用户名: 密码: 验证码:
湖北西部天麻共生蜜环菌遗传多样性及协同进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共生或寄生物种成员间的相互作用可以通过循环应答使各成员产生交互的表型变异,受环境的影响还可能形成可塑的表型适应性变异,对物种成员性状表型变异的研究对理解物种间的协同进化及其环境适应性有着重要意义。本研究选取兰科植物-菌根真菌共生关系中的特殊案例——天麻-蜜环菌共生体为研究对象,采取一一对应的采样策略对西部湖北段7个地域不同天麻变型所共生的90株蜜环菌菌丝体6个质量性状和6个数量性状的表型变异进行了观察分析。结果表明:(1)根据6个质量性状的表型变异组合,发现该地区天麻共生蜜环菌菌株群体共有25个形态型,不同天麻变型共生蜜环菌群体间的主体形态型不同,各自特有形态型数目存在差异;(2)蜜环菌群体拥有较高的表型变异多态性(H_(mt)=3.009;H=0.9712),各地域群体间表型多样性(H_(mt):1.242—2.607;H:0.4736—0.9249)变化幅度大于不同天麻变型共生菌株群体间的变化幅度(H_(mt):2.395—2.61;H:0.7723—0.930),地域群体间的表型分化明显(V_(st)=0.2356);(3)差异分析和相关分析结果表明部分蜜环菌表型性状在不同环境因子梯度上存在明显差异或呈显著性的相关;而另一些表型性状变异在不同天麻变型共生菌株群体间存在显著性差异或相关性;(4)聚类分析表明菌株按各形态型聚在一起,但地域群体或天麻变型共生菌株群体的菌株未按各自群体聚类,揭示出菌株表型变异的复杂性。进一步的分析表明,天麻共生蜜环菌菌株群体丰富的表型多样性可能是其长期适应多物种间的相互作用及复杂的生境变换所产生的适应性进化结果,对生境变化有着较强的适应性表型可塑性。相比于经度、纬度和土壤类型等环境因子,海拔梯度对蜜环菌菌株群体的表型性状变异的影响较弱,说明缺乏地理隔离的频繁基因流可能削弱表型生境适应性分化。天麻与蜜环菌间的非对称性相互作用可能是不同天麻变型共生蜜环菌群体间表型性状呈现倾向性的适应性变异的原因,天麻与蜜环菌间可能存在非对称性的协同进化。
     本研究同时采用ISSR分子标记对西部7个地理位置的与天麻共生的90个蜜环菌菌株进行遗传多样性以及遗传分化分析。6对ISSR引物共检测到169个位点,其中多态位点167个。在物种水平上,Nei的基因多样性指数H和Shannon多样性指数1分别为0.2616和10.4190。7个居群中,五峰居群具有最高水平的遗传多样性。7个地理居群间的遗传分化系数Gst为0.1863,居群间基因流Nm=2.1838。Mantel检验结果表明居群地理距离与遗传距离间无显著相关(r=0.09413,P=0.8292),表明蜜环菌居群的遗传分化符合Wright的地理距离分化模式。湖北西部天麻共生蜜环菌具有较高水平的遗传多样性,且在蜜环菌居群内发生了较大程度遗传分化(81.37%),表明这些天麻共生蜜环菌菌株进行无性克隆繁殖的几率较小。ISSR分子标记研究的三种天麻变型共生蜜环菌群体的遗传分化较小(Gst=0.0299),表明天麻变型对共生蜜环菌的遗传分化影响较小。ISSR分子标记与表型性状变异分析这两种方法检测出蜜环菌基因组的不同部分,结果可以互为补充。
Abstract Reciprocal phenotypic change may arise from back-and-force interaction of the species in symbiotic relations or host-parasite pair. Besides, adaptive phenotypic plasticity can occur in fluctuating environment. Therefor, analysis about adaptive phenotypic variance is important for better understanding of flexibility in changeable environment and coevolutionary mechanism between the interactive species. Among many orchid-mycorrhizal fungi pair, Gastrodia elata - Armillaria mellea symbiont was studied in this text for the special relation between them. Using sampling strategy of one A.mellea individual mapping to another G. elata unit, phenotypic diversity of 6 qualitative characters and 6 quantitative characters of 90 A.mellea individuals were observed , which associated with three different G. elata forms in 7 divisions of the Three-Gorge reservoir area in Hubei province. Totally 25 morphological groups of A.mellea were described based on traits of the 6 qualitative characters. A.mellea groups coexisted with different G.elata forms were of distinct main morphology types and peculiar ones. The phenotypic diversity level of the total Armillaria mellea group was high (H_(mt)=3.009; H=0.9712). Phenotypic diversity level of the populations of the 7 divisions varies by a wider margin(H_(mt):1.242-2.607; H: 0.4736-0.9249) than which of the groups coexisted with different G.elata forms(H_(mt): 2.395-2.61; H: 0.7723-0.930), and phenotypic differentiation among populations of the 7 divisions was obvious. Variance analysis revealed signifiant phenotypic variance of A.mellea group classified by environment gradients, and there was significantly obvious correlation between phenotypic variance of these groups and environmental factors. Also, there was signifiantly phenotypic variance among the A.mellea group coexisted with different G.elata forms , and significantly obvious correlation between phenotypic variance of the three groups and environmental factors. Clustering analysis showed that A.mellea individuals were not clustered by distinct divisions of the sampling area, nor by G.elata forms in symbiosis . However, the A.mellea individuals of the same morphological types were grouped together. Further analysis results showed that the high phenotypic diversity of A.mellea group associated with G.elata may have resulted both from its long-term interaction with more other species and effects of fluctuating environment, consequently make the A.mellea group have the properties of adaptive phenotypic plasticity in complex and changeable environment. Compared to other environmental factors, such as longtitude, latitude ,and soil type, the effects of altitude gradients on phenotypic variance of A.mellea was weaker, indicating frequent gene flow of less geography isolation may weaken the adaptive phenotypic differentiation. The remarkable tendency of different G. elata forms toward A.mellea groups of different phenotypic variance may arised from the asymmetrical interacting effects of the two species, indicating the existence of asymmetrical coevolutionary relation between G.elata and A.mellea.
     The genetic polymorphisms and genetic differentiation of the 7 Armillaria mellea populations in Three-Gorge reservoir area, including 90 individuals, were analyzed using inter-simple sequence repeats (ISSR) markers. Totally 169 bands were obtained using 6 ISSR primers, of which 167 bands were polymorphic. At species level, Nei's diversity index (H) and Shannon's diversity index(I) were 0.3362 and 0.4976, respectively. The genetic diversity level of WF populaton was higher than other populations. Genetic differentiation coefficient and gene flow value among 7 populations was 0.1863(Gst) and 2.1838, respectively. Mantel test showed weak correlation between genetic and geographic distances among 7 populations(r=0.09413, P=0.8292), not closing to the 'Isolation-by-distance Model'. In addition to high level of intraspecific diversity, 81.37% genetic differentiation within the populations , indicated that reproduction in Armillaria mellea which coexisted with Gastrodia elata in Three-Gorge reservoir area cannot be exclusively colonal. ISSR markers indicated very little molecular variance among the three Armillaria mellea groups which associated with different kinds of Gastrodia elata forms (Gst=0.0299) , suggesting weak effects of Gastrodia elata forms on Armillaria mellea 's genetic differentiation .We also compared the results from two methods, i.e. ISSR markers and phenotypic variance analysis , which revealed different parts of genosome of Armillaria mellea and the results they revealed complemented each other.
引文
Agrawal A A. 2001.Phenotypic plasticity in the interactions and evolution of species. Science, 294,321 -326.
    
    Alexander C , Hadley G. 1985 .Carbon movement between host and mycorrhizal endophyte during the endophyte during the development of the orchid Goodyera repens Br. New Phytol, 101,401 —411.
    Anderson JB, Ulirich RC, Roth LI, {and others}. 1979. Genetic identification of clones of Armillaria mellea in coniferous forests in Washington. Phytopathology, 69( 10), 1109—1111.
    Ash GJ, Raman R, Crump NS. 2003. An investigation of genetic. variation in Carthamus lanatus in New South Wales,Australia, using. intersimple sequence repeats (ISSR) analysis. Weed Res, 43, 208-213.
    
    Ashen JB , Goff LJ. 2000. Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Applied and Environmental Microbiology, 66, 3024-3030.
    
    Bending GD, Read DJ .1995. The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol, 130,401 -409.
    
    Bidartondo, MI, Baar J, Bruns TD. 2001. Low ectomycorrhizal inoculum potential and diversity from soils in and near ancient forests of brisdecone pine (Pinus longaeva ). Can J. Bot.Rev., 79, 293— 299.
    Bidartondo MI, Bruns TD. 2002. Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Molecular Ecology, 11,557—569.
    Bidartondo, M.I. and Bruns, T.D. 2005. On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Molecular Ecology 14, 1549—1560.
    Borowicz VA, Juliano SA .1991. Specificity in host-fungus associations: Do mutualists differ from antagonists? Evolutionary Ecology, 5, 385—392.
    Bradshaw, A.D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155.
    Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants, New Phytol, 154, 275 — 304.
    Buckling A , Rainey PB. 2002. The role of parasites in sympatric and allopatric host diversification. Nature, 420, 496-499.
    Burgeff, H. 1936. Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen. Jena: Gustav Fischer.
    Coetzee MPA, Wingfield BD, Harrington TC, Steimel J, Coutinho TA, Wingfield MJ. 2001. The root rot fungus Armillaria mellea introduced into South Africa by early Dutch settlers. Molecular Ecology, 10, 387—396.
    Darwin, C., 1872. Origin of Species, Sixth Edition. Senate, London.
    Dettman JR, van der Kamp BJ 2001. The population structure of Armillaria ostoyae and Armillaria sinapina in the central interior of British Columbia .Can. J. Bot, 79, 600—611.
    Doebeli M. 1996. A quantitative genetic competition model for sympatric speciation. Journal of Evolutionary Biology, 9, 893—909.
    Doty JE, Cheo PC. 1974. Light inhibition of thallus growth of Armillaria mellea. Phytopathology, 64, 763—764.
    Esselman EJ, Jianqiang L, Crawford DJ, Windus JL, Wolfe AD. 1999. Clonal diversity in the rare Calaltitudegrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. Molecular Ecology, 8, 443—451.
    Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondria DNA restriction sites. Genetics, 131, 479—491.
    Fox R T V. 2000. Armillaria root rot: biology and control of honey fungus. An dover: Intercept, 222.
    Gibson AH. 1962. Genetic variation in the effectiveness of nodulation of lucerne varieties. Aust. J. Agric. Res., 13: 388—399
    Hadley G. 1982. Orchid mycorrhiza. In Arditti (ed.), Orchid Biology: Reviews and Perspective Ⅱ Cornell University Press, Ithaca. New York, 85—118.
    Horton TR, Bruns TD. 2001. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology, 10, 1855—1871.
    Kim W K, Mauthe W, Hausner G, Klassen G R. 1990. Isolation of high molecular weight DNA and double stranded RNAs from fungi. Can J Bot, 68, 1898—1902
    Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
    Lapchin, L., T. Guillemaud. 2005. Asymmetry in host and parasitoid diffuse coevolution: when the red queen has to keep a finger in more than one pie. Front Zool, 2, 4.
    Mishra PK, Fox RTV, Culham A. 2003. Inter-simple sequence repeat and aggressiveness analyses revealed high genetic diversity, recombination and long range dispersal in Fusarium culmorum. Ann Appl Biol 143, 291 -301.
    Mishra PK, Tewari JP, Clear RM, Turkington TK. 2006. Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada. Internatl. Microbiol, 9, 65-68.
    Molina R, Massicotte H, Trappe J M. 1992. Specificity phenomena in mycorrhizal symbiosis: community- ecological consequences and practical implication. In: M F Allen. ed. Mycorrhizal Functioning. London: Chapman and Hall. 357—423.
    
    Morrison DJ. 1981. Armillaria root disease: a guide to disease diagnosis, development and management in British Columbia. BC-X-23.Victoria, BC: Canadian Forestry Service, Pacific Forest Research Centre. 15p.
    
    Morrison DJ. 1989. Pathogenicity of Armillaria species is related to rhizomorph growth habit. In: Proc. 7th Int. Conf. Root and Butt Rots, Victoria and Vernon, British Columbia, Canada, 9—16 August 1988. Ed. by Morrison, D. J. Victoria, BC: Forestry Canada, 584—589.
    
    Muller R, Pasberg-Gauhl C, Gauhl F, Rsoiler J, Kahl G. 1997. Oligonucleotide fingerprinting detects genetic variability at different levels in Nigerian Mycosphaerella fijiensis. Journal of Phytopathology, 145, 25—30.
    Mwenje E, Ride JP. 1996. Morphological and biochemical characterization of Armillaria isolates from Zimbabwe. Plant Pathology 45, 1036 — 1051.
    Nei M .1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321 —3323.
    
    Nei M .1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583-590Raabe, R.D. Host list of the root rot fungus, Armillaria mellea. Hilgardia. 1962, 33(2), 23-88.
    Novoplansky A. 2002. Developmental plasticity in plants: implications of noncognitive behavior. Evolutionary Ecology, 16, 177—188.
    Nuismer SL, Otto SP .2005. Host-parasite interactions and the evolution of gene expression. PLoS Biol, 3(7):e203.
    Nybom H . 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13, 1143 — 1155.
    Onsando JM. 1986. Armillaria root rot (Armillaria mellea), an important disease of tea (Camellia sinensis) in Kenya. Tea, 7(1), 25—28.
    Otero JT, Ackerman JD, Bayman P. 2002. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. American Journal of Botany, 89(11), 1852—1858.
    Otero JT, Ackerman JD, Bayman P. 2004. Differences in mycorrhizal preferences between two tropical orchids. Molecular Ecology, 13(8), 2393-2404.
    Otieno W, Sierra AP, Termorshuizen A. 2003. Characterization of Armillaria isolates from tea (Camellia sinensis) in Kenya. Mycologia. 95, 160-175.
    Peng Yan-qiong, Yang Da-rong, Wang Qiu-yan. 2005. Quantitative tests of relationship between pollinating and non-pollinating fig wasps on Ficus hispida.Ecological Entomology, 30,70-77.
    Peterson RL, Currah RS. 1990. Synthesis of mycorrhizae between protocorms of Goodyera repens (Orchidaceae) and Ceratobasi di um cereale. Can J Bot , 68,1117-- 1125.
    Raabe, R.D. (1962)Host list of the root rot fungus, Armillaria mellea. Hilgardia. 33(2), 23-88.
    Rasmussen H. Cell differentiation and mycorrhizal infection Dactylorhiza majalis (Rchb. f. ) Hunt & Summerh. (Orchidaceae) during fermination in vitro. New Phytol, 1990,116,137-- 147.
    Rasmussen, H.N. 1995. Terrestrial orchids: From Seeds to Mycotrophic Plants. Cambridge University Press, New York
    Redfern, D.B., and Filip, G.M. 1991. Inoculum and infection. In Armillaria root disease. Edited by C.G. Shaw, Ⅲ, and G.A. Kile. United States Department of Agriculture, Forest Service Agricultural Handbook. No. 691.
    Riday, H., E. C. Brummer, T. A. Cambell, and D. Luth, 2003. Comparison of genetic and morphological distance with heterosis between Medicago sativa and subsp, falcata. Euphytica
    Rishbeth J. 1968. The growth rate of Armillaria mellea. Transactions of the British Mycological Society, 51,575--586.
    Roderick GK, Gillespie RG. 1998. Speciation and phylogeography of Hawaiian terrestrial arthropods. Molecular Ecology, 7, 519-- 531.
    Rohlf FJ .2000. NTSYSpc." Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software, Setauket, New York.
    Schluter.D. 2000. Ecological character displacement in adaptive radiation. Am. Nat. 157(suppl.), S4--S16.
    Schaal BA, Leverich WJ, Rogstad SH. 1991. Comparison of methods for assessing genetic variation in plant conservation biology. In: Genetics and Conservation of Rare Plants (eds Falk DA, Holsinger KE), pp. 123-- 134. Oxford University Press, New York.
    Schlichting C D, Pigliucci M. 1998. Phenotypic Evolution: a Reaction Norm Perspective. Sinauer Press, Sunderland, Massachusetts.
    ShawⅢ CG, Rath LF. 1976. Phytopath, 66, 1210--1213.
    Shaw, C.G., Ⅲ; Roth, L.F .1978. Control of Armillaria root rot in managed coniferous forests: a literature review. European Journal of Forest Pathology. 8(3), 163—174.
    Schwarze FWMR, Baum S, Fink S. 2000. Resistance of fibre regions in wood of Acer pseudoplatanus degraded by Armillaria mellea [J]. Mycol Res. 104, 1126—1132.
    Smith AM, Griffin DM. 1971.Oxygen and the ecology of Armillaria elegans Heim. Australian Journal of Biological Sciences, 24,231—262.
    Sun P, Yang XB. 1999. Two properties of a gene-for-gene coevolution system under human perturbations. Phytopathology, 89, 811-816.
    Takasu F. 1998. Modelling arms race in avian brood, parasitism. Evol Ecol, 12, 969-987.
    Tan GY, Tan WK. 1986. Interaction between alfalfa cultivars and Rhizobium strains for nitrogen fixation. Theoretical and Applied Genetics, 71, 724—729.
    Taylor DL, Bruns TD. 1997. Independent, specialized invasions of the ectomycorrhizal mutualism by two non-photosynthetic orchids. Proceedings of the National Academy of Sciences of the USA, 94, 4510—4515.
    Taylor JW, Jacobsen DJ, Fisher MC. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu.Rev. Phytopath, 37, 197—246.
    Taylor DL, Bruns TD. 1999. Population, habitat and genetic correlates of mycorrhizal specialization in the 'cheating' orchids Corallorhiza maculata and C.mertensiana. Molecular Ecology, 8, 1719—1732.
    Thompson JN, Burdon JJ. 1992. Gene-for-gene coevolution between plants and parasites. Nature, 3110,121—125.
    Thompson JN 1994. The Coevolutionary Process. University of Chicago Press, Chicago, IL.
    Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevolution[J].Am Nat,153, 1-14.
    Wargo PM, Shaw CG Ⅲ. 1985. Armillaria root rot: the puzzle is being solved. Plant Disease 69(10), 826—832.
    Webster JP, Davies C. 2001. Coevolution and compatibility in the snail-schistosome system [J]. Parasitology, 123(suppl), 41—56.
    Weinhold AR, Hendrix FF, Raabe RD. 1962. Stimulation of rhizomorph growth of Armillaria mellea by indo - 3 - acetic acid and figwood extract. Phytopathology, 52, 757.
    Williams RW, Shaw CG Ⅲ, Wargo PM, Sites WH. 1986. Armillaria root disease. USDA Forest Service, Forest Insect and Disease Leaflet 78. 8 pp.
    Wright S. 1946. Isoation by distance under diverse systems of mating. Genetics.31, 39-59.
    Yeh FC, Yang RC, Boyle T .1999. POPGENE, Microsoft Windows-based Freewarefor Population Genetic Analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Canada.
    Zettler, L.W. 1998. Propagation of the little culb-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environ. Exp. Bot. 39, 189—195.
    Zietkiewicz E, Rafalski A, Labuda D. 1994. Genome fingerprinting by simple sequence repeat (ssr)-anchored polymerase chain reaction amplification[J]. Genomics, 20, 176—183.
    Zhou Z, Miwa. M. Hogetsu T. 1999. Analysis of genetic structure of a Suillus grevillei population in a Larix kaempferi stand by polymorphism of inter-simple sequence repeat (ISSR). New Phytol, 144, 55—63.
    陈明义,李福后,边银丙.2004.蜜环菌不同菌株对天麻产量的影响[J].食用菌学报. 11(1), 46—48.
    陈瑞蕊,林先贵,施亚琴.兰科菌根的研究进展[J].2003.应用与环境生物学报, 9(1),97—101.
    陈天寿.1995.微生物培养基的制造与应用[M].中国农业出版社, 275—288.
    邓艳芹,李作洲,王传华,黄宏文.2007.琼脂固体培养基培养蜜环菌菌索总DNA的提取[J].武汉植物学研究(in press).
    葛颂,洪德元,1994.遗传多样性及其检测方法[M].见:钱迎倩,马克平(主编),生物多样性研究的原理与方法.北京:中国科学技术出版社,123—140.
    郭顺星,徐锦堂.1992.蜜环菌菌索发育的研究[J].真菌学报, 11(4),308—313.
    贺伟,秦国夫,沈瑞祥.1996.Biological species of Armillaria mellea in the greater Xingan mountains and the Changbai mountains in China.Acta Mycologica Sinica,15(1),9-16.
    胡忠,杨增明,王均.1988.天麻球茎中一种抗真菌蛋白的分离和部分特性[J].云南植物研究. 10(4),373—380.
    胡忠,黄清藻,刘小烛,杨俊波.天麻抗真菌蛋白GAFP-Ⅰ的一级结构和cDNA克隆[J].云南植物研究,1999,21,131—138.
    孔小卫,沈业寿,王满朝,洪登华.2003.蜜环菌多糖Am—Ⅰ的部分理化性质及结构研究[J], 食品科学,24(7),23—26.
    兰进,徐锦堂,李京淑.1994.蜜环菌和天麻共生营养关系的放射性自显影研究[J].真菌学报, 13(3),219—222.
    兰进,徐锦堂,李京淑.1996.蜜环菌侵染天麻的放射自显影研究[J].核农学报, 10(2),123 —125.
    黎裕,贾继增,王天宇.1999.分子标记的种类及其发展[J].生物技术通报, 4,19—22.
    刘小勇,田素忠,秦国夫,沈瑞祥.1997.提取植物和微生物DNA的SDS-CTAB改进法[J].北京林业大学学报,19(3),100—103.
    秦国夫,贺伟,沈瑞祥.1996.中国蜜环菌生物种的RAPD分析[J].真菌学报, 15(1),26.
    秦国夫,赵俊,田淑敏,Hantula J.2001.北半球高卢蜜环菌的遗传多样性与分子鉴定[J].林业科学,37(2),61—68.
    沈业寿,洪毅.1999.蜜环菌多糖分离纯化及其部分理化性质[J].中国食用菌,18(1),38—40.
    孙立夫,杨国亭,秦国夫,宋玉双,宋瑞清.2003.用ISSR标记研究高卢蜜环菌系统发生学的尝试[J].植物研究,23(3),317-322.
    王传华,王义敏,暴朝霞,李作洲.2005.一种优化的蜜环菌分离与纯化方法[J].武汉植物学研究,23(5),478—481.
    王德利.2004.植物与草食动物之间的协同适应及进化[J].生态学报, 24(11),2641—2648.
    王经源,郭明亮,林文雄,等.2004.高多糖含量植物:莲DNA的提取方法[J].福建稻麦科技, 22(1), 8.
    王利民,唐建国.1999.从琼脂糖电泳凝胶中回收DNA的几种简便方法[J].生命科学研究,3 (2),128—132.
    王秋颖,郭顺星,关凤斌.2001.不同来源蜜环菌对天麻产量影响的研究[J].中草药, 32(9), 838—841.
    王伟继,孔杰.2002.ISSR—PCR在对虾中的应用初步研究[J].海洋水产研究, 23(1),1—4.
    魏宇昆,高遇葆,李川,许华,任安芝.2006.内蒙古中东部草原羽茅内生真菌的遗传多样性[J].植物生态学报,30(4),640—649
    吴会芳,李作洲,黄宏文.2006.湖北野生天麻的遗传分化及栽培天麻种质评价[J].生物多样性,14(4),315-326.
    吴静萍,郑师章.1994.密花石斛菌根分离鉴定及其代谢产物的测定[J].复旦学报(自然科学版), 33(5),547—552.
    徐锦堂.1993.天麻栽培学[M].北京:北京医科大学、中国协和医科大学联合出版社, 1—294.
    徐锦堂,郭顺星.1989.供给天麻种子萌发营养的真菌—紫萁小菇[J].真菌学报, 8(3),221—226.
    徐锦堂,范黎.2001.天麻种子/原球茎和营养繁殖茎被菌根真菌定殖后的细胞分化[J].植物学报,43(10),1003—1010.
    杨大荣,彭艳琼,张光明,等.2003.西双版纳热带雨林聚果榕榕果的昆虫群落结构与多样性[J].应用生态学报, 14(10),1710—1714.
    杨君,王茜,刘美华,等.1999.一种简便的海藻DNA提取方法[J].生物技术, 9(4),39—42.
    杨世林,兰进,徐锦堂.2000.天麻的研究进展[J].中草药,31(1),66.
    杨新美.1996.食用菌栽培学[M].北京:中国农业出版社, 211.
    于敏,沈业寿.2002.蜜环菌菌索多糖对小鼠血糖及急性毒性作用研究[J].中国食用菌,21(1), 35~37.
    袁崇文,刘智,袁玉清,等.2002.中国天麻[M].贵阳:贵州科技出版社.
    张维经,李碧峰.1980.天麻与蜜环菌的关系[J].植物学报, 22(1),57—62.
    中国医学科学院药物研究所药理室新药组.1977.天麻水剂及蜜环菌发酵液对神经系统的药理作用[J].中华医学杂志,(8),470—472.
    周铉,陈心启.1983.国产天麻属植物的整理[J].云南植物研究, 5(4),361—368.
    邹喻苹,葛颂.2001.系统与进化植物学中的分子标记[M].北京:科学出版社.
    邹容,康冀川.2005.蜜环菌研究进展[J].山地农业生物学报,24(3),260—264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700