Obata M, Sano Y, Mukai N, Yoda M, Shima S, Kanno M. Effect of laser peening on residual stress and stress corrosion cracking for type 304 stainless steel. Presented at International Conference on Shot Peening—7; 1999
    93. MontrossCS, Brandt M, Swain MV. Self-limiting hardness changes in laser peened 6061-T6 aluminum. Surface Engineering 2001;17(6):477–82
    94.孙承伟著,激光辐照效应,国防工业出版社,2002
    95.李俊昌著,激光的衍射及热作用计算,科学出版社,2002
    96. Dubouchet C. PhD dissertation in Metallurgy. Orsay (France): Universite d’Orsay; 1993
    97.张永康,激光冲击强化提高航空材料疲劳寿命的研究
    98.袁钢,周光泉,用于等离子体及LSD波点燃阀值的判据,高压物理学报,1998,2(2):182~189
    99.王礼立,应力波,中国科技技术大学近代力学系印,1981
    100.杨桂通,熊祝华,塑性动力学,清华大学出版社,1984
    101.张善元,弹性动力学,太原工学院,1982
    102. D Belforte, Levitt M. Industrial laser handbook 1992~1993 edition, New York: Springer-Verlay New York In c. 1992
    103.杨绪灿,杨桂通,徐秉业,粘塑性力学概论,中国铁道出版社,1982
    104.王国强,实用工程数值模拟技术及其在ANSYS上的实践,西北工业大学出版社,2001
    105.肖景容,塑性成形模拟理论,武汉,华中理工大学出版社,1994
    106.吕丽萍,有限元法及其在锻压工程中的应用,西安,西北工业大学出版社,1989
    107. Lawrence. Yao, Columbia University, Draft proposal to establish a significant project area: Fundamental Research in Advanced Laser Materials Processing (LMP)
    108. G. R. Johnson, W. H. Cook, A constitutive model and data for metal subjected to large strains, high strain rates and high temperatures, Proc. 7th Symp. on Ballistics, The Hague, The Netherlands, 1983, 541-547
    109. Malvern L.E., Plastic wave propagation in a bar os material exhibiting a strain-rate effect, Q. Appl. Math, 8 p405, 1951
    110.范良藻,材料高速变形时的应力松弛性质及一维杆中的塑性波,力学学报,7(1),1964
    111.庄茁译,ABAQUS/Explicit有限元软件入门指南,北京:清华大学出版社,1998
    112. B.P.Fairand, A.H.Clauer, P.G.Jung, et al, Quantitative assessment of laser-induced stress waves generated at confined surfaces, Applied Physics leteters, 25(8),431~433, 1974
    113. B.P.Fairand, A.H.Clauer, Laser generation of high-amplitude stress waves in materials, Journal of Applied Physics, 50(3), 1497~1502,(1979)
    114. E.Auroux, M.Boustie, P.Peyre, et al. Debonding study of Ni-base substrate/Pt coatings interfaces using laser shock waves: characterization of the targets and experimental study, Surface and Coatings Technology 138(2001) 267~277
    115.王广龙,金属板料激光冲击成形研究,江苏大学硕士学位论文,2005
    116.金川,激光冲击成形中冲击方法的研究,江苏大学硕士学位论文,2005
    117.张永康,张斌,余承业等,激光冲击强化表面涂层及约束层的优选,航空精密制造技术,1994, Vol30. No.4:24~27
    118.李俊昌著,激光的衍射及热作用计算,科学出版社,2002
    119.杨建阳,激光冲击成形钛合金板的变形与残余应力分析,南京航空航天大学硕士学位论文,2006
    120.任旭东,张永康,左敦稳等,涂层对钛合金激光冲击效果的影响,江苏大学学报(自然版),2006,27(1):10~14
    121.张凌峰,张永康,任旭东等,激光冲击约束程和吸收层的研究,农业机械学报,2007,38(1):127~130
    122.钱壬章,俞晶铭,林文贵,传热分析与计算,高等教育出版社,1987
    123.程尚模,传热学,高等教育出版社,1990
    124. C. S. Montross, V. Florea, M. V. Swain, The influence of coatings on subsurface mechanical properties of laser peened 2001-T3 aluminum. Journal of Materials science, 2001, 36:1801~1807
    125.张永康,激光冲击强化提高航空材料疲劳寿命的研究,南京航空航天大学博士学位论文,1995
    126.李志勇,朱文辉,郭大浩等,实验研究脉冲强激光在铝靶中诱导的冲击波,中国激光,1997,124(3):259~262
    127. Berthe L, Fabbro R, Peyre P, Bartnicki E. Wavelength dependence of laser shock wave generation inthe water confinement regime. Journal of Applied Physics 1999;85:7552–7555
    128. P.Perye. R.Fabbro., Laser Shock Pressing: a Review of the Physics and Application. Optical and Quantum Electronics, 1995, 27:1213~1229
    129. B.P.Fairand, A.H.Clauer, Use of Laser Generated Shocks to improve the properties of metals and alloys, Copyright 1977 by the Society of Photo-Optical Instrumentation Engineers

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700