用户名: 密码: 验证码:
Myocardin与ERα协同诱导血管平滑肌细胞分化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自Olson等人于2001年发现Myocardin以来,其诱导心肌肥厚以及抑制血管平滑肌细胞增殖的机制研究有了很大进展。本文围绕平滑肌细胞(vascular smooth muscle cells, VSMCs)为研究对象,研究转录因子Myocardin与Estrogen receptor a (ERa)在血管平滑肌细胞表型转化中的作用机制。在COS-7细胞系中通过荧光素酶活性实验(luciferase)方法来研究二者在功能上的协同作用;在原代培养的大鼠VSMCs中同样进行功能实验,并对平滑肌细胞分化标志基因在RNA水平以及蛋白水平上进行检测,从而确定细胞分化情况。利用构建的缺失转录激活域(TAD domain)的截短Myocardin真核表达质粒dominant-negative Myocardin (MYCD-dn)与ERa共转染COS-7细胞系,初步探讨Myocardin和ERa在平滑肌细胞分化中的分子作用途径。
     Myocardin作为Serum Response Factor (SRF)依赖性反式激活多种平滑肌细胞特异性的转录调节元件,在平滑肌细胞分化中起着重要作用。其主要通过结合SRF,再由SRF结合下游调控目的基因启动子中的CArG box(CC(A/T)6GG)特异性序列,从而激活下游基因的表达。应用生物信息学方法,定位小鼠SM22基因启动子并确定Myocardin在SM22启动子区域-447至+89含有两个CArG Box结合位点。通过PCR方法克隆并构建Myocardin、ERα真核表达质粒以及SM22启动子荧光素酶报告基因质粒。
     从SD大鼠中提取主动脉平滑肌细胞,通过RT-PCR方法检测所要研究的内源性目的基因,包括Myocardin、ERα、SM22、α-actin和MHC。将Myocardin、ERa以及SM22-luc质粒转染于体外培养的COS-7和VSMCs中,检测报告基因荧光素酶活性,结果显示Myocardin和ERa能够在功能实验中协同促进SM22-luc的表达。同时检测转染Myocardin和ERa的平滑肌细胞分化标志基因在RNA水平和蛋白质水平上的表达变化,结果显示Myocardin和ERa共转染组细胞的分化标志基因表达有所增强。
     为进一步确定Myocardin与ERa在SM22基因启动子上的协同作用机制,构建TAD domain缺失的截短MYCD-dn真核表达质粒,并与ERa共转染于COS-7中。结果显示:MYCD-dn和ERa转染组中,SM22-luc丧失了荧光素酶活性。上述研究结果阐明:ERα对于Myocardin诱导的平滑肌细胞分化有协同促进作用。该促进作用可能是通过Myocardin-CArG box途径来实现的。
Myocardin was firstly discovered by Olson, the mechanism of Myocardin inducing cardiac hypertrophy and inhibiting vascular smooth muscle cell (VSMCs) proliferation has been great progressed. This research focused on the vascular smooth muscle cells (VSMCs) to study the role of transcription factor Myocardin and Estrogen Receptor a (ERa) in regulating phenotypes alteration in the vascular smooth muscle cells. Study the function in COS-7 and VSMCs luciferase experiment, and then the differentiation marker genes were detected at the level of RNA and protein in the VSMCs. The plasmid of dominant-negative Myocardin (MYCD-dn) which lacks the TAD domain was constructed,and then transfected in the COS-7,the mechanism of Myocardin and ERa regulating VSMCs differentiation was initially studied.
     Myocardin is a remarkably potent transcriptional coactivator that binds directly to SRF and activates transcription of a subset of SRF-regulated genes encoding contractile proteins. Myocardin binds SRF, and then SRF binds the CArG box (CC(A/T)6GG) of downstream target gene to activate its expression.
     According to bioinformatics results, the SM22 luciferase reporter (SM22-luc) gene were constructed successfully which contained promoter region-447 to+89 where two binding sites of Myocardin were determined. The expression plasmids of Myocardin、ERa and SM22 promoter were cloned and constructed by the method of PCR.
     The VSMCs were got from SD rat. Target genes were detected by RT-PCR, including Myocardin、ERα、SM22、α-actin and MHC. COS-7 and VSMCs were transfected with the plasmids of Myocardin、ERa and SM22-luc, the luciferase activation was detected. The results were shown:Myocardin and ERa could be co-activator to increase SM22-luc expression. VSMCs were transfected with the plasmids of Myocardin and ERa, the differentiation markers were detected at the level of RNA and protein. The results were shown:Myocardin and ERa also could increase differentiation marker genes expression.
     To further investigated the mechanism of how Myocardin and ERa active the SM22 gene promoter, we constructed the plasmid of dominant-negative Myocardin (MYCD-dn) which lacks the TAD domain, and then transfected into COS-7, the luciferase activation was detected. The results were shown:SM22 luciferase activation was lost by cotransfection with MYCD-dn and ERa. The results of the study show:ERαis a co-activator for the major VSMC transcription factor Myocardin, which is required for VSMC differentiation.
引文
[1]Kannal W.Risk factor analysis[J].Prog Cardiovas Dis,1984,26(2):309-312.
    [2]Clair W.Atherosclerosis regression in animal models[J].Current concepts of celluar,1983,26(10):109-112.
    [3]Wcolf N,Konyar E,Palmberg L,et al.Lipid and atherosclerosis.Pathology of Atherosclerosis[J].London&Frome,Butterworthe,1982,83(3):202-210.
    [4]Steinberg D.Beyond cholesterol. Modification of LDL that increase its atherogenicity[J].N Engl J Med,1989,13(2):320-325.
    [5]王淮洲译.疾病与饮食[M].北京:农业出版社,1989:137-150.
    [6]Wcolf N,Nyar E,Palmberg L,et al.Lipid and atherosclerosis.Pathology of Atherosclerosis[J].London&Frome,Butterworthe,1982,83(3):202-210.
    [7]Konyar E.Study of experimental hypertensive vascular lesions by ruthenium red staining technique[J].Pathol Eur,1974,9(2):167-174.
    [8]Balint A.Modification of surface coat of sortie endothelial cells in hyperlipemia rats[J].Pathol Eur,1974,9(4):105-110.
    [9]Weber G.Aortic surface coat scanning electromicroscopic modifications after short term hypercholesterolemic diet visualized in rabbits by ConA-hemocysnin reaction[J].Atherosclerosis,1977:27(4):131-141.
    [10]Weber G.Aortic surface coat scanning electromicroscopic modifications after short term hypercholesterolemic diet visualized in rabbits by ConA-hemocysnin reaction[J].Atherosclerosis,1977:27(4):131-141.
    [11]Weinstein D.Antiatherogenic properties of calcium antagonists[J].Am J Med, 1989,8(2):110-115.
    [12]Daugherty A.Inhibition of cholesteryl ester deposition in macrophages by calcium effect dissociable from calcium entry blockade[J].Br J Pharmacol,1987, 91(4):131-135.
    [13]Gerrity RG.The role of the monocyte in atherogenesis[J].Transition of blood-borne monocytes into foam cells in the fazty lesions.Am J pathol,1981,7(6): 103-181.
    [14]Schwartz CJ.Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon[J].An ultrastructural study:Implications in atherogenesis.Virchows Arch,1985,6(5):405-175.
    [15]Andersson L.Anticoagulant properties of heparin fractionated by affinity chroma bound antithrombin and by gel filtration[J].Thromb Res,1976,8(7):569-575.
    [16]Davies M.T-cell antigen receptor genes and T-cell recognition[J].Nature.1988, 8(5):334-395.
    [17]Nakamura.Electron microacopic study of the prenatal development of the thoracic aorta in the rat[J].Am J Anat,1988,15(4):181-406.
    [18]Weissberg PL.Approaches to the development of selective inhibitors of vascular smooth muscle cell proliferation[J].Cardiovasc Res,1993,10(2):1178-1191.
    [19]Campbell GR.Arterial smooth muscle.A multifunctional mesenchymal cell[J]. Arch J,1995,23(3):112-977.
    [20]Palmberg L.Effects of leukotrienes on phenotypic properies and growth of arterial smooth muscle cells in primary culture[J].J Cell Sci,1989,34(2):393-403.
    [21]Nakamura.Electron microacopic study of the prenatal development of the thoracic aorta in the rat[J]. Am J Anat,1988,7(5):391-406.
    [22]Palmberg L.Effects of leukotrienes on phenotypic properies and growth of arterial smooth muscle cells in primary culture.J Cell Sci,1989,34(4):393-403.
    [23]张英珊.动脉壁的硫酸乙酰肝素蛋白聚糖与动脉粥样硬化[D].基础医学与临床,1991,12(2):81-87.
    [24]Duguid J.Thrombosis as a factor in the pathogenesis of coronary atherosclerosis[J].J Path,1995,4(8):158-167.
    [25]Brown W.Diet and the decrease of coronary heart disease[J].Am J Caedio, 1984,8(9):54-67.
    [26]中华医学杂志编委会.动脉粥样硬化专题座谈会纪要[M].中华医学杂志,1985,17(6):65-71.
    [27]Goldtein J.Binding site on macrophages that mediated uptake and degradation on acetylated LDL,producing massive CH deposition[J].Proc Acad Sci USA,1979, 19(8):76-83.
    [28]Steinberg D.Modification of LDL that increase its atherogenicity[J].N Eng J Med,1989,8(15):320-325.
    [29]Dazhi Wang,Zhigao Wang,Oslon EN,at el.Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor[J] Cell,2001,105(7):851-62.
    [30]Dazhi Wang,Zhigao Wang,et al.Activation of cardiac gene expression by myocardin,a transcriptional cofactor for serum response factor[J].Cell,2001, 12(2):705-721.
    [31]管原和倍.PG12[M].医药学杂志,1993,8(9):29-39.
    [32]Ross R. The pathogenesis of atherosclerosis:An update[J].N Eng J Med,1986, 7(8):474-488.
    [33]阮长耿主编.血小板-基础与临床[M].上海:上海科技出版社,1987,8(12):112-121.
    [34]徐也鲁.脂质和血栓形成的相互作用在动脉粥样硬化发生中的意义[M].衡阳医学院学报,1991,19(10):191-212.
    [35]戴云.冠心病患者血小板GMP-140的测定临床意义[M].临床心血管病杂志,1992,31(10):188-194.
    [36]Mustard J.Platelets and atherosclerosis.Atherosclerosis:mechanisms and approaches to therapy[J].Raven Press,1983,34(16):29-43.
    [37]Miralles F.Actin dynamics control SRF activity by regulation of its coactivator MAL[J].Cell,2003,9(12):313-329.
    [38]Ueyam T.Myocardin expression is regulated by Nkx2.5,and its function is required for cardiomyogenesis[J].Mol Cel Bio,2003,9(6):9923-9932.
    [39]Dazhi Wang.Activation of cardiac gene expression by myocardin,a transcriptional cofactor for serum response factor[J].Cell,2001,22(8):805-811.
    [40]Dazhi Wang.Potentiation of serum response factor activity by a family of myocardin-related transcription factor[J].Proc Natl Aead Sci,2002,21(2): 14899-14905.
    [41]Shi Li.The serum response factor coactivator myocardin is required for vascular smooth muscle development[J].Proc Natl Aead Sci,2003,12(8):9360-9366.
    [42]Small E.Myocardin is suficient and necessary for cardiac gene expression in Xenopus[J].Development,2005,22(7):977-987.
    [43]Badorf C.Glycogen synthase kinase 3 beta inhibits myocardin-dependet transcription and hypertrophy induction through site-specific phosphorylation[J].Cire Res,2005,17(7):697-715.
    [44]Van Tuyn J.Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin[J].Cardiovasc Res,2005, 31(8):267-275.
    [45]Kinlin Du.Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation[J].Mol Cel Biol,2003,8(10):2420-2425.
    [46]Yoshida T.Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes[J].Cire Res,2003,33(7):892-900.
    [47]Shi Li.The serum response factor coactivator myocardin is required for vascular smooth muscle development[J].Pore Natl Acad Sci,2003,11(10):9300-9316.
    [48]黄朝晖.ERβ-一种新型的雌激素受体[M].生命科学,2000,13(9):1212:1226.
    [49]孙桂英.雌激素受体的变异及其临床意义[M].国外医学妇产科分册,1999, 11(1):126-139.
    [50]徐宏勇.雌激素受体和凋亡相关基因bcl-x及bax在人原发性胆囊癌中表达的临床意义[M].中国普外基础与临床杂志,2002,3(8):119-125.
    [51]张仁汉.雌二醇和三苯氧胺对小鼠肺癌基因表达的影响[M].中华内科杂志,1998,15(8):137-142.
    [52]张波.乳腺癌雌激素受体mRNA的变异剪切与Tamoxifen耐受[M].华中科技大学学报,2003,9(8):32-46.
    [53]陈瑶.雌激素的心脏保护机制及其受体的研究[M].国外医学妇产科分册,2001,22(8):28-32.
    [54]Wenhuan Zhang.Estrogen receptor[J].Pore Natl Acad Sci,2004,22(8): 100-116.
    [55]Williams R. Southwestern internal medicine conference.Prospects for gene therapy.Am J Med Science,1993,21(2):302:-319.
    [56]Aviram M.Modified forms of low density lipoprotein and atherosclerosis[J].Atherosclerosis,1993,9(9):98-101.
    [57]Grandian K.The estrogen receptor gene:promoter organization and expression[J].JBC,1997,19(8):1129-1143.
    [58]Selvaraj A.Megakaryoblastic leukemia-1/2, a transcriptional coactivator of serum response factor,is required for skeletal myogenic differentiation[J].J Biol Chem,2003,9(8):41978-41987.
    [59]Neng Cen.Megakaryoblastic leukemia 1,a potent transcriptional coactivator for sesum response factor(SRF),is required for serum induction of SRF target genes[J].Mol Cell biol,2003,3(3):6583-6597.
    [60]Doi,Yamazaki,Kanai,et al.Herpl inhibits Myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CarG box[J].Arterioscler,2005,25:2328-2334
    [61]Thomas G.Specific inhibition of the contraction of the rat aorta by estradiol-17beta[J].Pharmacol Exp Ther,1995,30(3):1273-1284.
    [62]马韬.植物性雌激素对豚鼠乳头肌的电生理效应[M].生理学报,2002,31(3):111-119.
    [63]Fen Zhang.17-beta estradiol a Uenuates volt age-dependent[J].JBC,1998, 12(8):1129-1143.
    [64]奥斯伯.精编分子学实验指南[M].北京科学出版社,1998,10(8):677-689.
    [65]庞昕.细菌mRNA的提取方法[M].生物技术通报,2003,22(8):1-10.
    [66]林庶茹.小鼠几种细胞提取操作的心得[M].解剖科学进展,2006,18(8):82-96.
    [67]卢圣栋.现代分子生物学实验技术[M].北京高等教育出版社,1993,(9):7-19.
    [68]络杰.异硫氰酸胍-酚-氯仿-步法提取RNA时某些操作技术的改进[M].植物生理学通报,1996,11(5):232-236.
    [69]金冬燕.分子克隆指南[M].北京科学出版社,2002,3(8):11-19.
    [70]马厚勋.等位基因特异性引物PCR技术及其应用研究[M].生物技术,2005,15(9):10-15.
    [71]王利民.从琼脂糖电泳凝胶中回收DNA的几种简便方法[M].生命科学研究,1999,11(8):11-18.
    [72]颜子颖.精编分子生物学实验指南[M].科学出版社,1998,10(6):22-29.
    [73]黄培堂.分子克隆实验指南[M].北京科学出版社,2002,10(2):110-119.
    [74]吕秋.脂质体载体的应用研究进展[M].沈阳农业大学学报,2002,8(3):329-335.
    [75]文树基.基础生物化学实验指导[M].陕西科学技术出版社,1994,11(8):11-19.
    [76]章龙翔.生物化学实验技术[M].人民教育出版社,1981,10(2):20-30.
    [77]Baldwin T.Structure of Bacterial Luciferase[J].Curr Opin Struct Biol,1995, 5(9):798-808.
    [78]Kel A.Composite Module Analyst:a fitness-based tool for identification of transcription factor binding site combinations[J].Bioinformatics in press,2006,8(8): 11-19.
    [79]Loots G.rVISTA 2.0:evolutionary analysis of transcription factor binding sites[J].Nucleic Acids Res,2004,17(8):22-30.
    [80]Viemann D.Transcriptional profiling of IKK2/NF-kappa B and p38MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells[J].Blood,2004,8(8):3365-3373.
    [81]Schmid C.EPD in its twentieth year:towards complete promoter coverage of selected model organisms[J].Nucleic Acids Res 2006,34(8):1182-1185.
    [82]Sinha S.A probabilistic method to detect regulatory modules[J].Bioinformatics, 2003,12(8):1120-1129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700