用户名: 密码: 验证码:
催化裂化三旋内部气固两相流动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋风分离器是利用含尘气体旋转时所产生的离心力将粉尘从气流中分离出一种干式气固分离设备。由于其具有结构简单、高效、能承受高温高压等优点,已经广泛应用于能源、化工、冶金、环保等众多领域。立置多管式三旋的核心部件是轴流导叶式旋风管,针对导叶式旋风管对于5 m的颗粒除尘效率较低的缺点,利用数值计算和实验为手段,结合理论解析方法,用发展中的现代多相流理论、湍流原理、计算流体动力学理论为指导,对其内部气固两相流动、分离机理和压力损失等性能特性进行深入分析。
     首先,为更好了解导叶式旋风管内部气相流动机理,利用理论解析方法和数值模拟方法对旋风管内部气相流场及压力场进行分析。其中,从柱坐标系下的Navier-Stokes方程和连续性方程出发,建立导叶式旋风管分离柱内旋风流场涡旋流动的精确解,采用无粘性流体假设,对于流场内部进行较为全面的求解。给出了径向速度、切向速度和轴向速度的表达式,以及压力梯度与静压的解析解。利用先进计算流体动力学(Computtational Fluid Dynamic, CFD)技术对于导叶式旋风管内部气相流动规律进行数值预测,采用雷诺应力模型(Reynold Stress Model, RSM)模拟气相流场,运用有限体积法和SIMPLEC(压力速度耦合算法)分析了旋风管内部流场和压力场分布。重点针对导向叶片内部流动进行分析,提出合理叶型准线设计方法。同时分析不同排气和排尘结构对于气相流场的影响,得到结构参数影响内部流动的一般规律。在流场分析基础上,从导叶式旋风管阻力沿程损失方式及组成出发,认为旋风管阻力可以分为进口阻力,本体内部损失,出口损失三部分,而旋风管本体阻力损失包括摩擦损失和涡流损失。在旋风管流场分析的基础上,构建了基于阻力复合原理的旋风管阻力模型,计算表明,进口损失约占15.7%,在分离空间旋转流场中阻力损失最大约为64.15%,而出口损失基本上属于纯能耗,占能量损失的19.79%,涡流损失为最主要的阻力损失,约为整体损失的40.88%。与试验结果相比,基本符合导叶式旋风管的阻力分布情况。
     其次,在气相流场模拟基础上,应用Euler-Lagrange气固两相流理论,气相流场采用雷诺应力模型,固相模型采用双相耦合的颗粒离散相模型计算颗粒轨迹,并采用单元内颗粒源法计算颗粒的浓度分布。得到不同入口位置对于颗粒运动轨迹的影响规律,以及旋风管内部不同粒径颗粒浓度分布特点,同时总结出计算导叶式旋风管分离效率和压力损失的数值计算方法,数值预测结果与实验结果较为吻合。然后,在流场分析基础上,通过引进旋风管颗粒浓度分布修正因子,充分考虑旋风管内部颗粒浓度分布呈现中间浓度较低,边壁浓度较高的特点,突破了传统意义上固相颗粒浓度径向混合均一的假设,提出转圈理论和边界层理论相结合的新型混合的旋风管性能理论计算方法。
     第三,利用数值模拟技术,研究不同操作参数下(诸如入口流量、温度、压力和底部灰斗抽气等)的导叶式旋风管内部气固两相流动特点,有利于进一步开发设计出高效低阻型导叶式旋风管,以及进一步发展全面的旋风管气固分离的机理模型。
     最后,对于多管组合旋风管进行全模型数值分析,研究不同进口结构参数对进气室内部气流均匀性的影响,提出在进口处设置多层扩散锥以提高气流分布均匀性的方法,并进行数值模拟验证。对于三旋装置不同流动空间来说,在进气室内单管入口流量不同,进气室内部压力分布并不均匀,其中各个入口附近出压力变化比较明显,且存在一定影响区域,一般小于进气室内部的平均压强,靠近入口区域的单管入口压降较大。而在公共灰斗内的窜流返混比较严重,可通过灰斗泄气有效抑制。
Cyclone separators are by far the mostly used type of particulate control equipment using centrifugal force to remove particles. Their simple construction, no moving parts involved, low maintenance costs and adaptability to a widely range of operating conditions make them one of the most widely used particle removal devices in energy resources, chemical engineering, metallurgy industry and environment protection. Swirl tube is the core part of the vertical Third Stage Separators (TSS) for Fluidized Catalytic Cracking (FCC). Due to low efficiency for particles less than 5 microns in size, the gas-solid flow detail and performance characteristics including collection efficiency and pressure drop for swirl tubes are investigated by using the experimental, theoretical and numerical methods in this study. Firstly, based on the method of theoretical derivation and numerical simulation, the flow details and pressure distribution inside swirl tube are analyzed. Starting from Navier-Stokes equations and continuity equation in cylindrical coordinates, the exact solution of flow in the separation space of swirl tube is presented assumed on the condition of inviscid. And the CFD methods is used to investigate the gas flow characteristics. The governing gas flow equations, along with the three-dimensional Reynolds Stress Model (RSM), are solved using the finite volume method and the SIMPLEC pressure-velocity coupling algorithm. So the detail of gas-solid flow behavior in swirl tube is full displayed. For being the shortcoming flow characteristics, such short circuit flow under vortex finder and solid entrainment and back-mixing phenomenon near dust outlets. To be specific, the flow characteristics inside guide vane are addressed, and thus the suitable design of blade directrix is presented. Based on the flow characteristics, a new theoretical pressure drop model was developed based on the consist of pressure drop. This model includes the effect of the geometrical dimension and flow parameters, and pointed out that total pressure drop consists of three main partial pressure drop: the entrance loss, separation space loss and gas outlet loss. The separation loss included the loss of swirling motion of gas flow and friction loss. This model predicted that pressure drop above three parts come up to 15.7%, 64.15% and 19.79% of the total.
     Secondly, based on the gas flow field, a stochastic tracking two-phase coupling model is used to calculate the particle trajectories, and Particle-Source-in-Cell (PSIC) method is used to calculate particle concentrations. During the simulations, the interaction between continuous gas-phase and discrete particles is taken into account. The rules of solid motion trajectory at different inlet positions and solid concentrations at different sections in swirl tube are also presented. Based on that, a new collection efficiency model of swirl tube is developed with the investigation of flow pattern, spiral theory and boundary theory. Considering characteristic of solid concentration in swirl tube, that is lower in the middle zone and higher in the near tube wall region, the new revised solid concentration factor is put forward. So the assumed uniform radial particle concentration within swirl tube is broken. The availability of the efficiency model is verified by comparisons of the calculated grade efficiency with experimental data.
     Thirdly, the different operating condition parameters, such as flowrate, temperature, operating pressure and blowdown on the hopper, are also investigated by CFD method, and some useful conclusions were obtained. The research on gas-solid flow behavior helps to develop the new high-efficiency-low-resistance type swirl tube, and further explore the separation mechanism in swirl tube.
     Finally, the numerical simulation of TSS with three swirl tubes are carried out for investigating the flow characteristics in TSS. The effect of construct parameters in inlet room of TSS on flow uniform distrbution is presented with k-εturbulence model. Based on the above analysis, the new multi-layer diffuse cone is presented for better gas uniform distribution. The TSS can be divided into four parts, the inlet room, the separation room, common hopper space and gas outlet space. Due to the different flowrate at the every single swirl tube, the working condition of each TSS space is also different. The pressure distribution in inlet room is non-uniform, and existed for some certain region. The different pressures on dust outlet of each single tube lead to solid entrainment, and the flow pattern in common hopper is more complicated, and blowdown in the bottom of common hopper can reduce this negative phenomenon.
引文
1陈俊武,曹汉昌.催化裂化工艺与工程[M].北京:中国石化出版社, 1995: 80-83.
    2时均,王家鼎,余国琮,等.化学工程手册(第2版,下卷,第23卷)[M].北京:化学工业出版社, 1996: 11-38.
    3时铭显,金有海,刘隽人.催化裂化高温气固分离技术的进展与分析[J].催化裂化, 1995, 14(2): 87-96.
    4金有海,毛羽,刘隽人.催化裂化用多管式旋风分离器的现代进展[J].粉体技术, 1997, 3(3): 37-42.
    5金有海,刘隽仁,时铭显,等.具有双锥排尘结构的导叶式旋风管[P],中国专利: CN2175648, 1994-08-31.
    6金有海,杜美华,刘仁桓,等.带有开孔单锥排尘结构的导叶式旋风管[P],中国专利: CN2254778, 1997-05-28.
    7 Wedding, J.B., Weigand M.A., Carney T.A. A 10 m cutpoint inlet for the dichotomous sampler[J]. Environmental Science and Technology, 1982. 16: 602-606.
    8 Morre, M.E., McFarland A.R.. Design of Stairmand-type sampling cyclones[J]. American Industrial Hygiene Association Journal, 1990. 51: 151-159.
    9 Morre, M.E., McFarland A.R. Design methodology for multiple-inlet air sampling cyclones[J]. Environmental Science and Technology, 1996, 30: 271-276.
    10 Lim, K.S., Kwon S.B., Lee K.W. Characteristics of the collection efficiency for a double inlet cyclone with clean air[J]. Journal of Aerosol Science, 2003, 34: 1085-1095.
    11 Yoshida, H., Three-dimensional simulation of air cyclone and particle separation by a revised type cyclone[J]. Colloids and Surfaces, 1996, 109: 1-12.
    12 Yoshida, H., Fukui K., Yoshida K., et al. Particle separation by Iinoya's type gas cyclone[J]. Powder Technology, 2001, 118: 16-23.
    13 Yoshida, H., Ono K., Fukui K. The effect of a new method of fluid flow control on submicron particle classification in gas-cyclones[J]. Powder technology, 2005. 149: 139-147.
    14赵兵涛.旋风分离器进口结构优化及其性能的试验研究[J].化工机械, 2003. 30(4): 195-205.
    15岑可法,倪明江,严建华,等.气固分离理论及技术[M].杭州:浙江大学出版社, 1996.
    16毛羽,时铭显.导叶式旋风子叶片的设计与计算[J].华东石油学院学报, 1983, 3: 306-318.
    17毛羽.导叶式旋风子叶片参数的试验研究[J].华东石油学院学报, 1985, 2: 45-53.
    18金有海,范超,毛羽,等.导叶式旋风管叶片参数设计方法的研究[J].化工机械, 1999. 26(1): 21-24.
    19 Zhu, Y., Kim M.C. Lee K.W., et. al. Design and performance evaluation of a novel double cyclone[J]. Aerosol Science and Technology, 2001. 34(2): 373-380.
    20 Plomp, A., Beumer M.I.L., Hoffmann A.C. Postcyclone(PoC) An approach to a better efficiency of dustcyclones[J]. Journal of Aerosol Science, 1996. 27(S1): S631-S632.
    21 Ray, M.B., Luning P.E., Hoffmann A.C., et al. Improving the removal efficiency of industrial-scalecyclone for particles smaller than five micrometer[J]. International Journal of Mineral Processing, 1998. 53: 39-47.
    22 Lim, K.S., Kim H.S., Lee K.W. Characteristics of the collection efficiency for a cyclone with different vortex finder shapes[J]. Journal of Aerosol Science, 2004. 35: 743-754.
    23 Raoufi, A., Shams M., Farzaneh M., et al. Numerical simulation and optimization of fluid flow in cyclone vortex finder[J]. Chemical Engineering and Processing, 2008. 47: 128-137.
    24马全,陈建义.旋风分离器芯管结构改进的试验研究[J].化工机械, 2007. 34(5): 241-245.
    25张定坤,李军.排气管偏置式旋风分离器的工作特性研究[J].锅炉技术, 2005. 35(5): 28-31.
    26周雷,孙国刚.排气管插入深度对旋风分离器性能影响的初步研究[C],中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会.北京, 2006.
    27 Hoffmann, A.C., Stein L.E., Gas Cyclones and Swirl Tubes-Principles,Design and Operation[M]. Berlin: Springer-Verlag. 2002.
    28毛羽,时铭显,刘隽人,等,用于旋风分离器中的分流型芯管[P],实用新型专利. CN86100974,中国, 1988.
    29陈建义,罗晓兰,时铭显. PV-E型旋风分离器性能试验研究[J].流体机械, 2004. 32(3): 1-5.
    30罗晓兰,陈建义,时铭显.高效低阻旋风分离器的试验与开发[J].石油大学学报(自然科学版), 1999. 23(4): 56-58.
    31卫国强,陈晋南.旋风分离器减阻杆减阻的数值研究[J].计算机与应用化学, 2004, 21(6) : 881-886.
    32 Browne, J.M., Strauss W. Pressure drop reduction in cyclones[J]. Atomospheric Environment, 1978, 12: 1213-1220.
    33李矿林.导流器对细粉分离器性能影响的实验研究[J].能源研究与利用, 1997. 13: 13-18.
    34白崇功,路雷.螺旋型减阻器对旋风分离器减阻作用的研究[J].水泥技术, 1994. 6: 6-9.
    35 Griffiths, A.J., Yazdabadi P., Syred N. The Use of Centre Bodies and De-swirl Vanes in the Exhaust of Cyclone dust Seaprators[A]. Procedings of the Institition of Mechcanical Engineers[C], 1996. 210.
    36张建,王亚莹,金有海.基于CFD技术的旋风分离器减阻性能研究[J].新技术新工艺, 2007. 12: 46-50.
    37 Zhou L.X., Soo S.L., Gas-solid flow and collection of solids in a cyclone separator[J]. Powder technology, 1990. 63(1): 45-53.
    38 Hoffmann, A.C., Peng W., Dries H., et al., Effect of pressure recovery vanes on the performance of a swirl tube, with emphasis on the flow pattern and separation efficiency[J]. Energy & Fuels, 2006. 20: 1691-1697.
    39杨建国,郭颖,王建军,等.导叶式旋风管排气管内流动减阻的试验研究[J].中国石油大学学报(自然科学版), 2007. 31(3): 83-86.
    40张艳,金有海,王建军,等.排气结构对导叶式旋风管分离性能的影响[J].石油化工设备, 2007. 36(2): 18-22.
    41 Wang, B., Yu A.B. Numerical study of the gas-liquid-solid flow in hydrocyclones with different configuration of vortex finder[J]. Chemical Engineering Journal, 2008. 135: 33-42.
    42 Xiang, R.B., Lee K.W., Effects of Exit Tube Diameter on the Flow Field in Cyclones[J]. ParticulateScience and Technology, 2008. 26: 467-481.
    43 Xiang, R.B., Park S.H., Lee K.W. Effects of cone dimension on cyclone performance[J]. Journal of Aerosol Science, 2001. 32(4): 549-561.
    44 Mothes, Bewegung und abscheidung der partikeln im zyklon[D], Technical Uniersity Karlsruhe: Germany. 1982.
    45钱付平,章名耀.不同排尘结构旋风分离器的分离特性[J].燃烧科学与技术, 2006. 12(2): 169-174.
    46 Stefen O., Jakob W., Gemot S., Invetigation of the flow pattern in diferent dust outlet geometries of a gas cyclone by laser Doppler anemometry[J]. Powder Technology, 2003. 128(2-3): 239-251.
    47 Boysan, F., Swithenbank J. A fundamental mathematical modeling approach to cyclone design[J]. Transactions of the Institution of Chemical Engineers, 1982. 60: 222-230.
    48 Fraser S. M., Abdel Razek A. M., Abdullah M. Z. Computational and experimental investigations in a cyclone dust sepatator[J]. Proc Instn Mech Engrs, 1997. 22: 247-257.
    49 Griffiths W.D., Boysan F. Computional Fluid Dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers[J]. Journal of Aerosol Science, 1996, 27(2): 281-304.
    50魏志军,张平.旋风分离器气相流场的数值模拟[J].北京理工大学学报, 2000, 20(5): 561-564.
    51林玮,王乃宁.旋风分离器内三维两相流场的数值模拟[J].动力工程, 1999,1: 72-80.
    52 Meier, H.F., Mori M., Anisotropic behavior of the Reynolds stress in gas and gas-solid flow in cyclones[J]. Powder Technology, 1999. 101: 108-119.
    53 Hoekstra, A.J., Derksen J.J., Van Den Akker H.E.A. An experimental and numerical study of turbulent swirling flow in gas cyclones[J]. Chemical Engineering Science, 1999, 54(13-14): 2055-2065.
    54 Gimbun J., Chuah T. G., Fakhru'l-Razi, et al., The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study[J]. Chemical Engineering and Processing, 2005. 44(1): 7-12.
    55毛羽,庞磊,王小伟,等.旋风分离器内三维紊流场的数值模拟[J].石油炼制与化工, 2002, 33(2): 1-6.
    56吴小林,申屠进华,姬忠礼, PV型旋风分离器内三维流场的数值模拟[J].石油学报:石油加工, 2003,19(5): 74-79.
    57 Peng W., Hoffmann A.C., Huub Dries. Separation characteristics of swirl-tube dust separators[J]. AIChE Journal, 2004,50(1):87-96.
    58 Slack M.D., Prasad R.O., Bakker A., et al. Advances in cyclone modelling using unstructured grids[J]. Chemical Engineering Research and Design, 2000, 78(8): 1098-1104
    59 Derksen J. J., Van den Akker H. E. A. Simulation of vortex core precession in a reverse-flow cyclone[J]. AIChE Journal, 2000, 46(7):1317-1331.
    60 Derksen, J.J., Sundaresan S., van den Akker H.E.A. Simulation of mass-loading effects in gas-solid cyclone separators[J]. Powder Technology, 2006, 163(1): 59-68.
    61 Schmidt S., Blackburn H.M., Rudman M., et al. Simulation of turbulent flow in a cyclonic separator[A]. Third International Conference on CFD in the Minerals and Process Industries[C]. CSIRO, Melboune, Australia. 2003.
    62胡砾元,吴小林,时铭显.旋风分离器内颗粒轨迹的计算方法[J].中国石油大学学报(自然科学版), 1998. 22(4): 64-68.
    63吴飞雪.激光粒子成像技术测定旋风分离器内颗粒浓度场的研究[D],北京:中国石油大学(北京). 1998.
    64王海刚.旋风分离器中气-固两相流数值计算与实验研究[D],北京:中国科学院工程热物理研究所. 2003.
    65 Ivanov V.A., Sarasola F.J., Vasquez S.A., Multiphase mixture model applied to cyclone sepatations and bubble column[J]. American Society of Mechanical Engineers, 1999: 317-324.
    66 Qian F., Huang Z., Chen G., et al. Numerical study of the separation characteristics in a cylone of different inlet particle concentrations[J]. Computers & Chemical Engineering, 2007. 31(9): 1111-1122.
    67薛晓虎,孙国刚,时铭显.旋风分离器内颗粒浓度分布特性的数值分析[J].机械工程学报, 2007. 43(12): 26-33.
    68 Crowe, C.T., Sharman P., Stock D.E. The particle-source-in-cell (PSI-cell) model for gas-drop flows[J]. J. Fluid Eng., 1977. 99(6): 325-332.
    69万古军,孙国刚,薛晓虎,等.旋风分离器内颗粒质量浓度分布数值模拟[J].化学工程, 2008. 36(10): 41-45.
    70 Gujun Wan, Guogang Sun, Xiaohu Xue, et al. Solids Concentration Simulation of Different Size Particles in a Cyclone Separator[J]. Powder Technology, 2008. 183(1): 94-104.
    71 Bernard, J.G., Andries J., Scarlett B. Cyclone research for application at high temperatures[A], 1st European Symposium Separation of particles from Gases[C], 1989, 399-412. PARTEC 89.
    72万古军,魏耀东,时铭显.高温条件下旋风分离器内气相流场的数值模拟[J].过程工程学报, 2007. 7(5): 871-876.
    73钱付平,章名耀.温度对旋风分离器分离性能影响的数值研究[J].动力工程, 2006. 26(2): 253-258.
    74李文琦,陈建义.旋风分离器高温性能试验研究[J].中国石油大学学报(自然科学版), 2006. 30(3): 97-111.
    75 Shi, L., Bayless, D.J., Kremer G., et al. CFD Simulation of the Influence of Temperature and Pressure on the Flow Pattern in Cyclones[J]. Ind.Eng.Chem.Res., 2006. 45: 7667-7672.
    76 Bohnet, M., Influentce of the gas temperatur on the separation efficiency of aerocyclones[J]. Chemical Engineering and Processing, 1995. 34: 151-156.
    77万古军,孙国刚,魏耀东,等.温度和压力对旋风分离器内气相流场的综合影响[J].动力工程, 2008, 28(4):579-584.
    78 Stairmand, C.J. The design and performance of cyclone separators[J]. Trans. Inst.Chem.Eng., 1951. 29: p. 356-383.
    79 Sage, P.W., Wright M.A. Use of gas bleeds to enhance cyclone performance[J]. Filtr & Sep, 1986. 23: 32-36.
    80李敏,考宏涛,张少明.不同抽气率下细粉分离器流场数值模拟[J].南京化工大学学报(自然科学版),2000 22(5) : 79-81
    81 McAuley, R., Dries H. FCC Cyclone Systems: A Vital Element for FCC Profitability[A], European Refining Technology Conference (ERTC)[C]. Rome, Italy. 2000: 13-15.
    82周力行,陈文芳.林文漪(译者).湍流气粒两相流动和燃烧的理论与数值模拟[M],北京:科学出版社. 1994, 154-175.
    83苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社. 1997.
    84陈景仁.湍流模型及有限分析法[M].上海:上海交通大学出版社. 1988.
    85张建,金有海.排气结构对导叶式旋风管的性能预测研究[J].系统仿真学报, 2009. 21(4): 1214-1217.
    86胡砾元,时铭显,周力行,等,旋风分离器三维强旋湍流流动的数值模拟[J].清华大学学报(自然科学版), 2004,44(11):1501-1504.
    87王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程, 2003, 18(4): 337-342.
    88 Daly, B.J., Harlow F.H. Transport Equations in Turbulence[J]. Physics of Fluids, 1970. 13: 2634-2349.
    89 Lien, F.S., Leschziner M.A. Assessment of turbulent transport models including non-linear rng eddy-viscosity formulation and second-moment closure[J]. Computers and Fluids, 1994. 23(8): 983-1004.
    90陶文铨.数值传热学[M].西安:科学出版社. 1994: 136-175.
    91王福军,计算流体动力学分析[M].北京:清华大学出版社. 2004.
    92 Shih, T.M., Ren A.L. Primitive Variable Formulations Using Nonstaggered Grids. Numer[J]. Heat Transfer, 1984. 7: 413-428.
    93 Majumdar, S. Role of Underrelaxation on Momentum Interpolation for Calculation of Flow with Nonstaggered Grids[J]. Numer.Heat Tranfer, 1988. 13: 125-132.
    94 Bloor, M.I.G., Ingham D.B. Theoretical investigation of the flow in a conical hydrocyclone[J]. Trans.Inst.Chem.E., 1973, 51: 36-41.
    95 Bloor, M.I.G., Ingham D.B., The flow in industrial cyclones[J]. Fluid Mech., 1987, 178: 507-519.
    96熊鳌魁,魏庆鼎.轴对称旋流解析解的探讨[J].力学与实践, 1999, 21(5): 15-16.
    97陈建义,时铭显.旋风分离器空间流场的理论分析[J].中国石油大学学报(自然科学版), 2006, 30(6): 83-88.
    98王景超,张善元,李建隆.环流循环除尘系统分离柱内旋风流场的基本分析[J].化学工程, 2007, 35(7): 15-18.
    99贾复,张蝶丽.简化旋风分离器的流场计算[J].力学学报, 1981. 13(1): 85-89.
    100周世辉,时铭显. EPVC-IA旋风管的流场分析[J].化工学报, 1988. 5: 599-606.
    101 Soo, S.L. Particulates and continuam: Multiphase Fluid Dynamics[M], New York: Hemisphere.1989, 254-257.
    102 Ogawa, A. Mechanical separation process and flow patterns of cyclone dust collectors[J]. Appl. Mech. Rev., 1997. 50(3): 97-130.
    103 Zhi-zhong, X. Analysis on the three-dimensional flow in the cyclones[J]. Applied Mathematics and Mechanics, 1995. 16(6): 557-564.
    104 Linden, A.J.T. Investigation into cyclone dust collectors[J]. Proc. Inst. Mech. Eng., 1949. 160(2): 233-240.
    105吴小林,曹颖,时铭显. PV型旋风分离器流场的计算分析[J].石油学报(石油加工), 1997. 13(4):91-98.
    106 Wegner B., Maltsev A., Schneider C., et al. Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments[J]. International Journal of Heat and Fluid Flow, 2004. 25(3): 528-536.
    107 Benim, A.C., Nahavandi A., Syed K.J. URANS and LES analysis of turbulent swirling flows[J]. Progress in Computational Fluid Dynamics, 2005. 5(8): 444-454.
    108张艳.催化裂化第三级旋风分离器新型单管的开发研究[D],东营:中国石油大学(华东), 2006.
    109王建军. PDC型高效旋风管性能计算方法的研究[D],东营:中国石油大学(华东), 1998.
    110龚光彩,利光裕.平旋流型除尘器能量损失的简易估计[J].通风除尘, 1995. 3: 7-10.
    111 Shepherd C.B., Lapple C.E. Flow pattern and pressure drop in cyclone dust collectors[J]. Industrial and Engineering Chemistry, 1940. 32: 1246-1248.
    112 Alexander R.M., Fundamentals of cyclone design and operation[A]. Proceedings of the Australian Institute of Mining and Metallurgy[C], 1949. (New Series) (152-153): 203-228.
    113 First M.W. Cyclone dust collector design[J]. Am.Soc.Mech.Eng., 1949. 49(A): 127-132.
    114 Stairmand C.J. The design and performance of cyclone separators[J]. Trans. Inst.Chem.Eng., 1951. 29: 356-383.
    115 Barth W. Design and layout of the cyclone separator on the basis of new investigations[J]. Brennst Warme Kraft, 1956. 8(1): 1-9.
    116 Muschelknautz, E., Auslegung von Zyklonabscheidern in der technischen Praxis[J]. Staub Reinhalt, luft, 1970. 30(5): 187-195.
    117 Casal J., Martinez-Bennet J.M., A better way to calculate cyclone pressure drop[J]. Chemical Engineering, 1983. 90(3): 99-100.
    118 Dirgo J., Relationships between cyclone dimensions and performance[D], Harvard: Harvard University: USA, 1988.
    119 Swift P. An empirical approach to cyclone design and application[J]. Filtration and Separation, 1986, Jan/Feb: 24-27.
    120 Briggs L.W. Effect of dust concentration on cyclone performance[J]. Transaction of American Institute of Chemical Engineering, 1946, 42: 511-526.
    121 Masin, J.G., W.H. Koch, Cyclone efficiency and pressure drop correlations in oil shale retorts[J]. Environmental Progress, 1986. 5(2): 116-120.
    122 Bryant, H.S., Siverman R.W., Zenz F.A., How dust in gas affects cyclone pressure drop[J]. Hydrocarbon Processing, 1983, 62: 87-90.
    123周亚素,戴元熙.旋风除尘器阻力计算的新方法[J].中国纺织大学学报, 1990, 16(6): 95-100.
    124陈建义,罗晓兰,时铭显.含尘条件下PV型旋风分离器压降的计算[J].石油化工设备技术, 1997, 18(4): 1-3.
    125王连泽,彦启森.三维旋转流场特征与压力损失关系的研究[J].工程力学, 1998, 15(4): 43-49.
    126王连泽,彦启森.旋风分离器内压力损失的计算[J].环境工程, 1998. 16(2): 44-48.
    127王德耕.旋风分离器速度分布指数及压降计算通用模型[J].化学工程, 1998. 26(1): 44-47.
    128刘晓琴,张吉光,杜付昌.旋风分离器内压力损失的计算[J].节能, 2006. 25(3): 20-24.
    129吴克明,石碤,潘留明,等.旋风分离器压力损失的数学模型及在设计中的应用[J].化工环保, 2005. 25(2): 156-159.
    130 Avci, A., Karagoz I. Theoretical investigation of pressure losses in cyclone separators[J]. International Communication of Heat and Mass Transfer, 2001. 28(1): 107-117.
    131 Zhao, B. A theoretical approach to pressure drop across cyclone separators[J]. Chemical Engineering and Technology, 2004, 27(10): 1105-1108.
    132 Chen, J., Shi M. A universal model to calculate cyclone pressure drop[J]. Powder Technology, 2007. 171(3): 184-191.
    133 Comas, M., Comas J., Chetrit C., et al., Cyclone pressure and efficiency with and without an inlet vane. Powder Technology, 1991. 66(2): 143-148.
    134 Fassani, F.L., Goldstein J.R., A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency[J]. Powder Technology, 2000. 107(1-2): 60-65.
    135 Sykes, D., Cumming R.H., Grieveson L., et al. Measurement and modeling of fluid loss in a cyclone[J]. Journal of Aerosol Science, 2000. 31(S1): 588-589.
    136金有海,时铭显. PDC型高效旋风管的开发研究[J].石油炼制与化工, 1996, 27(2): 47-52.
    137王建军,金有海.新型高效PSC-250型导叶式旋风管组合多管的试验研究[J].化工机械, 2002. 29(5): 253-257.
    138钱震.大型气固并流下行床流动行为及出入口结构研究[D].北京:清华大学, 2006.
    139 Derksen, J.J., Separation Performance Predictions of a Stairmand High-Efficiency Cyclone[J]. AIChE Journal, 2003, 49(6): 1359-1371.
    140 Gimbun, J., Chuah, T.G., Choong, Thomas S. Y., et al. A CFD study on the prediction of cyclone collection efficiency[J]. International Journnal for Computational Methods in Engineering Science and Mechanics, 2005, 6(3): 161-168.
    141钱付平,章名耀.旋风分离器分离器性能的经验模型与数值模拟[J].东南大学学报(自然科学版), 2005, 35(01): 35-39.
    142 Shi L., Bayless D.J. Comparison of boundary conditions for predicting the collection efficiency of cyclones[J]. Powder Technology, 2007. 173(1): 29-37.
    143 Rosin, P., Rammler E., Intelmann W., Grundllagen und grenzen der zyklonentstaubung[J]. Z Ver Dtsch Ing, 1932. 76(16): 433-438.
    144 Barth, W., Design and layout of the cyclone separator on the basis of new investigations[J]. Brennst Warme Kraft, 1956. 8(1): 1-9.
    145 Lapple, C.E. Gravity and centrifugal separation[J]. Ind. Hyg. Q., 1950, 1: 45-50.
    146 [日]井伊谷刚一,马文彦译,除尘装置的性能[M].北京:机械工业出版社. 1981.
    147 Leith D., Licht W. The collection efficiency of cyclone type particle collectors a new theoretical approach[J]. AIChE Symp. Ser., 1972. 126: 196-206.
    148 Iozia D. L., Leith D. Effect of cyclone dimensions on gas flow pattern and collection efficiency[J]. Aerosol Sciency and Technology, 1989, 10(3): 491-500.
    149 Clift R., Ghadiri M., Hoffman A. C. A critique of two models for cyclone performance[J]. AIChE Journal, 1991. 37(2): 285-289.
    150 Dietz, P.W. Collection efficiency of cyclone separators[J]. AIChE Journal, 1981. 27(6): 888-892.
    151 Mothes, R., Loffer, F. Prediction of particle removal in cyclone separator[J]. Int. Chem. Eng., 1988. 28: 231-240.
    152 Li Enliang, Wang Yingmin. A new collection theory of cyclone separators[J]. AIChE Journal, 1989. 35(4): 666-669.
    153 Dirgo J., Leith D. Cyclone collection efficiency:Comparision of experimental results with theoretical predictions[J]. Aerosol Science and Technology, 1985, 4(4): 401-415.
    154 Kim W. S., Lee J.W. Collection efficiency model based on boundary-layer characteristics for cyclones[J]. AIChE Journal, 1997. 43(10): 2446-2455.
    155 Buttner H., Dimensionless representation of separation characteristic of cyclone[J]. Journal of Aerosol Science, 1999. 30(10): 1291-1302.
    156 Economopoulou A.A., Alexander D. Rapid perdormance evaluation and optional sizing of dry cyclone separators[J]. Journal of Environmental Engineering, 2002. 128(3): 275-285.
    157向晓东.计算旋风分离效率的一种新方法[J].通风除尘, 1990. 47(2): 1-7.
    158张吉龙,叶龙.高效旋风器分级效率理论计算的新方法[J].青岛建筑工程学院学报, 1991. 12(4): 41-48.
    159陈建义,时铭显.旋风分离器分级效率的多区计算模型[J].石油大学学报(自然科学版), 1993,17(2): 54-58.
    160金有海,时铭显.旋风分离器性能计算模型分析[J].石油大学学报(自然科学版), 1991. 15(2): 81-90.
    161罗晓兰,陈建义,时铭显.旋风分离器粒级效率计算方法[J].石油化工设备, 1999. 28(3): 14-17.
    162 Rohsenow W.M., Hartnett J.P. , Cho Y.I. Handbook of Heat Transfer[M], McGraw-Hill: New York, 1998.
    163郭家松,李俊宇,邵国兴.料斗抽气对旋风分离器分离效率影响研究[J].化工装备技术, 1993. 14(1): 9-14.
    164 Peng, W., Hoffmann A.C., Dries H.W.A. Experimental study of the vortex end in centrifugal separators: The nature of the vortex end[J]. Chemical Engineering Science, 2005. 60(24): 6919-6928.
    165 Hoffmann, A.C., De Jonge R., Arends H., et al., Envidence of the 'Nature Vortex Length' and its effect on the separation efficiency of gas cyclones[J]. Filtration & Seapration, 32(8): 799-804, 1995.
    166 Peng W., Hoffmann A.C., Dries H., et al. Reverse-Flow centrifugal separators in parallel: performance and flow pattern[J]. AIChE Journal, 2007,53(3): 580-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700