用户名: 密码: 验证码:
海洋硫酸半乳聚糖特异性降解、寡糖和糖脂的制备与序列分析及其寡糖芯片的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以几种海洋硫酸半乳聚糖为研究对象,采用酸法和自由基氧化法和现代色谱分离技术获得了120种寡糖,通过还原胺化方法制备了30种拟糖脂生物探针,并运用生物质谱技术确定了它们的结构序列。
     首先,运用电喷雾碰撞诱导串联质谱(ES-CID-MS/MS)技术,分析了14种不同结构特征的具有代表性的卡拉胶寡糖的序列,总结了不同寡糖在质谱分析中产生的糖基碎片信息,发现并成功解决了硫酸寡糖质谱分析中硫酸根易脱落的问题,找到了不同结构的寡糖二级质谱碎片离子的断裂规律,从理论上解释了产生特殊离子碎片的原因,最终建立了硫酸半乳寡糖微量序列分析的质谱学方法。这些规律同样适用于其它硫酸寡糖序列分析。所建立的微量寡糖序列分析方法为卡拉胶类寡糖的构效关系研究提供了重要技术支持。
     以κ-、ι-和λ-卡拉胶、琼胶和脱硫λ-卡拉胶为原料,采用温和稀酸降解法制备了系列寡糖并用ES-CID-MS/MS技术确定了其序列。获得了90个寡糖单体,其中40种寡糖单体为首次报道。从位阻效应和环张力效应出发,以特异酸解条件制备了聚合度3~19的κ-卡拉胶奇数硫酸寡糖和聚合度3~19的琼胶奇数寡糖;根据3,6-内醚半乳糖的酸不稳定性,进而选用了还原性弱酸降解制备了聚合度2~24的κ-卡拉胶偶数硫酸寡糖醇与2~20的偶数琼胶寡糖醇系列寡糖;根据C2位硫酸基拉电子诱导效应及稀酸对α-1,3和β-1,4糖苷键水解选择性的差异,制备了聚合度2~20的ι-卡拉胶偶数硫酸寡糖及其糖醇,本技术具有拟α-琼胶酶和α-卡拉胶酶特异性降解特点,但却制备了结构不同于酶法制备的寡糖化合物,其成本又远低于生物酶法。含有3,6-内醚半乳糖的多糖易被稀无机酸和有机酸以及固体酸如各种酸性阳离子交换树脂降解而得到全部为奇数的罕见降解结果,在大量实验数据的基础上,首次阐明了这种能够特异性获得奇数寡糖的降解机理。
     在上述降解机理的指导下,以一种红藻多糖为原料,采用分步降解法制备了14种杂合寡糖并确定了它们的序列,为复杂红藻多糖的结构研究提供了方法学参考。此外,进一步评价了系列杂合硫酸半乳寡糖对血管紧张素转化酶(ACE)和β-分泌酶(BACE)抑制活性,结果显示:在648μg/mL下,组分M4具有一定抑制ACE活性,抑制率为10.4%,具有弱降压活性;在100μg/mL下,低分子量组分M1,M2和M3抑制BACE分别为42.5%,31.1%和47.6%,表明具有一定抗老年痴呆活性,但高分子量组分则无活性。该结果为从事其它硫酸半乳寡糖构效关系的研究、生物活性评价提供了基础。
     在对硫酸半乳多糖的自由基氧化降解实验中,采用正交实验设计法确定了自由基降解的最佳条件,获得了系列自由基降解产物,并通过质谱技术成功分析了复杂产物中的寡糖结构。实验结果表明,自由基降解是一种非特异性的降解方法,所得寡糖结构复杂,这为获得结构丰富多样且新颖的寡糖提供了有效方法。此外,通过对产物的分析发现,该方法没有硫酸根的脱落问题,能够较好的保留多糖分子中的硫酸酯基团,有利于某些生物活性的评价。通过此降解方法获得了3个系列30多种寡糖和杂合硫酸半乳寡糖组分,首次获得了结构新颖的κ-和ι-卡拉胶寡糖酸。
     为了深入研究寡糖与蛋白相互作用,快速筛选活性寡糖化合物,利用上述寡糖为原料,进一步采用还原氨胺化技术探讨了拟糖脂生物探针的合成,获得了30种拟糖脂,并运用生物质谱技术确定了它们的结构。这些寡糖脂为糖芯片的构建,以及进一步从事寡糖与蛋白之间的相互作用研究提供了基础。
     综上所述,本文以多种硫酸半乳寡糖为研究对象,系统建立了一种微量简便的生物质谱学方法,该方法能确定各种硫酸半乳寡糖的序列,并在对寡糖产物结构的序列分析的基础上,深入探讨了化学降解多糖的机理,创建了以化学手段进行可控、定向降解、规模化制备奇数与偶数卡拉胶寡糖方法。在此基础上,运用还原胺化法将系列寡糖合成了拟糖脂生物探针,为海洋硫酸寡糖芯片的建立和海洋糖药物的开发提供了理论与技术支持。
In the thesis, one hundred and twenty oligosacchandes were obtained fromseveral marine-derived sulfated galactans by mild acid hydrolysis and free-radicaloxidative degradation with modern chromatographic separation and purificationtechniques, and thirty neoglycolipids prepared by a reductive animation reaction.Their sequences and structures were determined by advanced mass spectrometry.
     Negative-ion electrospray tandem mass spectrometry with collision induceddissociation (ES-CID-MS/MS) was established for sequence determination ofmultiply sulfated carrageenan oligosaccharide fragments using twelve representativeoligosaccharides with different structural features. Carrageenan oligosaccharides withhomogeneous disaccharide-compositions were used to establish their fragmentationpattern which was then applied to sequence determination of unusual oligosaccharides.All sugar fragments of different oligosaccharide were collected and compared. Ashydrogen form of sulfate groups are labile and easily lost during collision-inducedassociation, we change all sulfated oligos to sodium form,and solved the big problemof sulfate-group existed in mother-ion unstable during MS/MS analysis. Theproduct-ion spectra of [M-Na]-feature an extensive series of B- and C-type glycosidiccleavages whereas the Y-type cleavage occurs mainly at the sulfated residues. Theprinciples established here was readily applicable to other types of sulfatedoligosaccharides. The analysis method for sequence determination established byES-CID-MS/MS provide a basis for the deep study on structure-function relationshipsof sulfated-oligosaccharides.
     Nine series of oligosaccharides were obtained fromκ-,ι-,λ-carrageenan andagarose by mild acid hydrolysis, whose sequences were determined by ES-CID-MS/MS. Eighty oligosaccharides were determined, and forty oligosaccharides werefirstly reported. Considering that the steric effect and ring tension, series ofodd-numberedκ-carrageenan oligosaccharides with degree of polymerization (dp) of3-25, and odd-number agar-oligosaccharides with dp3-17 were prepared from mildacid hydrolysis. Based on the reagional selection, and the liability of 3,6-anhydro-galatose,(AnG) even-numberκ-carra-oligosaccharide alcohol with dp2-24, andeven-number agar-oligosaccharides with dp 2-20, were prapared with reductive mildacid hydrolysis. Based on the effect of sulfate-group at C2 of AnG and selectedhydrolysis toβ-1,4-andα-1,3-glycosidic bond, series of even-numbered iota-carra-oligosaccharideswith dp2-20 and their alditols with dp2-20 were prepared by mildacid hydrolysis. The hydrolysis specificity is similar toα-agarase andα-carrageenase,but the cost is far lower than that of enzyme, especially for the structure ofoligosaccharides obtained are different from enzyme hydrolysate. The 3,6-anhydro-galactosecontaing polysaccharides can not only be hydrolyzed by inorganic acid, canalso hydrolyzed by other varies organic and strong-cation exchange resin. Thus, wepropose the point of view thatκ-carrageean and agarose can only get odd-numberoligosaccharide by mild acid hydrolysis, and iota-carrageenan can get even-numberoligosaccharide under the similar condition.
     Under the guidance of hydrolysis mechanism, fourteen hydride oligosaccharideswere obtained from FB1, a polysaccharide from red alga Furcellaria lumbricalis, bystep mild acid hydrolysis, and their structural sequence were also determined by massspectrometry technique. The results provide a good methodological reference for thestudy on structure of complex polysaccharides from red alga. Furthermore, theangiotensin-converting enzyme (ACE) inhibition, immunomudulation andβ-Secretase(BACE) inhibition activities of the low-molecular-weight hydride oligosaccharidesmixture fractions were evaluated in vitro. The result shows that fraction M4 has weakactivity in ACE inhibition assay, with the inhibition rate 10.4% at the testconcentration (648μg/mL). The lower molecular weight fractions M1, M2 and M3 appear to have certain activities in anti-Alzheimer's disease assay, withβ-Secretaseinhibition rate 42.5%, 31.1% and 47.6% at the test concentration (100μg/mL),respectively. The higher molecular weight oligosaccharides fractions M4-M6 are noactive. These data provide a basis for the deep study on structure-function relation-shipsand bioassays of other sulfated galactans.
     The optimization conditions of free-radical degradation of carrageenan wereestablished on the basis of the systematical orthogonal experiment. Series ofoligosaccharides were obtained by free-radical degradation, whose structures wereanalyzed successfully by mass spectrometry technique. The result shows that thefree-radical degradation is a non-specificity hydrolytic method. Some novel structuresof oligosacchardes were acquired from the complex hydrolysate by low pressure gelpermeation chromatography. Under free-radical degradation, all sulfated groups werereserved and the reducing ends of part of oligosaccharides were being oxidized.Especially, the AnG at the reducing end was easily oxidized and part of hemiacetalwas changed to carboxyl group. Their degree of polymerization and structuralcharacterizations were determined by high-sensitivity electrospray ionization tandemmass spectrometry (ESI-MS) techniques. Those novel structures of oxidizedκ-carrageean were firstly reported. The tyrosine kinase inhibition activities of theoligosaccharides were evaluated in vitro. The results show that YB5 will be developedas potential anti-tumor drugs with nhibition rate 90% at the test concentration.
     In order to deeply study on oligosaccharides-protein relationship and screeningbioactivities of oligosaccharides, thirty neoglycolipids were obtained from by areductive animation reaction and their sequence and structure were identified withESI-CID-MS/MS technique. The results provide a good reference for synthesis ofsulfated-neoglycolipids, and importantly, a basis for the preparation of theoligosaccharide-chip and the deep study on oligosaccharide-protein interactions.
     In summary, a method for the determination of sequence of sulfated oligosaccharidesby MS in this thesis. Base on this technique, deeply study on themechanism of mild acid hydrolysis of galactan polysaccharides with highly ordereddisaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. Furthermore, thirty neoglycolipids were synthesized for glycomicroarryanalysis.
引文
[1] Bertozzi CR, Kiessling LL. Chemical glycobiology. Science, 2001, 291(5512):2357-2364.
    [2] Potin P, Bouarab K, Salaun JP, et al. Biotic interactions of marine algae. Curr Opin Plant Biol, 2002, 5(4):308-317.
    [3] Carpita N, McCann M, Griffing LR. The plant extracellular matrix: news from the cell's frontier. Plant Cell, 1996, 8(9): 1451-1463.
    [4] Durand G, Seta N. Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin Chem, 2000, 46(6 Pt 1):795-805.
    [5] Ghosh T, Chattopadhyay K, Marschall M, et al. Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology, 2009, 19(1):2-15.
    [6] Melo FR, Pereira MS, Monteiro RQ, et al. Sulfated galactan is a catalyst of antithrombin-mediated inactivation of alpha-thrombin. Biochimica et Biophysica Acta 2008, 1780(9):1047-1053.
    [7] Kim MH, Joo HG. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol Lett, 2008, 115(2): 138-143.
    [8] McCarthy B. Antivirals-an increasingly healthy investment. Nat Biotechnol, 2007, 25(12): 1390-1393.
    [9] Zhang C, Yang F, Zhang XW, et al. Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells. Br J Pharmacol, 2006, 148(6):741-751.
    [10] Umemura K, Yanase K, Suzuki M, et al. Inhibition of DNA topoisomerases Ⅰ and Ⅱ, and growth inhibition of human cancer cell lines by a marine microalgal polysaccharide. Biochem Pharmacol, 2003, 66(3):481-487.
    [11] Sathivel A, Raghavendran HR, Srinivasan P, et al. Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on D-Galactosamine induced hepatitis in rats. Food Chem Toxicol, 2008, 46(10):3262-3267.
    [12] Lins KO, Bezerra DP, Alves AP, et al. Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J Appl Toxicol, 2008.
    [13] Josephine A, Nithya K, Amudha G, et al. Role of sulphated polysaccharides from Sargassum Wightii in Cyclosporine A-induced oxidative liver injury in rats. BMC Pharmacol, 2008, 8:4.
    [14] Roberts JN, Buck CB, Thompson CD, et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med, 2007, 13(7):857-861.
    [15] Melo FR, Pereira MS, Foguel D, et al. Antithrombin-mediated anticoagulant activity of sulfated polysaccharides: different mechanisms for heparin and sulfated galactans. J Biol Chem, 2004, 279(20):20824-20835.
    [16] 刘莺,刘新,牛筛龙.海洋生物活性多糖的研究进展.医药导报,2006,10.
    [17] Sogawa K, Yamada T, Muramatsu Y, et al. Decrease of nuclear protein phosphatase 1 activity and induction of mitotic arrest and apoptosis by a marine microalgal polysaccharide in human myeloid leukemia U937 cells. Res Commun Mol Pathol Pharmacol, 1998, 99(3):267-282.
    [18] Matsuda M, Yamori T, Naitoh M, et al. Structural revision of sulfated polysaccharide B-1 isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines. Mar Biotechnol (NY), 2003, 5(1):13-19.
    [19] Radic T, Ivancic I, Fuks D, et al. Marine bacterioplankton production of polysaccharidic and proteinaceous particles under different nutrient regimes. FEMS Microbiol Ecol, 2006, 58(3):333-342.
    [20] Meiyu G, Fuchuan L, Xianliang X, et al. The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entry. Interaction between SPMG and HIV- 1 rgp120 and CD4 molecule. Antiviral Res, 2003, 59(2):127-135.
    [21] 胡文祥,王来曦.多糖及其衍生物的医药研究.科学(中文版),1994,3:4-8.
    [22] Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curt Med Chem, 2004, 11(18):2399-2419.
    [23] Mao W, Li H, Li Y, et al. Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta). Int J Biol Macromol, 2009,44(1):70-74.
    [24] Wang S, Cheng Y, Wang F, et al. Inhibition activity of sulfated polysaccharide of Sepiella maindroni ink on matrix metalloproteinase (MMP)-2. Biomed Pharmacother, 2008,62(5):297-302.
    [25] Pinna D, Oreste P, Coradin T, et al. Inhibition of herpes simplex virus types 1 and 2 in vitro infection by sulfated derivatives of Escherichia coli K5 polysaccharide. Antimicrob Agents Chemother, 2008,52(9):3078-3084.
    [26] Hidari KI, Takahashi N, Arihara M, et al. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem Biophys Res Commun, 2008,376(l):91-95.
    [27] Athukorala Y, Jung WK, Park PJ, et al. Evaluation of biomolecular interactions of sulfated polysaccharide isolated from Grateloupia filicina on blood coagulation factors. J Microbiol Biotechnol, 2008,18(3):503-511.
    [28] Gillet L, Colaco S, Stevenson PG The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. PLoS ONE, 2008,3(2):el669.
    [29] Buczek-Thomas JA, Hsia E, Rich CB, et al. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem, 2008,105(l):108-120.
    [30] Lujan TJ, Underwood CJ, Jacobs NT, et al. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J Appl Physiol, 2009,106(2):423-431.
    [31] Wang QG, El Haj AJ, Kuiper NJ. Glycosaminoglycans in the pericellular matrix of chondrons and chondrocytes. J Anat, 2008,213(3):266-273.
    [32] Soler R, Bruschini H, Truzzi JC, et al. Urinary glycosaminoglycans excretion and the effect of dimethyl sulfoxide in an experimental model of non-bacterial cystitis. Int Braz J Urol, 2008,34(4):503-511; discussion 511.
    [33] Zhang F, Zhang Z, Thistle R, et al. Structural characterization of glycosaminoglycans from zebrafish in different ages. Glycoconj J, 2009,26(2):211-218.
    [34] Chomel C, Cazes A, Faye C, et al. Interaction of the coiled-coil domain with glycosaminoglycans protects angiopoietin-like 4 from proteolysis and regulates its antiangiogenic activity. Faseb J, 2009,23(3):940-949.
    [35] Thammawat S, Sadlon TA, Hallsworth PG, et al. Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection. J Virol, 2008,82(23):11767-11774.
    [36] Monzavi-Karbassi B, Stanley JS, Hennings L, et al. Chondroitin sulfate glycosaminoglycans as major P-selectin ligands on metastatic breast cancer cell lines. Int J Cancer, 2007,120(6): 1179-1191.
    [37] Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol, 2008,10(l):122-133.
    [38] Kuleshova ON, Zaidman AM, Korel AV. Glycosaminoglycans of the trabecular meshwork of the eye in primary juvenile glaucoma. Bull Exp Biol Med, 2007,143(3):381-384.
    [39] Chatzinikolaou G, Nikitovic D, Stathopoulos EN, et al. Protein tyrosine kinase and estrogen receptor-dependent pathways regulate the synthesis and distribution of glycosaminoglycans/ proteoglycans produced by two human colon cancer cell lines. Anticancer Res, 2007,27(6B):4101-4106.
    [40] Ziegler A. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev, 2008, 60(4-5):580-597.
    [41] Gobet M, Mouaddab M, Cayot N, et al. The effect of salt content on the structure of iota-carrageenan systems: (23)Na DQF NMR and rheological studies. Magn Reson Chem,2009,47(4):307-312.
    [42] Arnott S, Scott WE, Rees DA, et al. Iota-carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibres of divalent cation salts. J Mol Biol, 1974,90(2):253-267.
    [43] Penman A, Rees DA. Carrageenans. IX. Methylation analysis of galactan sulphates from Furcellaria fastigiata, Gigartina canaliculata, Gigartina chamissoi, Gigartina atropurpurea,Ahnfeltia durvillaei, Gymnogongrus furcellatus, Eucheuma isiforme, Eucheuma uncinatum, Aghardhiella tenera, Pachymenia hymantophora, and Gloiopeltis cervicornis.Structure of xi-carrageenan. J Chem Soc [Perkin 1], 1973,19:2182-2187.
    [44] Anderson NS, Dolan TC, Rees DA. Carrageenans. VII. Polysaccharides from Eucheuma spinosum and Eucheuma cottonii. The covalent structure of L-carrageenan. J Chem Soc [Perkin 1],1973,19:2173-2176.
    [45] Chana A, Tromelin A, Andriot I, et al. Flavor release from i-carrageenan matrix: a quantitative structure-property relationships approach. J Agric Food Chem, 2006,54(10):3679-3685.
    [46] Alizadeh-Pasdar N, Nakai S, Li-Chan EC. Principal component similarity analysis of Raman spectra to study the effects of pH, heating, and kappa-carrageenan on whey protein structure. J Agric Food Chem, 2002,50(21):6042-6052.
    [47] Meunier V, Nicolai T, Durand D. Structure of aggregating kappa-carrageenan fractions studied by light scattering. Int J Biol Macromol, 2001,28(2): 157-165.
    [48] Borgstrom J, Piculell L, Viebke C, et al. On the structure of aggregated kappa-carrageenan helices. A study by cryo-TEM, optical rotation and viscometry. Int J Biol Macromol, 1996,18(3):223-229.
    [49] Liners F, Helbert W, Van Cutsem P. Production and characterization of a phage-display recombinant antibody against carrageenans: evidence for the recognition of a secondary structure of carrageenan chains present in red algae tissues. Glycobiology, 2005,15(9):849-860.
    [50] Beck GM, Neau SH, Holder AJ, et al. Evaluation of quantitative structure property relationships necessary for enantioresolution with lambda- and sulfobutylether lambda-carrageenan in capillary electrophoresis. Chirality, 2000,12(9):688-696.
    [51] Janaswamy S, Chandrasekaran R. Heterogeneity in iota-carrageenan molecular structure: insights for polymorph II-->III transition in the presence of calcium ions. Carbohydr Res,2008,343(2):364-373.
    [52] Janaswamy S, Chandrasekaran R. Three-dimensional structure of the sodium salt of iota-carrageenan. Carbohydr Res, 2001,335(3): 181-194.
    [53] De Ruiter GA, Rudolph B. Carrageenan biotechnology. Trends Food Sci Technol, 1997,8:389-395.
    [54] Choi J, Lee KT, Jung H, et al. Anti-rheumatoid arthritis effect of the Kochia scoparia fruits and activity comparison of momordin lc, its prosapogenin and sapogenin. Arch Pharm Res, 2002, 25(3):336-342.
    [55] Choi J, Jung HJ, Lee KT, et al. Antinociceptive and anti-inflammatory effects of the saponin and sapogenins obtained from the stem of Akebia quinata. J Med Food, 2005, 8(1):78-85.
    [56] Zhou G, Sheng W, Yao W, et al. Effect of low molecular lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res, 2006, 53(2):129-134.
    [57] 李翊,王海青.卡拉胶寡糖对放射损伤小鼠T细胞功能和亚型的影响.中华放射医学与防护杂志,2005,25(1):41-42.
    [58] 王长云,管华诗.多糖抗病毒作用进展Ⅲ,卡拉胶及其抗病毒作用.生物工程进展,2000,20:39-42.
    [59] 王长云,管华诗.多糖抗病毒作用研究进展Ⅰ.多糖抗病毒作用.生物工程进展,2000,20:39-42.
    [60] 梁勇,李涛.一种潜在的药用多糖-卡拉胶.山东医药工业,1998,17:18-19.
    [61] Buck CB, Thompson CD, Roberts JN, et al. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog, 2006, 2(7):e69 0671-0680.
    [62] Carlucci MJ, Scolaro LA, Noseda MD, et al. Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antiviral Research, 2004, 64(2): 137-141.
    [63] 孙兵,张罗修.硒化卡拉胶对小鼠HC50和T细胞亚群的影响.上海医科大学学报,1993.20:112-113.
    [64] 孟凡玲,罗亮,宁辉,et al.κ-卡拉胶研究进展.高分子通报,2003,5(49-56).
    [65] 胡亚军,依林.硒卡拉胶减低顺铂肾毒性的临床研究.中国新药杂志,1997,6:349-351.
    [66] 张罗修,贾永锋,干翠宝,et al.κ-硒化卡拉胶对免疫抑制小鼠淋巴细胞增殖及抗体形成细胞的影响.药学学报,1993,28:614-618.
    [67] 迟连利,RobertJ.Linhardt.κ-卡拉胶五糖的制备及结构研究.中国海洋药物 2002,21(3):21-27.
    [68] Sarwar G, Matayoshi S, Oda H. Purification of a kappa-carrageenase from marine Cytophaga species. Microbiol Immunol, 1987, 31(9):869-877.
    [69] Yu G, Guan H, loanoviciu AS, et al. Structural studies on kappa-carrageenan derived oligosaccharides. Carbohydr Res, 2002, 337(5):433-440.
    [70] Stevenson TT, Furneaux RH. Chemical methods for the analysis of sulphated galactans from red algae. Carbohydr Res, 1991, 210:277-298.
    [71] Estevez JM, Ciancia M, Cerezo AS. The system of low-molecular-weight carrageenans and agaroids from the room-temperature-extracted fraction of Kappaphycus alvarezii. Carbohydr Res, 2000, 325(4):287-299.
    [72] Guibet M, Colin S, Barbeyron T, et al. Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochem J, 2007, 404(1): 105-114.
    [73] Smith DB, Cook WH, Neal JL. Physical studies on carrageenin and carragenin fractions. Arch Biochem, 1954, 53(1): 192-204.
    [74] 于广利.系列硫酸寡糖的制备及其结构与系列分析:[博士学位论文].2004.
    [75] Dwek RA. Glycobiology: more functions for oligosaccharides. Science, 1995, 269(5228):1234-1235.
    [76] Leonard R, Strasser R, Altmann F. Plant glycosidases acting on protein-linked oligosaccharides. Phytochemistry, 2009, 70(3):318-324.
    [77] Nishikawa A, Gregory W, Frenz J, et al. The phosphorylation of bovine DNase Ⅰ Asn-linked oligosaccharides is dependent on specific lysine and arginine residues. J Biol Chem, 1997, 272(31): 19408-19412.
    [78] Qasba PK, Balaji PV, Rao VS. Molecular dynamics simulations of oligosaccharides and their conformation in the crystal structure of lectin-carbohydrate complex: importance of the torsion angle psi for the orientation of alpha 1,6-arm. Glycobiology, 1994, 4(6):805-815.
    [79] Lauder RM, Huckerby TN, Nieduszynski IA. A fingerprinting method for chondroitin/dermatan sulfate and hyaluronan oligosaccharides. Glycobiology, 2000, 10(4):393-401.
    [80] Callewaert N, Geysens S, Molemans F, et al. Ultrasensitive profiling and sequencing of N-linked oligosaccharides using standard DNA-sequencing equipment. Glycobiology, 2001, 11(4):275-281.
    [81] Miura M, Hirose M, Miwa T, et al. Cloning and characterization in Pichia pastoris of PNO1 gene required for phosphomannosylation of N-linked oligosaccharides. Gene, 2004, 324:129-137.
    [82] Palcic MM. Biocatalytic synthesis of oligosaccharides. Curr Opin Biotechnol, 1999,10(6):616-624.
    [83] Codee JD, Krock L, Castagner B, et al. Automated solid-phase synthesis of protected oligosaccharides containing beta-mannosidic linkages. Chemistry, 2008,14(13):3987-3994.
    [84] Giordano A, Andreotti G, Tramice A, et al. Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnol J, 2006,1(5):511-530.
    [85] Nahalka J, Shao J, Gemeiner P. Oligosaccharides, neoglycoproteins and humanized plastics: their biocatalytic synthesis and possible medical applications. Biotechnol Appl Biochem, 2007, 46(Pt 1):1-12.
    [86] Hayes GR, Williams AM, Lucas JJ, et al. Structure of human transferrin receptor oligosaccharides: conservation of site-specific processing. Biochemistry, 1997,36(17):5276-5284.
    [87] Carr SA, Huddleston MJ, Bean MF. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry.Protein Sci, 1993,2(2): 183-196.
    [88] Sasaki A. Isolation and characterization of serologically active phosphatidylinositol oligomannosides of Mycobacterium tuberculosis. J Biochem, 1975,78(3):547-554.
    [89] Mischnick P, Evers B, Thiem J. Analysis of oligosaccharides containing 2-deoxy-alpha-D-arabino-hexosyl residues by the reductive-cleavage method. Carbohydr Res, 1994,264(2):293-304.
    [90] Anumula KR, Taylor PB. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal Biochem, 1992,203(l):101-108.
    [91] Grdadolnik J, Hadzi D. FT infrared and Raman investigation of saccharide-phosphatidylcholine interactions using novel structure probes. Spectrochim Acta A Mol Biomol Spectrosc, 1998, 54A(12): 1989-2000.
    [92] Wolff JJ, Laremore TN, Busch AM, et al. Electron detachment dissociation of dermatan sulfate oligosaccharides. J Am Soc Mass Spectrom, 2008, 19(2):294-304.
    [93] Kacurakova M, Mathlouthi M. FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydr Res, 1996,284(2): 145-157.
    [94] Surewicz WK, Leddy JJ, Mantsch HH. Structure, stability, and receptor interaction of cholera toxin as studied by Fourier-transform infrared spectroscopy. Biochemistry, 1990,29(35):8106-8111.
    [95] Powell DA, Turula V, de Haseth JA, et al. Sulfate detection in glycoprotein-derived oligosaccharides by artificial neural network analysis of Fourier-transform infrared spectra. Anal Biochem, 1994,220(l):20-27.
    [96] Lucka AW, Kilgore BR, Patel R, et al. Mass spectrometry and HPLC with fluorescent detection-based orthogonal approaches to characterize N-linked oligosaccharides of recombinant monoclonal antibodies. Methods Mol Biol, 2008, 446:347-361.
    [97] Kilgore BR, Lucka AW, Patel R, et al. Comparability and monitoring immunogenic N-linked oligosaccharides from recombinant monoclonal antibodies from two different cell lines using HPLC with fluorescence detection arid mass spectrometry. Methods Mol Biol, 2008,446:333-346.
    [98] Shilova NV, Galanina OE, Rubina AY, et al. 2-Aminopyridine-a label for bridging of oligosaccharides HPLC profiling and glycoarray printing. Glycoconj J, 2008,25(1): 11-14.
    [99] Manzi AE, Hayes BK. HPLC methods for the fractionation and analysis of negatively charged oligosaccharides and gangliosides. Curr Protoc Mol Biol, 2001, Chapter 17:Unitl7 21A.
    [100] Lo-Guidice JM, Lhermitte M. HPLC of oligosaccharides in glycobiology. Biomed Chromatogr, 1996,10(6):290-296.
    [101] He Z, Aristoteli LP, Kritharides L, et al. HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation. Biochem Biophys Res Commun,2006,343(2):496-503.
    [102] Volpi N. On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers. Anal Chem, 2007, 79(16):6390-6397.
    [103] Albrecht S, van Muiswinkel GC, Schols HA, et al. Introducing Capillary Electrophoresis with Laser-Induced Fluorescence Detection (CE-LIF) for the Characterization of Konjac Glucomannan Oligosaccharides and Their in Vitro Fermentation Behavior. J Agric Food Chem, 2009.
    [104] Fermas S, Gonnet F, Sutton A, et al. Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology, 2008,18(12):1054-1064.
    [105] Tseng HM, Gattolin S, Pritchard J, et al. Analysis of mono-, di- and oligosaccharides by CE using a two-stage derivatization method and LIF detection. Electrophoresis, 2009.
    [106] Min JZ, Toyo'oka T, Kato M, et al. Resolution of N-linked oligosaccharides in glycoproteins based upon transglycosylation reaction by CE-TOF-MS. Chem Commun (Camb), 2005(27):3484-3486.
    [107] Ogawa K, Ikeda Y, Umemura K. NMR Analyses of Oligosaccharides from a New Water-absorbing Polysaccharide Produced by the Family Oxalobacteraceae. Yakugaku Zasshi,2009,129(4):503-512.
    [108] Martin-Pastor M, Canales-Mayordomo A, Jimenez-Barbero J. NMR experiments for the measurement of proton-proton and carbon-carbon residual dipolar couplings in uniformly labelled oligosaccharides. J Biomol NMR, 2003,26(4):345-353.
    [109] Guerrini M, Raman R, Venkataraman G, et al. A novel computational approach to integrate NMR spectroscopy and capillary electrophoresis for structure assignment of heparin and heparan sulfate oligosaccharides. Glycobiology, 2002,12(11):713-719.
    [110] Guibet M, Kervarec N, Genicot S, et al. Complete assignment of 1H and 13C NMR spectra of Gigartina skottsbergii Iambda-carrageenan using carrabiose oligosaccharides prepared by enzymatic hydrolysis. Carbohydr Res, 2006,341(11): 1859-1869.
    [111] Korir AK, Almeida VK, Malkin DS, et al. Separation and analysis of nanomole quantities of heparin oligosaccharides using on-line capillary isotachophoresis coupled with NMR detection. Anal Chem, 2005, 77(18):5998-6003.
    [112] Korir AK, Larive CK. On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR. Anal Bioanal Chem,2007,388(8): 1707-1716.
    [113] Zhang Y, Iwamoto T, Radke G, et al. On-target derivatization of keratan sulfate oligosaccharides with pyrenebutyric acid hydrazide for MALDI-TOF/TOF-MS. J Mass Spectrom, 2008, 43(6):765-772.
    [114] Hsu J, Chang SJ, Franz AH. MALDI-TOF and ESI-MS analysis of oligosaccharides labeled with a new multifunctional oligosaccharide tag. J Am Soc Mass Spectrom, 2006,17(2):194-204.
    [115] Chai W, Piskarev V, Lawson AM. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J Am Soc Mass Spectrom,2002,13(6):670-679.
    [116] Pabst M, Altmann F. Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides.Anal Chem, 2008,80(19):7534-7542.
    [117] Lewandrowski U, Resemann A, Sickmann A. Laser-induced dissociation/high-energy collision-induced dissociation fragmentation using MALDI-TOF/TOF-MS instrumentation for the analysis of neutral and acidic oligosaccharides. Anal Chem, 2005,77(10):3274-3283.
    [118] Laremore TN, Zhang F, Linhardt RJ. Ionic liquid matrix for direct UV-MALDI-TOF-MS analysis of dermatan sulfate and chondroitin sulfate oligosaccharides. Anal Chem, 2007,79(4): 1604-1610.
    [119] Fukuyama Y, Nakaya S, Yamazaki Y, et al. Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal Chem, 2008, 80(6):2171-2179.
    [120] Khoo KH, Dell A. Assignment of anomeric configurations of pyranose sugars in oligosaccharides using a sensitive FAB-MS strategy. Glycobiology, 1990,1(1):83-91.
    [121] Backer AE, Holgersson J, Samuelsson BE, et al. Rapid and sensitive GC/MS characterization of glycolipid released Galalpha 1,3Gal-terminated oligosaccharides from small organ specimens of a single pig. Glycobiology, 1998, 8(6):533-545.
    [122] Stoll MS, Hounsell EF, Lawson AM, et al. Microscale sequencing of O-linked oligosaccharides using mild periodate oxidation of alditols, coupling to phospholipid and TLC-MS analysis of the resulting neoglycolipids. Eur J Biochem, 1990,189(3):499-507.
    [123] Ekeberg D, Knutsen SH, Sletmoen M. Negative-ion electrospray ionisation-mass spectrometry (ESI-MS) as a tool for analysing structural heterogeneity in kappa-carrageenan oligosaccharides. Carbohydr Res, 2001, 334(1):49-59.
    [124] Tang H, Mechref Y, Novotny MV. Automated interpretation of MS/MS spectra of oligosaccharides. Bioinformatics, 2005,21 Suppl 1:i431-439.
    [125] Harvey DJ, Naven TJ, Kuster B. Identification of oligosaccharides by matrix-assisted laser desorption ionization and electrospray MS. Biochem Soc Trans, 1996,24(3):905-912.
    [126] Wuhrer M, Deelder AM. Negative-mode MALDI-TOF/TOF-MS of oligosaccharides labeled with 2-aminobenzamide. Anal Chem, 2005, 77(21):6954-6959.
    [127] Suzuki S, Kakehi K, Honda S. Comparison of the sensitivities of various derivatives of oligosaccharides in LC/MS with fast atom bombardment and electrospray ionization interfaces. Anal Chem, 1996, 68(13):2073-2083.
    [128] Finke B, Stahl B, Pfenninger A, et al. Analysis of high-molecular-weight oligosaccharides from human milk by liquid chromatography and MALDI-MS. Anal Chem, 1999,71(17):3755-3762.
    [129] Estrella RP, Whitelock JM, Packer NH et al. Graphitized carbon LC-MS characterization of the chondroitin sulfate oligosaccharides of aggrecan. Anal Chem, 2007,79(10):3597-3606.
    [130] Finke B, Mank M, Daniel H, et al. Offline coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides. Anal Biochem, 2000,284(2):256-265.
    [131] Volpi N, Zhang Z, Linhardt RJ. Mass spectrometry for the characterization of unsulfated chondroitin oligosaccharides from 2-mers to 16-mers. Comparison with hyaluronic acid oligomers. Rapid Commun Mass Spectrom, 2008,22(22):3526-3530.
    [132] Stadlmann J, Pabst M, Kolarich D, et al. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics, 2008, 8(14):2858-2871.
    [133] Yodoshi M, Tani A, Ohta Y, et al. Optimized conditions for high-performance liquid chromatography analysis of oligosaccharides using 7-amino-4-methylcoumarin as a reductive amination reagent. J Chromatogr A, 2008,1203(2):137-145.
    [134] Pabst M, Kolarich D, Poltl G, et al. Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem, 2009, 384(2):263-273.
    [135] Pan GG, Melton LD. Analysis of sialyl oligosaccharides by high-performance liquid chromatography-electrospray ionisation-mass spectrometry with differentiation of alpha2-3 and alpha2-6 sialyl linkages. J Chromatogr A, 2005,1077(2): 136-142.
    [136] Pinto MR, Gorin PA, Wait R et al. Structures of the O-linked oligosaccharides of a complex glycoconjugate from Pseudallescheria boydii. Glycobiology, 2005,15(10):895-904.
    [137] Reis A, Pinto P, Evtuguin DV, et al. Electrospray tandem mass spectrometry of underivatised acetylated xylo-oligosaccharides. Rapid Commun Mass Spectrom, 2005,19(23):3589-3599.
    [138] Chi L, Munoz EM, Choi HS, et al. Preparation and structural determination of large oligosaccharides derived from acharan sulfate. Carbohydr Res, 2006,341(7):864-869.
    [139] Zhang Y, Kariya Y, Conrad AH, et al. Analysis of keratan sulfate oligosaccharides by electrospray ionization tandem mass spectrometry. Anal Chem, 2005, 77(3):902-910.
    [140] Ramsay SL, Meikle PJ, Hopwood JJ, et al. Profiling oligosaccharidurias by electrospray tandem mass spectrometry: quantifying reducing oligosaccharides. Anal Biochem, 2005,345(1):30-46.
    [141] Saba JA, Shen X, Jamieson JC, et al. Investigation of different combinations of derivatization, separation methods and electrospray ionization mass spectrometry for standard oligosaccharides and glycans from ovalbumin. J Mass Spectrom, 2001,36(5):563-574.
    [142] Cheng HL, Her GR. Determination of linkages of linear and branched oligosaccharides using closed-ring chromophore labeling and negative ion trap mass spectrometry. J Am Soc Mass Spectrom, 2002,13(11):1322-1330.
    [143] Schmid D, Behnke B, Metzger J, et al. Nano-HPLC-mass spectrometry and MEKC for the analysis of oligosaccharides from human milk. Biomed Chromatogr, 2002,16(2):151-156.
    [144] Thomsson KA, Karlsson H, Hansson GC. Sequencing of sulfated oligosaccharides from mucins by liquid chromatography and electrospray ionization tandem mass spectrometry. Anal Chem, 2000, 72(19):4543-4549.
    [145] Volpi N. Mass spectrometry characterization of Escherichia coli K4 oligosaccharides from 2-mers to more than 20-mers. Rapid Commun Mass Spectrom, 2007,21(21):3459-3466.
    [146] Li M, Kinzer JA. Structural analysis of oligosaccharides by a combination of electrospray mass spectrometry and bromine isotope tagging of reducing-end sugars with 2-amino-5-bromopyridine. Rapid Commun Mass Spectrom, 2003,17(13):1462-1466.
    [147] Kuhn AV, Ruttinger HH, Neubert RH, et al. Identification of hyaluronic acid oligosaccharides by direct coupling of capillary electrophoresis with electrospray ion trap mass spectrometry. Rapid Commun Mass Spectrom, 2003,17(6):576-582.
    [148] Ahn YH, Yoo JS. Effect of the labeling group in structural analyses of malononitrile-labeled oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom, 1999,13(20):1985-1990.
    [ 149] Zamfir A, Seidler DG, Kresse H, et al. Structural investigation of chondroitin/dermatan sulfate oligosaccharides from human skin fibroblast decorin. Glycobiology, 2003,13(11):733-742.
    [150] Tawada A, Masa T, Oonuki Y, et al. Large-scale preparation, purification, and characterization of hyaluronan oligosaccharides from 4-mers to 52-mers. Glycobiology,2002,12(7):421-426.
    [151] Mo W, Sakamoto H, Nishikawa A, et al. Structural characterization of chemically derivatized oligosaccharides by nanoflow electrospray ionization mass spectrometry. Anal Chem, 1999, 71(18):4100-4106.
    [152] Cancilla MT, Gaucher SP, Desaire H, et al. Combined partial acid hydrolysis and electrospray ionization-mass spectrometry for the structural determination of oligosaccharides. Anal Chem, 2000, 72(13):2901-2907.
    [153] Antonopoulos A, Favetta P, Helbert W, et al. On-line liquid chromatography-electrospray ionisation mass spectrometry for kappa-carrageenan oligosaccharides with a porous graphitic carbon column. J Chromatogr A, 2007, 1147(1):37-41.
    [154] Campa C, Oust A, Skjak-Braek G, et al. Determination of average degree of polymerisation and distribution of oligosaccharides in a partially acid-hydrolysed homopolysaccharide: a comparison of four experimental methods applied to mannuronan. J Chromatogr A, 2004,1026(1-2):271-281.
    [155] Cappiello A, Trufelli H, Famiglini G, et al. Study on the oligosaccharides composition of the water-soluble fraction of marine mucilage by electrospray tandem mass spectrometry.Water Res, 2007, 41(13):2911-2920.
    [156] Garrett TA, Guan Z, Raetz CR. Analysis of ubiquinones, dolichols, and dolichol diphosphate-oligosaccharides by liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol, 2007,432:117-143.
    [157] Geng P, Qiu F, Zhu Y, et al. Four acarviosin-containing oligosaccharides identified from Streptomyces coelicoflavus ZG0656 are potent inhibitors of alpha-amylase. Carbohydr Res, 2008,343(5):882-892.
    [158] Kimura Y, Matsuo S. Changes in N-linked oligosaccharides during seed development of Ginkgo biloba. Biosci Biotechnol Biochem, 2000, 64(3):562-568.
    [159] Chai W, Leteux C, Lawson AM, et al. On-line overpressure thin-layer chromatographic separation and electrospray mass spectrometric detection of glycolipids. Anal Chem, 2003,75(1):118-125.
    [160] Chai W, Luo J, Lim CK, et al. Characterization of heparin oligosaccharide mixtures as ammonium salts using electrospray mass spectrometry. Anal Chem, 1998,70(10):2060-2066.
    [161] Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal Chem, 2001, 73(3):651-657.
    [162] Chai W, Piskarev VE, Mulloy B, et al. Analysis of chain and blood group type and branching pattern of sialylated oligosaccharides by negative ion electrospray tandem mass spectrometry. Anal Chem, 2006, 78(5):1581-1592.
    [163] Chai W, Piskarev VE, Zhang Y, et al. Structural determination of novel lacto-N-decaose and its monofucosylated analogue from human milk by electrospray tandem mass spectrometry and 1H NMR spectroscopy. Arch Biochem Biophys, 2005, 434(1):116-127.
    [164] Chai W, Rosankiewicz JR, Lawson AM. TLC-LSIMS of neoglycolipids of glycosaminoglycan disaccharides and of oxymercuration cleavage products of heparin fragments that contain unsaturated uronic acid. Carbohydr Res, 1995,269(1): 111-124.
    [165] Zhang Z, Yu G, Zhao X, et al. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom, 2006, 17(4):621-630.
    [166] Yu G, Zhao X, Yang B, et al. Sequence Determination of Sulfated Carrageenan-Derived Oligosaccharides by High-Sensitivity Negative-Ion Electrospray Tandem Mass Spectrometry. Anal Chem, 2006, 78(24):8499-8505.
    [167] 金城.糖生物学-破译基因组功能的必由之路.糖生物学-破译基因组功能的必由之路,2001,18(1):66-71.
    [168] 王克夷.正在来临的糖组学.生命的化学,2000,20(6):286-287.
    [169] 张树政.糖生物学:生命科学中的新前沿.生命的化学,1999,19(3):103-104.
    [170] Alderwick LJ, Dover LG, Veerapen N, et al. Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expr Purif, 2008, 58(2):332-341.
    [171] Seidel M, Alderwick LJ, Birch HL, et al. Identification of a Novel Arabinofuranosyltransferase AftB Involved in a Terminal Step of Cell Wall Arabinan Biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem, 2007, 282(20): 14729-14740.
    [172] Liu Y, Feizi T, Campanero-Rhodes MA, et al. Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem Biol, 2007, 14(7):847-859.
    [173] El-Aneed A, Banoub J, Koen-Alonso M, et al. Establishment of mass spectrometric fingerprints of novel synthetic cholesteryl neoglycolipids: the presence of a unique C-glycoside species during electrospray ionization and during collision-induced dissociation tandem mass spectrometry. J Am Soc Mass Spectrom, 2007, 18(2):294-310.
    [174] Beeson JG, Andrews KT, Boyle M, et al. Structural basis for binding of Plasmodium falciparum erythrocyte membrane protein 1 to chondroitin sulfate and placental tissue and the influence of protein polymorphisms on binding specificity. J Biol Chem, 2007, 282(31):22426-22436.
    [175] Yamaguchi K, Tamaki H, Fukui S. Detection of oligosaccharide ligands for hepatocyte growth factor/scatter factor (HGF/SF), keratinocyte growth factor (KGF/FGF-7), RANTES and heparin cofactor II by neoglycolipid microarrays of glycosaminoglycan-derived oligosaccharide fragments. Glycoconj J, 2006,23(7-8):513-523.
    [176] Palma AS, Feizi T, Zhang Y, et al. Ligands for the beta-glucan receptor, Dectin-1,assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem, 2006, 281(9):5771-5779.
    [177] Liu Y, Chai W, Childs RA, et al. Preparation of neoglycolipids with ring-closed cores via chemoselective oxime-ligation for microarray analysis of carbohydrate-protein interactions. Methods Enzymol, 2006, 415:326-340.
    [178] Chai W, Stoll MS, Galustian C, et al. Neoglycolipid technology: deciphering information content of glycome. Methods Enzymol, 2003,362:160-195.
    [179] Feizi T. 'Glyco-epitope' assignments for the selectins: advances enabled by the neoglycolipid (NGL) technology in conjunction with synthetic carbohydrate chemistry. Adv Exp Med Biol, 2001,491:65-78.
    [180] Stoll MS, Feizi T, Loveless RW, et al. Fluorescent neoglycolipids. Improved probes for oligosaccharide ligand discovery. Eur J Biochem, 2000,267(6):1795-1804.
    [181] Feizi T. Progress in deciphering the information content of the 'glycome'--a crescendo in the closing years of the millennium. Glycoconj J, 2000,17(7-9):553-565.
    [182] Feizi T. Carbohydrate-mediated recognition systems in innate immunity. Immunol Rev,2000,173:79-88.
    [183] Chai W, Yuen CT, Feizi T, et al. Core-branching pattern and sequence analysis of mannitol-terminating oligosaccharides by neoglycolipid technology. Anal Biochem, 1999,270(2):314-322.
    [184] Chai W, Feizi T, Yuen CT, et al. Nonreductive release of O-linked oligosaccharides from mucin glycoproteins for structure/function assignments as neoglycolipids: application in the detection of novel ligands for E-selectin. Glycobiology, 1997, 7(6):861-872.
    [185] Alon R, Feizi T, Yuen CT, et al. Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J Immunol, 1995,154(10):5356-5366.
    [186] Tang PW, Feizi T. Neoglycolipid micro-immunoassays applied to the oligosaccharides of human milk galactosyltransferase detect blood-group related antigens on both O- and N-linked chains. Carbohydr Res, 1987, 161(1): 133-143.
    [1] Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science,2001,291(5512):2351-2356.
    [2] Chai W, Luo J, Lim CK, et al. Characterization of heparin oligosaccharide mixtures as ammonium salts using electrospray mass spectrometry. Anal Chem, 1998,70(10):2060-2066.
    [3] Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal Chem, 2001,73(3):651-657.
    [4] Chai W, Piskarev V, Lawson AM. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J Am Soc Mass Spectrom,2002,13(6):670-679.
    [5] Chai W, Piskarev VE, Mulloy B, et al. Analysis of chain and blood group type and branching pattern of sialylated oligosaccharides by negative ion electrospray tandem mass , spectrometry. Anal Chem, 2006, 78(5):1581-1592.
    [6] Chai W, Piskarev VE, Zhang Y, et al. Structural determination of novel lacto-N-decaose and its monofucosylated analogue from human milk by electrospray tandem mass spectrometry and 1H NMR spectroscopy. Arch Biochem Biophys, 2005, 434(1):116-127.
    [7] Harvey DJ. Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics, 2005,5(7): 1774-1786.
    [8] Cheng HL, Her GR. Determination of linkages of linear and branched oligosaccharides using closed-ring chromophore labeling and negative ion trap mass spectrometry. J Am Soc Mass Spectrom, 2002,13(11):1322-1330.
    [9] Volpi N. On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers. Anal Chem, 2007, 79(16):6390-6397.
    [10] Harvey DJ, Baruah K, Scanlan CN. Application of negative ion MS/MS to the identification of N-glycans released from carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). J Mass Spectrom, 2009, 44(l):50-60.
    [11] Zhang Z, Yu G, Zhao X, et al. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom, 2006,17(4):621-630.
    [12] Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling,sequence, linkage, and branching data: ES-MS and CID. Anal Chem, 1995,67(11): 1772-1784.
    [13] Huisman MM, Brul LP, Thomas-Oates JE, et al. The occurrence of internal (1 -->5)-linked arabinofuranose and arabinopyranose residues in arabinogalactan side chains from soybean pectic substances. Carbohydr Res, 2001,330(1): 103-114.
    [14] Volpi N, Zhang Z, Linhardt RJ. Mass spectrometry for the characterization of unsulfated chondroitin oligosaccharides from 2-mers to 16-mers. Comparison with hyaluronic acid oligomers. Rapid Commun Mass Spectrom, 2008,22(22):3526-3530.
    [15] Sheeley DM, Reinhold VN. Structural characterization of carbohydrate sequence, linkage,and branching in a quadrupole Ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. Anal Chem, 1998, 70(14):3053-3059.
    [16] Weiskopf AS, Vouros P, Harvey DJ. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom,1997, 11(14):1493-1504.]
    [17] Zaia J, Costello CE. Tandem mass spectrometry of sulfated heparin-like glycosaminoglycan oligosaccharides. Anal Chem, 2003,75(10):2445-2455.
    [18] Zhang Y, Iwamoto T, Radke G, et al. On-target derivatization of keratan sulfate oligosaccharides with pyrenebutyric acid hydrazide for MALDI-TOF/TOF-MS. J Mass Spectrom, 2008,43(6):765-772.
    [19] Zhang Y, Kariya Y, Conrad AH, et al. Analysis of keratan sulfate oligosaccharides by electrospray ionization tandem mass spectrometry. Anal Chem, 2005, 77(3):902-910.
    [20] Ekeberg D, Knutsen SH, Sletmoen M. Negative-ion electrospray ionisation-mass spectrometry (ESI-MS) as a tool for analysing structural heterogeneity in kappa-carrageenan oligosaccharides. Carbohydr Res, 2001, 334(1):49-59.
    [21] Antonopoulos A, Favetta P, Helbert W, et al. On-line liquid chromatography electrospray ionization mass spectrometry for the characterization of kappa- and iota-carrageenans. Application to the hybrid iota-/nu-carrageenans. Anal Chem, 2005, 77(13):4125-4136.
    [22] Aguilan JT, Dayrit FM, Zhang J, et al. Structural analysis of kappa-carrageenan sulfated oligosaccharides by positive mode nano-ESI-FTICR-MS and MS/MS by SORJ-CID. J Am Soc Mass Spectrom, 2006, 17(1):96-103.
    [23] Stadlmann J, Pabst M, Kolarich D, et al. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics, 2008, 8(14):2858-2871.
    [24] Ackloo S, Terlouw JK, Ruttink PJ, et al. Analysis of carrageenans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom, 2001, 15(14):1152-1159.
    [25] Fukuyama Y, Ciancia M, Nonami H, et al. Matrix-assisted ultraviolet laser-desorption ionization and electrospray-ionization time-of-flight mass spectrometry of sulfated neocarrabiose oligosaccharides. Carbohydr Res, 2002, 337(17): 1553-1562.
    [26] Fukuyama Y, Nakaya S, Yamazaki Y, et al. Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal Chem, 2008, 80(6):2171-2179.
    [27] Finke B, Mank M, Daniel H, et al. Offiine coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides. Anal Biochem, 2000, 284(2):256-265.
    [28] 张真庆.质谱分析外源性和内源性寡糖的方法学研究:[博士学位论文].2006.
    [29] Kogelberg H, Piskarev VE, Zhang Y, et al. Determination by electrospray mass spectrometry and 1H-NMR spectroscopy of primary structures of variously fucosylated neutral oligosaccharides based on the iso-lacto-N-octaose core. Eur J Biochem, 2004, 271(6):1172-1186.
    [30] Domon B, Costello CE. Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry, 1988, 27(5): 1534-1543.
    [31] Konig S, Leary JA. Evidence for linkage position determination in cobalt coordinated pentasaccharides using ion trap mass spectrometry. J Am Soc Mass Spectrom, 1998, 9(11):1125-1134.
    [32] Yu G, Guan H, loanoviciu AS, et al. Structural studies on kappa-carrageenan derived oligosaccharides. Carbohydr Res, 2002, 337(5):433-440.
    [33] 于广利.系列硫酸寡糖的制备及其结构与系列分析:[博士学位论文].2004.
    [34] Leteux C, Chai W, Nagai K, et al. 10E4 antigen of Scrapie lesions contains an unusual nonsulfated heparan motif. J Biol Chem, 2001, 276(16): 12539-12545.
    [35] Chai W, Leteux C, Westling C, et al. Relative susceptibilities of the glucosamine-glucuronic acid and N-acetylglucosamine-glucuronic acid linkages to heparin lyase Ⅲ. Biochemistry, 2004, 43(26):8590-8599.
    [1] Hatada Y, Ohta Y, Horikoshi K. Hyperproduction and Application of;-Agarase to Enzymatic Enhancement of Antioxidant Activity of Porphyran. J Agric Food Chem, 2006, 54(26):9895-9900.
    [2] Ma C, Lu X, Shi C, et al. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem, 2007, 282(6):3747-3754.
    [3] Michel G, Chantalat L, Fanchon E, et al. The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J Biol Chem, 2001, 276(43):40202-40209.
    [4] Quatrano RS, Caldwell BA. Isolation of a unique marine bacterium capable of growth on a wide variety of polysaccharides from macroalgae. Appl Environ Microbiol, 1978, 36(6):979-981.
    [5] Barbeyron T, Michel G, Potin P, et al. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem, 2000, 275(45):35499-35505.
    [6] Kazlowski B, Pan CL, Ko YT. Separation and quantification of neoagaro- and agaro-oligosaccharide products generated from agarose digestion by beta-agarase and HCl in liquid chromatography systems. Carbohydr Res, 2008, 343(14):2443-2450.
    [7] Chen HM, Yan XJ. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochimica et Biophysica Acta, 2005, 1722(1):103-111.
    [8] Chen HM, Zheng L, Lin W, et al. Product monitoring and quantitation of oligosaccharides composition in agar hydrolysates by precolumn labeling HPLC. Talanta, 2004, 64(3):773-777.
    [9] Caram-Lelham N. Preparative sepatarion of oligosaccharides from κ-carrageenan, sodium hyaluronate and dextran by Superdex30 prep.grade,. Carbohydr Res, 1995, 273:71-76.
    [10] Yu G, Guan H, Ioanoviciu AS, et al. Structural studies on kappa-carrageenan derived oligosaccharides. Carbohydr Res, 2002, 337(5):433-440.
    [11] 于广利.系列硫酸寡糖的制备及其结构与系列分析:[博士学位论文].2004.
    [12] 毛文君.琼胶的分子修饰及其结构研究:[博士学位论文].2000年5月.
    [13] 迟连利,RobertJ.Linhardt.κ-卡拉胶五糖的制备及结构研究.中国海洋药物 2002,21(3):21-27.
    [14] Chi L, Wolff JJ, Laremore TN, et al. Structural analysis of bikunin glycosaminoglycan. J Am Chem Soc, 2008, 130(8):2617-2625.
    [15] Edens RE, al-Hakim A, Weiler JM, et al. Gradient polyacrylamide gel electrophoresis for determination of molecular weights of heparin preparations and low-molecular-weight heparin derivatives. J Pharm Sci, 1992, 81(8):823-827.
    [16] Zhang Z, Xie J, Zhang F, et al. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal Biochem, 2007, 371(1):118-120.
    [17] Yu G, Zhao X, Yang B, et al. Sequence Determination of Sulfated Carrageenan-Derived Oligosaccharides by High-Sensitivity Negative-lon Electrospray Tandem Mass Spectrometry.. Anal Chem, 2006, 78(24):8499-8505.
    [18] Zhang Z, Yu G, Zhao X, et al. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom, 2006, 17(4):621-630.
    [19] Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal Chem, 2001, 73(3):651-657.
    [20] Jun M, Shao Y, Ho CT, et al. Structural identification of nonvolatile dimerization products of glucosamine by gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and nuclear magnetic resonance analysis. J Agric Food Chem, 2003, 51(21):6340-6346.
    [21] Palmarola-Adrados B, Juhasz T, Galbe M, et al. Hydrolysis of nonstarch carbohydrates of wheat-starch effluent for ethanol production. Biotechnol Prog, 2004, 20(2):474-479.
    [22] Kolender AA, Matulewicz MC. Sulfated polysaccharides from the red seaweed Georgiella confluens. Carbohydr Res, 2002, 337(1):57-68.
    [23] Kolender AA, Matulewicz MC. Desulfation of sulfated galactans with chlorotrimethylsilane. Characterization of beta-carrageenan by 1H NMR spectroscopy. Carbohydr Res, 2004, 339(9): 1619-1629.
    [24] Ciucanu I, Costello CE. Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc, 2003, 125(52): 16213-16219.
    [25] Deloffre L, Sautiere PE, Huybrechts R, et al. Angiotensin-converting enzyme inhibition studies by natural leech inhibitors by capillary electrophoresis and competition assay. Eur J Biochem, 2004, 271(11):2101-2106.
    [26] Vermeirssen V, Van Camp J, Verstraete W. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J Biochem Biophys Methods, 2002, 51(1):75-87.
    [27] Yang Y, Macdonald GJ. Development of a new assay for measurement of total angiotensin-converting enzyme after inhibition. Clin Exp Pharmacol Physiol, 1998, 25(7-8):637-639.
    [28] Hunt CE, Turner AJ. Cell biology, regulation and inhibition of beta-secretase (BACE-1). Febs J, 2009, 276(7): 1845-1859.
    [29] Vanoni O, Paganetti P, Molinari M. Consequences of individual N-glycan deletions and of proteasomal inhibition on secretion of active BACE. Mol Biol Cell, 2008, 19(10):4086-4098.
    [30] Roggo S. Inhibition of BACE, a promising approach to Alzheimer's disease therapy. Curr Top Med Chem, 2002, 2(4):359-370.
    [31] Marcinkeviciene J, Luo Y, Graciani NR, et al. Mechanism of Inhibition of beta-site amyloid precursor protein-cleaving enzyme (BACE) by a statine-based peptide. J Biol Chem, 2001,276(26):23790-23794.
    [32] Kiderlen AF, Kaye PM. A modified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. J Immunol Methods, 1990, 127(1):11-18.
    [33] Pereira L, Sousa A, Coelho H, et al. Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol. Eng., 2003, 20(4-6):223-228.
    [34] van de Velde F, Pereira L, Rollema HS. The revised NMR chemical shift data of carrageenans. Carbohydr. Res., 2004, 339(13):2309-2313.
    [35] Stevenson TT, Furneaux RH. Chemical methods for the analysis of sulphated galactans from red algae. Carbohydr Res, 1991, 210:277-298.
    [36] Quemener B, Lahaye M, Metro F. Assessment of methanolysis for the determination of composite sugars of gelling carrageenans and agarose by HPLC. Carbohydr Res, 1995, 266(1):53-64.
    [37] Quemener B, Lahaye M. Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques. J Appl Phyco, 1998, 10(1):75-81.
    [38] Usov AI. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 1998, 12:301-308.
    [39] 杨波.蠕虫叉红藻多糖的提取分离及结构研究:[硕士学位论文].2006年5月.
    [40] Yang B, Yu G, Zhao X, et al. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosacchafides. Febs J, 2009, 276(7):2125-2137.
    [1] Quatrano RS, Caldwell BA. Isolation of a unique marine bacterium capable of growth on a wide variety of polysaccharides from macroalgae. Appl Environ Microbiol, 1978, 36(6):979-981.
    [2] Barbeyron T, Michel G, Potin P, et al. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem, 2000, 275(45):35499-35505.
    [3] Michel G, Chantalat L, Fanchon E, et al. The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J Biol Chem, 2001, 276(43):40202-40209.
    [4] Chen HM, Zheng L, Lin W, et al. Product monitoring and quantitation of oligosaccharides composition in agar hydrolysates by precolumn labeling HPLC. Talanta, 2004, 64(3):773-777.
    [5] Ma C, Lu X, Shi C, et al. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem, 2007, 282(6):3747-3754.
    [6] 于广利.系列硫酸寡糖的制备及其结构与系列分析:[博士学位论文].2004.
    [7] 毛文君.琼胶的分子修饰及其结构研究:[博士学位论文].2000年5月.
    [8] Yang B, Yu G, Zhao X, et al. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. Febs J, 2009, 276(7):2125-2137.
    [9] Guibet M, Colin S, Barbeyron T, et al. Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochem J, 2007, 404(1): 105-114.
    [10] Eguchi H, Ikeda Y, Koyota S, et al. Oxidative damage due to copper ion and hydrogen peroxide induces GlcNAc-specific cleavage of an Asn-linked oligosaccharide. J Biochem, 2002, 131(3):477-484.
    [11] Shiba T, Tsutsumi K, Ishige K, et al. Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications. Biochemistry (Mosc), 2000, 65(3):315-323.
    [12] Wojtaszek P, Trethowan J, Bolwell GP. Specificity in the immobilisation of cell wall proteins in response to different elicitor molecules in suspension-cultured cells of French bean(Phaseolus vulgaris L.). Plant Mol Biol, 1995, 28(6):1075-1087.
    [13] Ciucanu I, Costello CE. Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc, 2003, 125(52): 16213-16219.
    [14] 李桂村,耿美玉.κ-卡拉胶的氧化降解.青岛化工学院学报,2002,23(4):48-51.
    [15] Chen HM, Yan XJ, Wang F, et al. In vitro anti-angiogenic action of lambda-carrageenan oligosaccharides. Yao Xue Xue Bao, 2007, 42(6):595-600.
    [16] Zhang Z, Xie J, Zhang F, et al. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal Biochem, 2007, 371(1): 118-120.
    [17] Chai W, Luo J, Lim CK, et al. Characterization of heparin oligosaccharide mixtures as ammonium salts using electrospray mass spectrometry. Anal Chem, 1998, 70(10):2060-2066.
    [18] Chai W, Piskarev V, Lawson AM. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J Am Soc Mass Spectrom, 2002, 13(6):670-679.
    [19] 杨波.蠕虫叉红藻多糖的提取分离及结构研究:[硕士学位论文].2006年5月.
    [1] Hirabayashi J. Oligosaccharide microarrays for glycomics. Trends Biotechnol, 2003,21(4):141-143.
    [2] Seidel M, Alderwick LJ, Birch HL, et al. Identification of a Novel Arabinofuranosyltransferase AftB Involved in a Terminal Step of Cell Wall Arabinan Biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem, 2007, 282(20):14729-14740.
    [3] Yamaguchi K, Tamaki H, Fukui S. Detection of oligosaccharide ligands for hepatocyte growth factor/scatter factor (HGF/SF), keratinocyte growth factor (KGF/FGF-7),RANTES and heparin cofactor II by neoglycolipid microarrays of glycosaminoglycan-derived oligosaccharide fragments. Glycoconj J, 2006,23(7-8):513-523.
    [4] Roberts JN, Buck CB, Thompson CD, et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat. Med., 2007,13(7):857-861.
    [5] Leteux C, Chai W, Nagai K, et al. 10E4 antigen of Scrapie lesions contains an unusual nonsulfated heparan motif. J. Biol. Chem., 2001, 276(16):12539-12545.
    [6] McCarthy B. Antivirals-an increasingly healthy investment. Nat. Biotechnol., 2007,25(12):1390-1393.
    [7] Aquino RS, Landeira-Fernandez AM, Valente AP, et al. Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. Glycobiology, 2005,15(1 ):11-20.
    [8] Hemmerich S. Glycomics: coming of age across the globe. Drug Discov. Today, 2005,10(5):307-309.
    [9] Shriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov., 2004, 3(10):863-873.
    [10] Raman R, Raguram S, Venkataraman G, et al. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods, 2005, 2(11):817?24.
    [11] Liu Y, Chai W, Childs RA, et al. Preparation of neoglycolipids with ring-closed cores via chemoselective oxime-ligation for microarray analysis of carbohydrate-protein interactions. Methods Enzymol, 2006, 415:326-340.
    [12] Tang PW, Feizi T. Neoglycolipid micro-immunoassays applied to the oligosaccharides of human milk galactosyltransferase detect blood-group related antigens on both O- and N-linked chains. Carbohydr. Res., 1987,161(1):133-143.
    [13] Feizi T. Carbohydrate-mediated recognition systems in innate immunity. Immunol Rev.,2000,173:79-88.
    [14] Stoll MS, Hounsell EF, Lawson AM, et al. Microscale sequencing of O-linked oligosaccharides using mild periodate oxidation of alditols, coupling to phospholipid and TLC-MS analysis of the resulting neoglycolipids. Eur. J. Biochem., 1990,189(3):499-507.
    [15] Feizi T, Mulloy B. Carbohydrates and glycoconjugates. Glycomics: the new era of carbohydrate biology. Curr. Opin. Struct. Biol., 2003,13(5):602-604.
    [16] Feizi T, Fazio F, Chai W, et al. Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol., 2003,13(5):637-645.
    [17] Feizi T. 'Glyco-epitope' assignments for the selectins: advances enabled by the neoglycolipid (NGL) technology in conjunction with synthetic carbohydrate chemistry.Adv. Exp. Med. Biol., 2001,491:65-78.
    [18] Buck CB, Thompson CD, Roberts JN, et al. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS. Pathog., 2006,2(7):e69 0671-0680.
    [19] Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem., 2004,11(18):2399-2419.
    [20] Chai W, Stoll MS, Galustian C, et al. Neoglycolipid technology: deciphering information content of glycome. Methods Enzymol, 2003,362:160-195.
    [21] Liu Y, Feizi T, Campanero-Rhodes MA, et al. Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem. Biol., 2007,14(7):847-859.
    [22] Yu G, Zhao X, Yang B, et al. Sequence Determination of Sulfated Carrageenan-Derived Oligosaccharides by High-Sensitivity Negative-Ion Electrospray Tandem Mass Spectrometry. Anal. Chem., 2006, 78(24):8499-8505.
    [23] Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem., 2001,73(3):651-657.
    [24] Chai W, Luo J, Lim CK, et al. Characterization of heparin oligosaccharide mixtures as ammonium salts using electrospray mass spectrometry. Anal. Chem., 1998,70(10):2060-2066.
    [25] Chai W, Feizi T, Yuen CT, et al. Nonreductive release of O-linked oligosaccharides from mucin glycoproteins for structure/function assignments as neoglycolipids: application in the detection of novel ligands for E-selectin. Glycobiology, 1997,7(6): 861-872.
    [26] Chai W, Rosankiewicz JR, Lawson AM. TLC-LSIMS of neoglycolipids of glycosaminoglycan disaccharides and of oxymercuration cleavage products of heparin fragments that contain unsaturated uronic acid. Carbohydr. Res., 1995,269(1):111-124.
    [27] Huang GL, Zhang HC, Wang PG Fabrication and application of neoglycolipid arrays in a microtiter plate. Bioorg Med Chem Lett, 2006,16(7):2031-2033.
    [28] El-Aneed A, Banoub J, Koen-Alonso M, et al. Establishment of mass spectrometric fingerprints of novel synthetic cholesteryl neoglycolipids: the presence of a unique C-glycoside species during electrospray ionization and during collision-induced dissociation tandem mass spectrometry. J Am Soc Mass Spectrom, 2007,18(2):294-310.
    [29] Palma AS, Feizi T, Zhang Y, et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem, 2006,281(9):5771-5779.
    [30] Pohlentz G Drees B. Neoglycolipids derived from phosphatidylethanolamine serve as probes in cell culture studies on glycolipid metabolism. Biol Chem, 2000,381(l):29-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700