用户名: 密码: 验证码:
旋转超声加工机床的研制及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转超声加工是集传统超声加工与磨粒磨削加工为一体的复合加工,是加工硬脆性材料的一种有效方法,具有良好的应用前景。然而,通过大量文献的阅读及实际的调查研究发现,国内目前还没有生产完善的旋转超声加工机床,超声加工的技术也远远滞后于发达国家的水平。
     本文试图对旋转超声加工机床的研制做些工作,设计、制作出结构合理、易于操作、性能优良、生产效率高适宜于孔、面加工的大功率旋转超声加工机床。在此基础上开展相关实验研究,探索旋转超声加工在石材加工上的优势及工具磨损实验研究。
     论文主要内容概括如下:
     1.利用通用的电子元器件,设计适用于本文要求的1000W超声波电源。根据不同加工需要,电源应具备频率跟踪功能、功率可调及阻抗匹配等特性。
     2.依据一维振动理论模型和机-电等效理论,综合考虑各环节因素,设计适用于本文需要的三明治式压电陶瓷换能器;从换能器谐振工作点附近导纳特性出发,分析和比较了换能器串并联匹配的特点和效果;利用阻抗分析仪对设计换能器主要参数进行测试,结果显示各项参数满足设计指标,谐振频率偏离设计值仅0.8%,圆满完成本文换能器的设计。
     3.采用理论解析法近似求解阶梯形变幅杆的尺寸大小。借助ANSYS有限元分析对变幅杆进行了模态分析,通过对比计算确定了本文设计变幅杆的最优过渡圆弧和变幅杆位移节面的位置,确立了较为准确的法兰盘的加工位置,从而最大可能降低超声振动系统与机床的连接部分声耦合对超声振动系统的影响。将优化设计的尺寸加工的变幅杆与换能器组装成整个超声振子进行阻抗分析,数据显示优化设计的超声振子谐振频率与换能器谐振频率相当一致,其误差仅为0.2%。
     4.针对目前超声加工多数局限于陶瓷材料小孔加工的现状,选择典型的石材作为工件进行包括游离磨料非旋转超声、游离磨料旋转超声和固结磨料旋转超声大截面加工实验研究。目前国内外从事旋转超声加工研究所用的工具均为电镀或者粉末冶金烧结的金刚石工具,但其磨损大,寿命短。众所周知,钎焊金刚石工具能在结合界面上实现化学冶金结合,具有高出露度的特点,可以提供更大的容屑空间,减小加工过程中工具、磨屑和工件的摩擦。但目前还没有利用钎焊工具进行旋转超声加工的报道,而且对于工具端面的形状对加工过程的影响,也少见报到。为此,从工具材料的选择,断续和连续环面工具基体的设计和优化,钎焊金刚石工具的制备等方面开展工作,为实验的进行做好准备。
     5.在以上工作的基础上,重点研究旋转超声机床的设计。对于其中的关键技术问题,给予详细的分析与设计。解决了机床高速旋转条件下的电能换向问题;研制了气动恒力进给工作台;通过直流电机和电源的选择,设计了符合本机床要求的调速器,实现旋转超声振动系统的高速、平稳运转。考虑操作的便利及安全性,设计分离的电箱柜。
     6.在完成以上各项工作的情况下,对选择的石材工件进行不同输入参数下的三种大截面超声加工实验,统计材料去除率的大小,观察工件加工表面质量。通过加工过程中静压力及扭矩变化的监控,和光学显微镜对工件加工形貌和工具磨损的观察、统计,可以全面认识和分析超声加工过程,了解各加工参数对加工过程的影响,揭示工具磨损的机理。
     7.在游离磨料非旋转超声加工实验的研究中,对于实验的工具、工件材料和25μm的超声振幅输入条件下,实验结果显示,静压力F0=6 0N时,材料的去除率最大。固定静压力F0=6 0N不变,材料的去除率随着工具振幅的增大而增大,于此同时,表面粗糙度也使之增加,加工表面质量下降。
     8.在游离磨料旋转超声加工中,由于主轴转速的引入,材料的去除率较普通超声有了大幅度的增加。但是,对于较大截面的游离磨料旋转超声加工,主轴的旋转速度不宜过大,否则由于旋转离心力的作用,会导致加工区域的磨粒分布不均,影响材料的去除能力。与游离磨料非旋转超声加工不同的是,游离磨料旋转超声加工中,就工件的振幅对材料的去除率来说,并不是振幅越大越好,而是有个最佳振幅值,本实验中振幅为30μm左右。对于扭矩的测量和分析发现,扭矩随着转速的增大而增大,随着振幅的增大而降低。
     9.在钎焊金刚石断续工具的旋转超声加工实验中发现,材料的去除率随着主轴旋转速度和振幅的提高,都有了大幅度的增加。同样条件下,断续工具的材料去除能力是连续工具2.5倍以上,而且其寿命得以大大提高。对于扭矩的测量和分析发现,断续工具加工过程中的扭矩较连续工具有显著的降低。
     10.在钎焊金刚石的旋转超声加工中,金刚石磨粒的磨损形式表现为完整、微破、宏破、断裂和磨平五种形式。对于不同的工具条件,磨粒磨损过程存在很大差异,各种磨损形式的比例有所差异。对于连续截面工具,加工开始后的一段时间内,磨粒以破碎和断裂形式快速磨损。而断续钎焊工具,在起始阶段的加工过程很平稳,金刚石的磨损缓慢,在加工的后期,工具的磨损以磨平居多。
Rotary ultrasonic machining is a hybrid machining process which combines the material removal mechanisms of conventional ultrasonic machining (CUSM) and diamond grinding. It is not limited by the electrical or chemical characteristics of the workpiece materials. Thus it has been proved to be a promising and cost-effective machining method for hard and brittle materials, such as engineering ceramic, glass, stone, which has been widely used in many fields such as electronics, metallurgy, chemistry industry, machine, energy power, aviation and space flight.
     However, referenced from a variety of literature and the actual investigation, marketability and perfect rotary ultrasonic machining equipment had been in oversea market for many years ago. But at present, we cannot find one with our Chinese Independent property right, it in turn, compared with developed country, we have a poor level at the technology of rotary ultrasonic machining.
     This article attempts to carry out series of work on the design and development of rotary ultrasonic equipment, beared with the characteristic of reasonable configuration, operating convenience, perfect performance, high efficiency and low cost. It can be suitable in the hole and face processing with a level of high power and spindle rotary speed. Based on this foundation, serials experiment will be carried out to reveal the materials removal principle and the attrition of diamond tool during rotary ultrasonic processing on stone materials.
     The main work of this thesis can be summarized as following:
     1. To design an ultrasonic power supply with 1000 watts power. In order to be suitable with different working status, the power supply should have the function of automatic frequency tracking, power adjusting and also impedance matching.
     2. Based on the theory of one-dimensional vibration and the method of mechanical-electrical equivalent, a sandwich type of piezoelectricity ceramic transducer was developed. From the point of basic principle of matching and the equivalent circuit near resonance frequency of piezoelectricity transducer, resonance characteristic of serial and parallel matching have been analyzed. The main parameters of designed transducer wear tested by an impedance analyzer, results revealed they were well accorded with the design target, it just has a 0.8% error between the testing resonance frequency with the theoretical one.
     3. Stepped horn was theoretically calculated. In virtue of Finite Element Analysis, desired natural frequency and vibration model of the horn was analyzed, giving the optimal transition circular radius and the displacement nodal point. So the acoustical couplings energy will remarkably decreased between the whole ultrasonic oscillator and the engine bed through the flange setted up form the accurate nodal point. The main parameters of the whole ultrasonic oscillator wear tested, results revealed they were well accorded with the design target, it just has a 0.2% error between the testing resonance frequency with the theoretical one.
     4. At present, ultrasonic machining experiments study were mainly limited to the little hole machining of ceramics. As a comparison, a typical kind of stone material was selected to conduct the large scale cross-section ultrasonic experiments, including the Non-rotary Ultrasonic Machining with free Abrasives (NRUSM), Rotary Ultrasonic Machining with free Abrasives (RUSM) and Rotary Ultrasonic Machining with fixed Abrasives (RUM). In the case of diamond tool utilized in the rotary ultrasonic processing, electroplating coating and powder metallurgy diamond tool were primary selected, but they have the drawbacks of the high tool were and low tool life. As is known, the brazing of monolayer of diamond tool possesses of the high protrusion height and strong bonding force between grits and substrate. It provides more swarf storage spaces to decrease the tribology among swarf, workpiece and tools. But, there were no reports on the rotary ultrasonic processing with brazing diamond tool, and few reports on the influence of tool end shape to ultrasonic processing. From these points of view, variety of work has been done on the choice of tool material, analyzing and optimizing design of tool matrix and fabrication of diamond tool at circumstance of vacuum status, which will make good preparations for the conduction of experiments.
     5. Based on the above work, critical attention was focus on the detailed design and analysis of the whole engine bed. Electrical energy transmission between the ultrasonic power supply and the spindle at a high speed level has been solved; Constant pneumatic force feed-up work table was developed. Proper Direct Current Power Supply and Direct Current Motor were selected to design the velocity modulation system, which can actualize the ultrasonic spindle system work steadily.
     6. Based on completion of the above works, three kinds of large scale cross-section ultrasonic experiment were carried out to the selected workpiece. The influences of different input parameters on the material removal rate and surface quality of the workpiece were studied. Constant static force and torque were tested during the process, at the same time, the topography of the diamond tool and workpiece were observed with a digital microscope, which will give a good explanation of the tool wear mechanism.
     7. In NRUSM experiments, as for the maximum MRR, there exists an optimal static load, namely 60 Newton, at the given condition of tool and its 25μm amplitude. Under the machining condition of constant 60 Newton static load, MRR increases along with the amplitude increasing, and also the value of surface roughness Ra increases.
     8. In RUSM experiments, because of the introducing of spindle rotary speed, MRR has a dramatically increases compared with the NRUSM experiment. But there exists a proper speed range of about 100-150 rpm for the giving tool. As for the maximum MRR, there exists an optimal amplitude 30μm in RUSM. Torque increases along with the increase of rotary speed, and decreases along with the tool amplitude increases.
     9. In RUM experiments with brazing diamond tool, MRR has a notable increase with the improvement of rotary speed and amplitude. MRR with the intermittent matrix diamond tool is 2.5 times that of with continuous one. Moreover, its life has improved dramatically. Compared with the continuous matrix diamond tool, intermittent one has a lower torque.
     10. As for the tool wear mechanisms in RUM, wear form of diamond grit can be divided into five different kinds, that is whole crystal, micro fracture, macro fracture, fracture and polishing. The process of diamond wear has a big difference according to the different kind of tool. To continuous one, it has a large proportion of macro fracture and fracture diamond grits at the beginning of the process. But to intermittent one, it has a steady process of diamond grits wear at the earlier period. Polishing wear diamond grits will be in the highest flight at the later period.
引文
[1]张云电.超声加工及其应用.北京:国防工业出版社, 1999
    [2] T. B. Thoe, D. K. Aspinwall and M. L. H. Wise. Review on ultrasonic Machining. International Journal of Mechanical Tools Manufacture, 1988, 38 (4):239-255
    [3]机电工业部苏州电加工机床研究所.电加工.北京:机械工业出版社, 1988, 12:46-50
    [4] Z. J. Pei, N. Khana and P. M. Ferria. Rotary ultrasonic machining of structural ceramics - a review, Ceramic Engineering and Science Proceedings, 1995, 16(1):259-278
    [5] P. Legge. Machining without abrasive slurry. Ultrasonic, 1966, 4(7):157-162
    [6] P. Legge. Ultrasonic drilling of ceramics. Industrial Diamond Review, 1964, 24: 20-24
    [7]范国良,陈传梁.超声加工概况和未来展望,电加工, 1994, 6:7-11
    [8] K. I. Ishikawa, H. Suwabe and T. Nishide. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials, Precision Engineering, 1998, 22(4):196-205
    [9]秦华伟.旋转式超声波加工的机理研究.太原理工大学,硕士学位论文, 2001
    [10]何朝晖.微小孔旋转超声轴向振动钻削技术研究.四川大学,硕士学位论文,2004
    [11]刘殿通.超声磨削加工机床及其电源的研制.天津大学,硕士学位论文, 2001
    [12]董惠娟.超声旋转加工振动系统及加工过程控制的研究.哈尔滨工业大学,博士学位论文
    [13] A. B. E. Khairy. Assessment of some dynamic parameters for the ultrasonic machining porcess, Wear, 1990, 137(2):187-198
    [14] D. Kramer, S. Saleh, S. Ghabrial and A. Maisan. The state of the art of ultrasonic machining. Annals. CIRP, 1981, 30:107-110
    [15] M. C. Shaw. Ultrasonic grinding. Microtechnic, 1956, 10 (6): 257-265
    [16] H. L. Oh, D. Pankow and J. Finnie. The mechanism of ultrasonic machining of brittle solids. In: Proceeding of International Conference of Engine, Tokyo, PartⅡ, 1974, 109-113
    [17] M. Komaraiah, P. Narasimha and A. Reddy. Study on the influence of workpiece properties in ultrasonic machining. International Journal of Machine Tools and Manufacture, 1993, 33(3):495-505
    [18] R. Gilmore. Ultrasonic machining of ceramics. SME paper, MS90-346, 1990:12
    [19] H. Iwanek, G. Grathwohl, N. Brugger. Machining of ceramics by different methods. Ceramics Materials and Components for Engine. 1986:417-423
    [20] M. Adithan. Abrasive wear in ultrasonic drilling, Tribology International, 1983, 16(5):253-255
    [21]祝锡晶.超声绗磨在发动机缸套光整加工中的应用研究.兵工学报, 2003, 24(1):142-144
    [22] D. Prabhakar. Machining advanced ceramic materials using rotary ultrasonicmachining process. University of Illinois at Urbana-Champaign, M.S. Thesis, 1992
    [23] M. Komaraiah and P. N. Reddy. Rotary ultrasonic machining - a new cutting process and its performance. International Journal of Production Research. 1991, 29(11):2177–2187.
    [24]曹凤国,张勤俭.超声加工技术的研究现状及其发展趋势,电加工与模具, 2005, 1:25-31
    [25] V. E. Annamalai, B. L. Anantha, C.V. Gokularathaam and R. Krishnamurthy. Ultrasonic machining as an aid to ceramic etching. Deference Science Journal, 1992, 42(l):63-64
    [26] T. B. Thoe, D. K. Aspinwall and N. Killey. Combined ultrasoinc and electrical discharge machining of ceramic coated nickel alloy. Journal of Materials Processing Technology, 1999, 92(93):323-328
    [27] W. J. Rodney and E. M. Fawzy. Combined EDM and ultrasonic drilling. UK Patent GB2224684
    [28] K. P. Rajurkar, Z. Y. Wang and A. Kuppattan. Micro removal of ceramic material (Al2O3) in the precision ultrasonic machining. Precision Engineering, 1999, 23:73-8
    [29] P. Hu, J. M. Zhang, Z. J. Pei and C. Treadwell. Modeling of material removal rate in rotary ultrasonic machining-designed experiments. Journal of Materials Processing Technology, 2002, 129(1):339-344
    [30]曹凤国,翟力军,杨大勇等.从第14届国际电加工学术会议看电火花加工技术的发展趋势.电加工与模具, 2004 (5):1-6
    [31] W. S. Zhao, Z. L. Wang, S. C. Di and etal. Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. Journal of Materials Processing Technology, 2002, 120(1-2):101-106
    [32]孔庆华,杨志强.超声波加工建筑玻璃小孔的试验研究.机械科学与技术, 1996, 5(2):15-18
    [33]张勤河.超声振动钻削加工陶瓷的研究.新技术新工艺, 1997, (1):19-20
    [34]秦勇,王霖,吴春丽等.大理石的超声波加工试验研究.新技术新工艺, 2001(2):17-19
    [35]张辽远,史维明,薛航.超声复合加工玛瑙的实验研究.中国兵工论文集, 2000
    [36]邓建新,曲宝键,郭玉和等.导电Al2O3基陶瓷刀具材料的超声-放电复合加工技术研究.江苏陶瓷, 2002, 31(2):1-5
    [37]戴红娟. NdFeB烧结永磁体材料的超声加工机理.机械工程师, 2002 (8):32-33
    [38]辛志杰,刘刚.超声波振动内圆磨削.华北工学院学报, 1996, 17(2):185-188
    [39]史兴宽,康仁科,卢海鹏.内圆超声振动磨削装置的设计.磨床与磨削, 1997, (1):52-54
    [40]曲云霞.超声振动磨削对工件表面粗糙度的影响.河北工业大学学报, 1997, 26 (3):100-104
    [41]杨继先,张永宏,杨素梅等.陶瓷深孔精密高效加工的新方法-超声振动磨削.兵工学报, 1998, 119(3):287-288
    [42] P. L. Guzzo, A. A. Raslan, J. Mello. Ultrasonic abrasion for quartz crystals. Wear, 2003, 255(1-6):67-77
    [43]季远,王娜君,张德远.聚晶金刚石超声振动研磨机理研究.金刚石与磨料磨具工程, 2001, 125(5):33-36
    [44] Z. J. Pei, P. M. Kappor and S. G. Haseikorn. Rotary ultrasonic machining for face milling of ceramics. International Journal of Machine tools & Manufacture, 1995, 35(7):033-1046
    [45]赵福令,史俊才,冯冬菊等.超声铣削机床数控系统研究电加工与模具, 2001, (3):36-38
    [46]王正君,钟伟弘,于思远等.大理石超声波精雕系统.天津理工学院学报, 1998, 14(4):42-44
    [47]杨旭,裴云庆,王兆安.开关电源技术.北京:机械工业出版社, 2004
    [48]徐涛.超声波发生器电源技术的发展(上).清洗技术, 2003, (6):10-15
    [49]秦伟刚.光电耦合隔离技术与应用.仪器仪表学报, 2006, 27(3):2603-2604
    [50]肖丽仙.基于单片机和555定时器的A/D转换器设计.国外电子元器件, 2006, (12):18-20
    [51]徐泽玮.高频电源变压器的设计原则要求和程序.电源技术应用, 2003, 6(9):45-56.
    [52]郑书友,徐西鹏.超声加工中超声发生器的频率跟踪技术.计量技术, 2005, (12):10-15
    [53]卜焕章.锁相技术在超声波发生器中的应用.半导体情报, 1997, (5):53-54
    [54] S. Furuya, T. Maruhashi and M. Nakaoka. Load-adaptive frequency tracking control implementation of two-phrase resonant inverter for ultrasonic motor. IEEE Trans Power, Electron, 1992, 7(3):542-550.
    [55]陈桂生.超声换能器设计.北京:海洋出版社, 1984
    [56]林书玉.超声换能器的原理及设计.北京:科学出版社, 2004.
    [57]贾宝贤,边文凤,赵万生等.压电超声换能器的应用与发展.压电与声光, 2005, l27(2):131-135
    [58]栾桂东,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社, 2005
    [59]陈思忠.我国功率超声技术近况与应用进展,声学技术, 2002, 21(1-2):46-49
    [60]田中哲郎.压电陶瓷材料.北京:科学出版社, 1982
    [61]山东大学压电铁电物理教.压电陶瓷及其应用.济南:山东人民出版社, 1974
    [62]林仲茂.超声变幅杆的原理和设计,北京:科学出版社, 1987
    [63]郑书友,徐西鹏.二端口网络在功率超声设计中的应用.声学技术2007, 26(3):534-538
    [64]邱关源.电路.北京:高等教育出版社,1998
    [65]袁易全.近代超声原理与应用.南京:南京大学出版社, 1996
    [66]范百刚.超声原理与应用.南京:江苏科学技术出版社, 1985
    [67]黄志洵,王晓金.微波传输线理论与实用技术.北京:科学出版社, 1996
    [68] H. Banno. Acoustic load dependency of electroacoustic efficiency in the piezoelectric ultrasonic transducer and acoustical matching. Ultrasonics, 1987
    [69]俞洪沛.超声换能器研究中的几个问题.声学技术, 1990, 9(2):1-8
    [70] R. Coates, R. F. Mathams. Design of Matching Networks for Acoustic Transducers. Ultrasonics, 1988, 26(1):59-64
    [71] Z. Zhao. Broad-band Electrical Matching of Transducers for Acoustic Microscopy. Ultrasonics, 1987, 25(3):95-99
    [72]鲍善惠.用电流角分析换能器的匹配问题.声学技术, 1996, 15(4):175-17
    [73]林书玉,张福成.压电超声换能器的电端匹配电路及分析.压电与声光, 1992, 14(4):29-32
    [74]鲍善惠.压电换能器的动态匹配.应用声学, 1998, 17(2):16-20
    [75]朱武,张佳民,金长善.基于数字电感的压电换能器动态匹配的研究.应用声学, 2000, 19(2):31-34
    [76]贺西平,高洁.超声变幅杆设计方法研究.声学技术, 2006, 25(1):82-86
    [77] E. Eisner. Design of sonic amplitude transformers for high magnification. Journal of the acoustical society of America, 1963, 35(9):1367-1377
    [78] E. Morji. Ultrasonics International 89 Conference Proceeding. 1989:256-259
    [79]根本佐久良雄,森荣司.夹心扭转振动系统.日本音响学会志, 1972, (3):118-126.
    [80] S. Nemoto, E. I. Morji. Bolt-clamped electrostrictive torsional vibrator. The Journal of Acoustic of Japan, 1972 (3):118-126
    [81] Y. Watanabe. A study on a transducer-stepped type solid horn system for flexural mode ultrasonic high power transducer with one dimensional construction. Ultrasonics International 91 Conference Proceedings, 1991:435-438
    [82] Y. Watanabe, E. Mori. A study on a new flexural-mode transducer-solid horn system and its application to ultrasonic plastics welding. Ultrasonics, 1996, 34(2):235-238
    [83] E. Mori, M. Uno. Analysis of torsional vibration of a ultrasonic exponential solid horn with a tool and its design considering fatigue limit. Bulletin of the Tokyo institute of technology, 1963, 51:63-80
    [84] C. Kleesattel. Uniform stress contours for disk and ring resonators bibrating in axially symmetric radial and torsional modes. Acustica, 1968, 20:1-13
    [85]森荣司. R-L型振动变换器.日本音响学会志, 1977, 30:587-595
    [86]汪承灏.盘形聚能器设计理论.声学学报, 1979 (4):279-286
    [87] C. Andrea, L. Margaret. Enhanced vibration performance of ultrasonic block horns. Ultrasonics, 2002, 40:365-369.
    [88]林书玉,张福成.大尺寸矩形截面复合变幅杆的研究.应用声学, 1992, 11(5):34-38
    [89]林书玉.扭纵复合振动模式指数型复合超声变幅杆的研究.应用声学, 1997, 16(5):42-46
    [90]阮世勋.扭振超声变幅杆谐振参量测量方法的研究.应用声学, 1996, 15(2):17-19
    [91]阮世勋.余弦型和类余弦型超声变幅杆的研究.声学技术, 1997, 16(1):22-25
    [92]阮世勋.几种扭振复合超声变幅杆的研究.应用声学, 1998, 17(1):21-27
    [93]赵福令,冯冬菊,郭东明,方亚英.超声变幅杆的四端网络法设计.声学学报, 2002, 27(6):554-558
    [94] L. Peter. Discrete component equivalent circuit for webster’s horns. Applied Acoustics, l995, 44(2):117-124
    [95] W. P. Mason. Maximing the probability of achieving a goal in the case of a partially observed drift process. U.S. Patent: 2514080, 1945
    [96]贺西平.一端带有圆柱杆的复合纵振超声变幅杆的简明设计理论.声学技术, 1994, 13(2):85-88
    [97]高洁.复合多段式变幅杆优化设计及声学特性分析,陕西师范大学学报, 2006,34(4):44-46
    [98] E. Mori, K. Itoh, A. Imamura. Analysis of a short column vibrator by apparent elasticity method and its application. Ultrasonic International 1997 Conference Proceedings. 1977:262-266
    [99]刘国庆,杨庆东. ANSYS工程应用教程机-机械篇.北京:中国铁道出版社, 2003
    [100]盛胜我.有限元法在声学中的应用,声学技术, 1988, 7(1):34-38
    [101]张大安,诸国桢,周铁英.阶梯形变幅杆固有频率的实验研究.声学学报, 1965, 2(4):49-55
    [102]王敏惠,鲍善惠,江长青.粗细端截面比对阶梯形变幅杆谐振频率的影响.声学技术, 2004, 23(4):242-245
    [103]王敏慧.阶梯形变幅杆的有限元仿真及其在局部共振研究中的应用.陕西师范大学,硕士学位论文, 2005
    [104]范国良,应崇福,林仲茂等.一种新型的超声加工深小孔的工具系统.应用声学, 1982, 1(1):2-7
    [105]王助成,邵敏著.有限单元法基本原理和数值方法.北京:清华大学出版社, 1997
    [106]温熙森等.机械系统建模与动态分析.北京:科学出版社, 2004
    [107]陈晓霞. ANSYS7.0高级分析.北京:机械工业出版社, 2004
    [108]饶振纲,王勇卫.滚珠丝杆副及自锁装置.北京:国防工业出版社, 1990
    [109] http://www.thksh.com/thk/20060228113017.shtml
    [110]成大先.机械设计手册(单行本)轴承,北京:化学工业出版社, 2004
    [111]张琛.直流无刷电动机原理及应用.北京:机械工业出版社,1996
    [112]谭建成.电机控制专用集成电路.北京:机械工业出版社,1997
    [113] IR2110. Datamanual. Motorola
    [114]曾伟民.旋转超声钻削先进陶瓷的基础研究.华侨大学,博士学位论文, 2006
    [115] M. Komaraiah and P. N. Reddy. Relative performance of tool materials in ultrasonic machining. Wear, 1993, 161(1-2):1-10
    [116]蔡美良,丁惠麟,孟沪龙.新编工模具钢金相热处理.北京:机械工业出版社, 1998
    [117]张明铎,牛勇,任金莲.超声振动器件的内耗发热.压电与声光, 2006, 24 (3):205-207
    [118]邵红红,陈光.合金钢超声工具头超声疲劳寿命研究.农业机械学报, 2004, 35(4):185-188
    [119] W. M. Zeng, Z. C. Li, X. P. Xu, Z .J. Pei, J.D. Liu and J. Pi. Experimental investigation of intermittent rotary ultrasonic machining, Key Engineering Materials, 2008, 359-360:425-430
    [120]李远.花岗石超大切深锯切机理和技术研究.华侨大学,博士学位论文, 2004
    [121]王秦生.超硬材料电镀制品.北京:中国建材工业出版社, 1999
    [122]苏宏华,徐鸿钧,傅玉灿,肖冰.多层烧结超硬磨料工具现状综述与未来发展构想.机械工程学报, 2005, 41(3):12-17
    [123] A. K. Chattopadhyay, L. Chollet, H. E. Hintermann. On Performance of Brazed Bonded monolayer diamond grinding wheel. Annals of the CIRP, 1991, 40(1):347-350
    [124] M. Kubota, Y. Tamura, N. Shimamura. Ultrasonic machining with a diamond impregnated tool. Bulletion of Japanese Society of Recess Engine, 1977, 11(3):127-132
    [125] D. Prabhakar and M. Haselkorn. An experimental investigation of material removal rates in rotary ultrasonic machining. Trans of the North American Manufacturing Research Institution of SME, 1996, (3):211-218.
    [126] R. Singh and J. S. Khamba. Ultrasonic machining of titanium and its alloys: A review. Journal of Materials Processing Technology, 2006, 173(2):125-135
    [127] K. Li, T. W. Liao, L. J. O'Rourke and S. B. Mcspadden. Wear of diamond wheels in creep-feed grinding of ceramic materials II. effects on process responses and strength. Wear, 1997, 211(1):104-112
    [128]徐西鹏.岩石材料的金刚石锯切研究进展.机械工程学报, 2003, 39(9):17-22.
    [129] M. W. Bailey. Sawing in the stone and civil engineering industries. Industrial Diamond Review, 1979, 39(2):56-60
    [130] A. G. Mamalis, R. Schulze and H. K Tnshoff. The slotting of blocks of hard rock with adiamond segmented circular sawblade. Industrial Diamond Review, 1979, 39(10):356-365
    [131] S. Y. Luo. Characteristics of diamond sawblade wear in sawing.International Journal of Machine Tools& Manufacture,1996, 36(6):661-672
    [132]于怡青,李远,徐西鹏.建材加工用孕镶金刚石工具的磨损与控制.同济大学学报, 2001, 29(9):1072-1076
    [133]徐西鹏,沈剑云,黄辉.锯切花岗石过程中金刚石节块磨损特征及影响因素分析.摩擦学学报, 1998, 18(2):162-166
    [134]徐西鹏,沈剑云,黄辉.实现花岗石高效锯切的关键因素分析.机械工程学报, 1998, 34(1):104-11
    [135]黄辉,詹友基,徐西鹏.磨削花岗石过程中钎焊金刚石磨损特征分析.摩擦学学报, 2007, 27(3):279-283
    [136]黄国钦.钎焊金刚石串珠绳的制作及其锯切过程研究.华侨大学,硕士毕业论文, 2006
    [137] P.G. Petruka et al. Ultrasonic diamond drilling of deep holes in brittle materials. Russian Engineering Journal, 1970, 50(10): 70-74
    [138] W. M. Zeng, Z. C. Li, Z. J. Pei and C. Treadwell. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. International Journal of Machine Tools and Manufacture, 2005, 45(12-13):1468-1473
    [139]徐西鹏,沈剑云,黄辉,骆灿彬.花岗石加工用金刚石-金属复合材料磨损机理研究.复合材料学报, 1998, 15(1):101-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700