用户名: 密码: 验证码:
条锈菌诱导的小麦β-1,3-葡聚糖酶基因的表达特征分析及条锈菌基因功能验证体系建立的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由条形柄锈菌小麦专化型(Puccinia striiformis Westend. f. sp. tritici Eriks.,Pst)引起的世界范围内小麦生产上危害最为严重的一类病害,已成为影响小麦生产可持续性发展的限制因素。长期以来,国内外的锈病工作者围绕该病害开展了各项系统的研究,已在条锈病流行规律、综合防治等方面取得了重大成就。在寄主和病原菌互作方面,也已从组织学,细胞化学及生物化学等方面展开了一系列的讨论。但关于互作的分子机理以及病原真菌的基因功能方面尚未展开深入的研究。本论文则围绕小麦条锈菌及其与小麦互作的体系,主要开展了两大部分具体三方面的研究工作。
     1.条锈菌诱导的小麦β-1,3-葡聚糖酶基因的表达特征分析
     对条锈菌诱导的一种小麦β-1,3-葡聚糖酶基因TaGlu进行了基因组全长的克隆、生物信息学分析及在互作过程中的表达特征分析。TaGlu编码334个氨基酸组成的蛋白前体TaGLU,属于Glycoside hydrolase-family 17,具有Glycoside hydrolase catalytic core结构域,含有一个28个氨基酸构成的信号肽和一个跨膜区。进化树分析表明TaGLU和来源于小麦、大麦、水稻的碱性不具C末端延伸的葡聚糖酶亲缘关系较近。
     在转录水平上,TaGlu受条锈菌的诱导表达,且亲和与非亲和组合中的表达变化趋势基本一致,只是在表达强度上,非亲和组合要高于亲和组合。此外,SA、MeJA和ET均能诱导TaGlu的快速积累,暗示TaGlu是通过多途径参与抗病防御反应。
     以TaGlu的原核表达产物作为抗原,通过免疫实验家兔制备了抗血清,并纯化获得了该酶的特异性多克隆抗体Anti-TaGLU。ELISA分析表明制备的抗体具有较高的效价。Western blot结果显示,TaGLU在接种后24 h的亲和及非亲和组合中均有积累,但在未接种对照中没有积累或积累量很小检测不到,且没有和其他已报道不同分子量的小麦葡聚糖酶发生免疫学反应。TaGLU的免疫胶体金标记发现,在接种条锈菌后,该酶主要分布于寄主细胞壁和病原菌的吸器外间质中,且非亲和反应的标记密度要远高于亲和组合,表明TaGLU参与了小麦的抗条锈反应。
     2.条锈菌无毒基因筛选体系建立的初探
     前期借助生物信息学分析,从小麦条锈菌夏孢子、萌发夏孢子及吸器等cDNA文库中获得了大量候选无毒基因序列。但由于条锈菌是严格专性寄生菌,无法获得纯培养,缺乏行之有效的转化方法,因此无法用传统遗传学进一步明确这些基因的功能。本研究基于多数无毒基因产物在含相应抗病基因的寄主中产生HR的思路,利用小麦内生菌实现候选基因在植株体内的表达,通过产生HR表型变化,从而达到分离鉴定无毒基因的目的。
     从小麦品种AVS、YR5、YR8、YR39拔节期叶片中共分离得到4种内生细菌WS、WR、YR和PR。通过对它们的基本生长特性研究,选择了具有三型分泌系统(TTSS)的Pseudomonas aeruginosa(WS)作为体系的介导细菌。构建了含有水稻病原菌Xanthomonas oryzae pv. oryzicola无毒基因avrRxo1的Gateway表达载体,转化至WS后渗透含有相应抗性基因Rxo1的玉米叶片,观察到了明显的过敏性坏死反应。说明该系统可以成功的在叶片中表达外源的无毒基因,并诱发相应的抗性植株产生HR。该研究为条锈菌Avr基因的鉴定及进一步利用无毒基因进行相应R基因的分离奠定基础。
     3.根癌农杆菌介导的小麦条锈菌遗传转化体系构建的探索
     小麦条锈菌是担子菌亚门一种严格专性寄生的病原真菌,无法在人工培养基上完成其生活史。建立一套适用于基因功能分析的稳定遗传转化体系对深入开展小麦条锈菌的功能基因组学研究显得尤为迫切。本研究首次选择根癌农杆菌介导的方法,进行了小麦条锈菌遗传转化的探索。
     研究构建了由小麦杆锈菌(Puccinia graminis f. sp. tritici,Pgt)elongation factor 1α基因启动子Ef-1α控制的以潮霉素B为选择标记、红色荧光蛋白(RED)为报告基因的双元载体,建立了四种共培养方法,获得了一批检测呈阳性、外源标记基因可能成功插入条锈菌基因组的转化后代。明确了根癌农杆菌转化方法在小麦条锈菌遗传转化体系构建上的可行性,为稳定遗传转化体系的建立并通过其进行功能基因组学方面的研究提供方法和思路。
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is a serious fungal disease of wheat worldwide. Epidemics of the disease cause huge yield losses and downgrading in grain quality. Great achievements have been made in epidemiology and disease control. Systemic research on the mechanism between wheat-Pst has been extensively carried out at the histology, cytology, and biochemical aspects. However, little was known about the molecular interaction between the host and microbe as well as the gene function of the fungi. In this present thesis, two major parts including three aspects related to Puccinia striiformis and the wheat-Pst interaction system were represented.
     1. Expression profile of a wheatβ-1,3-glucanase gene induced by Pst
     To investigate the role ofβ-1,3-glucanase (EC 3.2.1.39) in the resistance response of wheat (cv. Suwon 11) to stripe rust, a wheatβ-1,3-glucanase gene induced by Pst, designated as TaGlu, was cloned and characterized. TaGlu was predicted to encode a basic protein of 334 amino acids. Quantitative real-time PCR analysis revealed that the transcript of TaGlu was induced during both compatible and incompatible interactions with Pst, but the transcription level was much higher in the incompatible interaction than that in the compatible interaction. TaGlu also showed noticeable induction of gene expression in young green leaf tissues treated with salicylic acid, methyl jasmonate or ethylene. Immunogold labeling assay showed that the gold particles were localized mainly in the host cell wall and over the extrahaustorial matrix, and the labeling densities were found significantly higher in the incompatible interaction than those in the compatible interaction.
     2. Primary study of development of Pst avirulence gene screening system
     A large quantity sequences of putative avirulence genes have been selected from different cDNA libraries of Pst based on their bioinformatics analysis. However, their functions were not identified due to the reason that gene function investigation system of Pst is unavailable. To overcome the limitations of existing methods to identify Pst avirulence genes, a strategy based on functional expression that exhibit HR-based resistance was repersented in this study.
     Four gram-negative bacteria endophytes (WS, WR, YR and PR) were isolated from four wheat adult plants. WS, which identified as Pseudomonas aeruginosa, was then used as a“microorganism-vector”to delivery and express Pst genes in plant leaves based on its growth characteristics and the the type III secretion system. A gateway expression vector containing Xanthomonas oryzae pv. oryzicola avirulence gene avrRxo1 was constructed and transformed into WS. After infiltration of the endophyte into the leaves of the cron cultivar which have related resistant gene Rxo1, an obvious HR was observed. The result indicated this system was able to delivery and express foreign gene in plant leaves. However, considering the problem of stability, the system still needs improvements before screening Pst avirulence genes.
     3. Primary study of Agrobacterium-mediated transformation of Puccinia striiformis
     The biotrophic fungus, Pst, can not be cultured on the artificial medium and does not have known alternate host. It is difficult to use conventional genetic approaches to study the gene function. In order to facilitate the employment of molecular genetic techniques with Pst, the establishment of a transformation system for this fungus is required. Previous attempts of the Ps transformation were all based on particle bombardment.
     Here, we introduced DNA into urediospores by using the Agrobacterium-mediated transformation system. The vector p13Ef-HYG-RED was builded up by inserting stem rust Ef-1αpromoter controled hph and Red genes fragment into pCAMBIA1302. 4 co-cultivation methods were established and got certain collections of putative transformants. These results could be very important for stable transformation system development of rust fungus.
引文
蔡应繁,叶鹏盛,张利,赖家业. 2001.β-1,3-葡聚糖酶及其在植物抗真菌病基因工程中的应用.西南农业学报,14(02): 78~81
    迟彦,周东坡,平文祥,李姗姗,朱婧. 2005.根癌农杆菌介导的真菌遗传转化及其应用.菌物学报,24(04): 612~619
    崔素萍. 2005.小麦受条锈菌侵染后防卫基因的表达及其克隆[博士学位论文].杨凌:西北农林科技大学
    杜良成,王钧. 1990.病原相关蛋白及其在植物抗病中的应用.植物生理学通讯,(4): 1~6
    方中达. 1998.植病研究方法.北京:中国农业出版社
    高晓蓉,安利佳,范琦,李文利,康晓慧. 2000.大豆β-1,3-葡聚糖酶基因的研究初报.农业生物技术学报,6(03): 240~247
    高兴喜,杨谦. 2004.根癌农杆菌介导的CryIA(b)基因在哈茨木霉菌中的转化.科学通报,49(21): 2193~2197
    高兴喜,杨谦. 2005.根癌农杆菌介导的CryIA(b)基因在毛壳菌中的转化.农业环境科学学报,24(1): 22~25
    黄亚丽,潘玮,蒋细良,郭平,田云龙,李记鹏,朱昌雄. 2007.根癌农杆菌介导丝状真菌遗传转化的研究进展.生物技术通报,(03): 111~114
    黄玉杰,杨合同,陈凯,周红姿. 2005.利用根癌农杆菌介导的转化方法改良木霉菌(英文).山东科学,18(03): 30~35
    蒋选利. 2002.小麦与条锈菌相互作用的超微结构、细胞化学和分子细胞学研究[博士学位论文].杨凌:西北农林科技大学
    康振生. 1996.植物病原真菌的超微结构植物病原真菌的超微结构.北京:中国科技出版社
    康振生,李振岐. 1984.罗夫林10常温致病新菌系的发现.西北农学院学报,4: 18~28
    蓝海燕,陈正华. 1998.葡聚糖酶及其在植物中的发育调节和防卫反应.生物技术通报,(04): 10~15
    蓝海燕,王长海,张丽华,刘桂珍,王岚兰,陈正华,田颖川. 2000.导入β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究.生物工程学报,16(02): 142~146
    蓝海燕,张丽华,王兰岚,陈正华,田颖川,陈正华,王长海. 2000.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报,27(01): 70~77
    李刚,王强,刘秋云,李宝健. 2004.利用PEG法建立药用真菌灵芝的转化系统.菌物学报,23(2): 255~261
    李模孝. 2004.盾壳霉T-DNA标记插入突变体库的构建及其质量评估[硕士学位论文].武汉:华中农业大学
    李维,张义正. 2005.根癌农杆菌介导的白腐丝状真菌-黄孢原毛平革菌的转化.微生物学报,45(5): 784~786
    李振岐. 1995.植物免疫学.北京:中国农业出版社
    李振岐. 1998.我国小麦品种抗条锈性丧失原因及其控制策略.大自然探索,17(04): 21~25
    李振岐,曾世迈. 2002.中国小麦条锈病.北京:中国农业出版社
    廖玉才,李和平,Fischer R. 1997.四甲基氯化铵在PCR扩增小麦基因中的关键作用.遗传,19(02): 1~4
    楼兵干,张炳欣,Ryder M. 2001.铜绿假单胞菌株cr56在黄瓜和番茄根围的定殖能力.浙江大学学报(农业与生命科学版),27(02): 183~186
    芦晓飞. 2005.小麦-条锈菌互作系统中几种蛋白因子的研究[硕士学位论文].杨凌:西北农林科技大学
    马金彪,王晓杰,于秀梅. 2007.条锈菌诱导的小麦叶片cDNA文库构建及表达序列标签分析.植物病理学报,37(3): 265~270
    马青. 2000.小麦高温抗锈性和慢锈性品种与条锈菌互作的特点及超微结构研究[博士学位论文].杨凌:西北农业大学
    王关林,方宏筠. 1998.植物基因工程原理与技术.北京:科学出版社
    王晓杰. 2009.小麦与条锈菌互作机理研究及抗条锈相关基因的功能分析[博士学位论文].杨凌:西北农林科技大学
    王阳,王美南,张如佳. 2006.基因枪法转化基因在小麦条锈菌中的瞬时表达.西北植物学报,26(6): 1115~1118
    王瑶. 1996.小麦对条锈病低反应型抗性的组织学和细胞学研究[硕士学位论文].杨凌:西北农业大学
    王忠华,贾育林,夏英武. 2004.植物抗病分子机制研究进展.植物学通报,21(05): 521~530
    邢全华,王斌. 2002.植物葡聚糖酶基因抗病作用的研究进展.遗传,24(06): 715~720
    于秀梅,喻修道,屈志鹏. 2007.条锈菌诱导的小麦抑制差减杂交文库构建及其表达序列标签研究.植物病理学报,37(1): 50~55
    喻修道,屈志鹏,郭军. 2008.小麦与条锈菌亲和互作的差减文库构建及初步分析.中国农业科学,41(5): 1267~1273
    张如佳,王阳,王美南. 2007.基因枪介导小麦条锈菌毒性突变的研究.西北农林科技大学学报(自然科学版),35(5): 87~91
    钟耀华. 2007.农杆菌介导的瑞氏木霉T-DNA插入突变及生长代谢突变子分析[博士学位论文].济南:山东大学
    周礼红,李国琴,王正祥,诸葛健. 2005.红曲霉原生质体的制备、再生及其遗传转化系统.遗传,27(03): 423~428
    Abuodeh R O, Orbach M J, Mandel M A, Das A, Galgiani J N. 2000. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis, 181(6): 2106~2110
    Ahl Goy P, Felix G, Metraux J, MEINS F. 1992. Resistance to disease in the hybrid Nicotiana glutinosa x Nicotiana debneyi is associated with high constitutive levels of beta-1,3-glucanase, chitinase, peroxidase and polyphenoloxidase. Physiol Mol Plant Pathol, 41(1): 11~21
    Akamatsu H, Itoh Y, Kodama M, Otani H, Kohmoto K. 1997. AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology, 87(9): 967~972
    Amey R, Mills P, Bailey A, Foster G. 2003. Investigating the role of a Verticillium fungicola beta-1,6-glucanase during infection of Agaricus bisporus using targeted gene disruption. Fungal Genet Biol, 39(3): 264~275
    Anfoka G and Buchenauer H. 1997. Systemic acquired resistance in tomato against Phytophthora infestans by pre-inoculation with tobacco necrosis virus. Physiol Mol Plant Pathol, 50(2): 85~101
    Anguelova-Merhar V, Westhuizen A, Pretorius Z. 2001. Beta-1,3-glucanase and chitinase activities and the resistance response of wheat to leaf rust. J Phytopathol, 149(7-8): 381~384
    Anguelova V, van der Westhuizen A, Pretorius Z. 1999. Intercellular proteins and beta-1,3-glucanase activity associated with leaf rust resistance in wheat. Plant Physiol, 106(4): 393~401
    Antoniw J, Ritter C, Pierpoint W, Van Loon L. 1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol, 47(1): 79
    Anuratha C, Zen K, Cole K, Mew T, Muthukrishnan S. 1996. Induction of chitinases and beta-1,3-glucanases in Rhizoctonia solani-infected rice plants: Isolation of an infection-related chitinase cDNA clone. Physiologia Plantarum, 97(1): 39~46
    Arlorio M, Ludwig A, Boller T, Bonfante P. 1992. Inhibition of fungal growth by plant chitinases and beta-1,3-glucanases. Protoplasma, 171(1): 34~43
    B(o|¨)lker M, B(o|¨)hnert H, Braun K, G?rl J, Kahmann R. 1995. Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet, 248(5): 547~552
    Balhadère P, Foster A, Talbot N. 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant-Microbe Interact, 12(2): 129~142
    Bhairi S M and Staples R C. 1992. Transient expression of the beta-glucuronidase gene introduced into Uromyces appendiculatus uredospores by particle bombardment. Phytopathology, 82(9): 986~989
    Bills S, Richter D, Podila G. 1995. Genetic transformation of the ectomycorrhizal fungus Paxillus involutus by particle bombardment. Mycol Res, 99: 557~561
    Bol J, Buchel A, Knoester M, Baladin T, Loon L, Linthorst H. 1996. Regulation of the expression of plant defence genes. Plant Growth Regulation, 18(1): 87~91
    Bol J, Linthorst H, Cornelissen B. 1990. Plant pathogenesis-related proteins induced by virus infection. Ann Rev Phytopathol, 28(1): 113~138
    Boller T. 1987. Hydrolytic enzymes in plant disease resistance. In: Kosuge T. Plant-Microbe Interactions: Molecular and Genetic Perspectives. New York: Macmillan Publishing Company: 385~413
    Brown J. 1998. Seeing differently: A role for pioneering research. Res Technol Management, 41(3): 24~33
    Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas P. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO J, 14(13): 3206~3214
    Bundock P and Hooykaas P. 1996. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Nat Acad Sci, 93(26): 15272~15275
    Bundock P, Mroczek K, Winkler A, Steensma H, Hooykaas P. 1999. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol Gen Genet, 261(1): 115~121
    Campoy S, Perez F, Martin J, Gutierrez S, Liras P. 2003. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr genet, 43(6): 447~452
    Catanzariti A, Dodds P, Lawrence G, Ayliffe M, Ellis J. 2006. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. The Plant Cell Online, 18(1): 243
    Chang M, Culley D, Hadwiger L. 1993. Nucleotide sequence of a pea (Pisum sativum L.) beta-1,3-glucanase gene. Am Soc Plant Biol, 101(3): 1121~1122
    Chang M, Hadwiger L, Horovitz D. 1992. Molecular characterization of a peaβ-1,3-glucanase induced byFusarium solani and chitosan challenge. Plant Mol Biol, 20(4): 609~618
    Chaure P, Gurr S J, Spanu P. 2000. Stable transformation of Erysiphe graminis an obligate biotrophic pathogen of barley. Nat Biotechnol, 18(2): 205~207
    Chen X, Stone M, Schlagnhaufer C, Romaine C. 2000. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol, 66(10): 4510~4513
    Christensen A B, Cho B H, Naesby M, Gregersen P L, Brandt J, Madriz-Ordenana K, Collinge D B, Thordal-Christensen H. 2002. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol Plant Pathol, 3(3): 135~144
    Combier J P, Melayah D, Raffier C, Gay G, Marmeisse R. 2003. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett, 220(1): 141~148
    Conrads-Strauch J, Dow J, Milligan D, Parra R, Daniels M. 1990. Induction of hydrolytic enzymes in Brassica campestris in response to pathovars of Xanthomonas campestris. Plant Physiol, 93(1): 238~243
    Cordero M, Raventos D, San Segundo B. 1994. Differential expression and induction of chitinases and β-1,3-glucanases in response to fungal infection during germination of maize seeds. Mol Plant-Microbe Interact, 7(1): 23~31
    Covert S F, Kapoor P, Lee M H, Briley A, Nairn C J. 2001. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res, 105: 259~264
    Cruz-Ortega R, Cushman J, Ownby J. 1997. cDNA clones encoding 1,3-beta-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Am Soc Plant Biol, 114(4): 1453~1460
    Czernic P, Visser B, Sun W, SavouréA, Deslandes L, Marco Y, Van Montagu M, Verbruggen N. 1999. Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. The Plant J, 18(3): 321~327
    Dassi B, Dumas-Gaudot E, Gianinazzi S. 1998. Do pathogenesis-related (PR) proteins play a role in bioprotection of mycorrhizal tomato roots towards Phytophthora parasitica? Physiol Mol Plant Pathol, 52(3): 167~183
    de Groot M J, Bundock P, Hooykaas P J, Beijersbergen A G. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol, 16(9): 839~842
    De Wit P. 1992. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Ann Rev Phytopathol, 30(1): 391~418
    Degefu Y and Hanif M. 2003. Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus. Arch Microbiol, 180(4): 279~284
    Dobinson K, Grant S, Kang S. 2004. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr genet, 45(2): 104~110
    Dodds P, Lawrence G, Catanzariti A, Ayliffe M, Ellis J. 2004. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. The Plant CellOnline, 16(3): 755
    Dohm A, Ludwig C, Schilling D, Debener T. 2002. Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Horticulturae: 105~112
    Domingo C, Conejero V, Vera P. 1994. Genes encoding acidic and basic class IIIβ-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Mol Biol, 24(5): 725~732
    Dong X, Mindrinos M, Davis K, Ausubel F. 1991. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. The Plant Cell Online, 3(1): 61~72
    Edington B, Lamb C, Dixon R. 1991. cDNA cloning and characterization of a putative 1,3-β-D-glucanase transcript induced by fungal elicitor in bean cell suspension cultures. Plant Mol Biol, 16(1): 81~94
    Edreva A. 1990. Induction of pathogenesis-related proteins in tobacco leaves by physiological (non-pathogenic) disorders. J Exp Bot, 41(6): 701~703
    Edreva A. 2005. Pathogenesis-related proteins: Research progress in the last 15 years. Gen Appl Plant Physiol, 31(1-2): 105~124
    Ellis J, Dodds P, Pryor T. 2000. Structure, function and evolution of plant disease resistance genes. Curr opin plant biol, 3(4): 278~284
    Epple P, Apel K, Bohlmann H. 1995. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Am Soc Plant Biol, 109(3): 813~820
    Epstein L, Lusnak K, Kaur S. 1998. Transformation-mediated developmental mutants of Glomerella graminicola (Colletotrichum graminicola). Fungal Genet Biol, 23(2): 189~203
    Esquerré-TugayéM, Boudart G, Dumas B. 2000. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem, 38(1-2): 157~163
    Felix G and Meins F. 1986. Developmental and hormonal regulation ofβ-1,3-glucanase in tobacco. Planta, 167(2): 206~211
    Firon A, Villalba F, Beffa R, d'Enfert C. 2003. Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. Eukaryotic Cell, 2(2): 247~255
    Fitzgerald A M, Mudge A M, Gleave A P, Plummer K M. 2003. Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis. Mycol Res, 107(7): 803~810
    Flor H. 1971. Current status of the gene-for-gene concept. Ann Rev of Phytopathol, 9(1): 275~296
    García-Olmedo F, Molina A, Segura A, Moreno M. 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends microbiol, 3(2): 72~74
    Gardiner D M and Howlett B J. 2004. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr Genet, 45(4): 249~255
    Garnand K and Nelson M. 1995. The effect of DNA structure and restriction enzymes on transformation efficiencies in Neurospora crassa. Fungal Genet, 42: 29~31
    Godio R P, Fouces R, Gudina E J, Martin J F. 2004. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet, 46(5): 287~294
    Gouka R, Gerk C, Hooykaas P, Bundock P, Musters W, Verrips C, de Groot M. 1999. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nature Biotechnol, 17(6): 598~601
    Govind C K, Hasegawa A, Koyama K, Gupta S K. 2000. Delineation of a conserved B cell epitope on bonnet monkey (Macaca radiata) and human zona pellucida glycoprotein-B by monoclonal antibodies demonstrating inhibition of sperm-egg binding. Biol Reprod, 62(1): 67~75
    Green T and Ryan C. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science, 175(4023): 776~777
    Grimaldi B, de Raaf M A, Filetici P, Ottonello S, Ballario P. 2005. Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet, 48(1): 69~74
    Halterman D, Zhou F, Wei F, Wise R, Schulze-Lefert P. 2001. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J, 25(3): 335~348
    Ham K, Wu S, Darvill A, Albersheim P. 1997. Fungal pathogens secrete an inhibitor protein that distinguishes isoforms of plant pathogenesis-related endo-beta-1,3-glucanases. Plant J, 11(2): 169~179
    Hanif M, Pardo A G, Gorfer M, Raudaskoski M. 2002. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet, 41(3): 183~188
    Heinemann J and Sprague Jr G. 1989. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature, 340(6230): 205
    Hilber U, Bodmer M, Smith F, K?ller W. 1994. Biolistic transformation of conidia of Botryotinia fuckeliana. Curr Genet, 25(2): 124~127
    Hippe-Sanwald S, Marticke K, Kieliszewski M, Somerville S. 1994. Immunogold localization of THRGP-like epitopes in the haustorial interface of obligate, biotrophic fungi on monocots. Protoplasma, 178(3): 138~155
    Hoffman B and Breuil C. 2004. Disruption of the subtilase gene, albin1, in Ophiostoma piliferum. Appl Environ Microbiol, 70(7): 3898~3903
    Hrmova M, Garrett T, Fincher G. 1995. Subsite affinities and disposition of catalytic amino acids in the substrate-binding Region of Barley 1,3-beta-Glucanases. J Biological Chem, 270(24): 14556~14563
    Hu G and Kronstad J. 2006. Gene disruption in Cryptococcus neoformans and Cryptococcus gattii by in vitro transposition. Curr Genet, 49(5): 341~350
    Hu G and Rijkenberg F. 1998. Subcellular localization of beta-1,3-glucanase in Puccinia recondita f. sp. tritici-infected wheat leaves. Planta, 204(3): 324~334
    Hua-Van A, Pamphile J, Langin T, Daboussi M. 2001. Transposition of autonomous and engineered impala transposons in Fusarium oxysporum and a related species. Mol Gen Genet, 264(5): 724~731
    Idnurm A, Reedy J L, Nussbaum J C, Heitman J. 2004. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell, 3(2): 420~429
    Itoh Y and Scott B. 1997. Effect of de-phosphorylation of linearized pAN7-1 and of addition of restrictionenzyme on plasmid integration in Penicillium paxilli. Curr Genet, 32(2): 147~151
    Jach G, G?rnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J, 8(1): 97~109
    Japoni A, Alborzi A, Rasouli M, Pourabbas B. 2004. Modified DNA extraction for rapid PCR detection of methicillin-resistant Staphylococci. Iran Biomed J, 8(3): 161~165
    Jondle D, Coors J, Duke S. 1989. Maize leaf beta-1,3-glucanase activity in relation to resistance to Exserohilum turcicum. Can J Bot, 67(1): 263~266
    Jongedijk E, Tigelaar H, van Roekel J, Bres-Vloemans S, Dekker I, van den Elzen P, Cornelissen B, Melchers L. 1995. Synergistic activity of chitinases and beta-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 85(1): 173~180
    Jutidamrongphan W, Andersen J, Mackinnon G, Manners J, Simpson R, Scott K. 1991. Induction of beta-1,3-glucanase in barley in response to infection by fungal pathogens. Mol Plant-Microbe Interact, 4(3): 234~238
    Kang Z, Huang L, Buchenauer H. 2002. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Dis Prot, 109(1): 25~37
    Keen N. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Ann Rev Genet, 24(1): 447~463
    Kellner E M, Orsborn K I, Siegel E M, Mandel M A, Orbach M J, Galgiani J N. 2005. Coccidioides posadasii contains a single 1,3-beta-glucan synthase gene that appears to be essential for growth. Eukaryot Cell, 4(1): 111~120
    Kemp G, Botha A, Kloppers F, Pretorius Z. 1999. Disease development and beta-1,3-glucanase expression following leaf rust infection in resistant and susceptible near-isogenic wheat seedlings. Physiol Mol Plant Pathol, 55(1): 45~52
    Khang C H, Park S Y, Lee Y H, Kang S. 2005. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol, 42(6): 483~492
    Klarzynski O, Plesse B, Joubert J, Yvin J, Kopp M, Kloareg B, Fritig B. 2000. Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol, 124(3): 1027~1038
    Lagrimini L, Burkhart W, Moyer M, Rothstein S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Nat Acad Sci, 84(21): 7542~7546
    Leal C V, Montes B A, Mesa A C, Rua A L, Corredor M, Restrepo A, McEwen J G. 2004. Agrobacterium tumefaciens-mediated transformation of Paracoccidioides brasiliensis. Med Mycol, 42(4): 391~395
    Leclerque A, Wan H, Abschutz A, Chen S, Mitina G, Zimmermann G, Schairer H. 2004. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr Genet, 45(2): 111~119
    Li C, Langridge P, Lance R, Xu P, Fincher G. 1996. Seven members of the (1-3)-β-glucanase gene family in barley (Hordeum vulgare) are clustered on the long arm of chromosome 3 (3HL). Theor Appl Genet, 92(7): 791~796
    Li W, Faris J, Muthukrishnan S, Liu D, Chen P, Gill B. 2001. Isolation and characterization of novel cDNA clones of acidic chitinases andβ-1,3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet, 102(2): 353~362
    Ling P, Wang M, Chen X, Campbell K. 2007. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici). BMC Genomics, 8(1): 145
    Linnemannstons P, T V, Hedden P, Gaskin P, Tudzynski B. 1999. Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl Environ Microbiol, 65(6): 2558~2564
    Linthorst H, Melchers L, Mayer A, Van Roekel J, Cornelissen B, Bol J. 1990. Analysis of gene families encoding acidic and basic beta-1,3-glucanases of tobacco. Proc Nat Acad Sci, 87(22): 8756~8760
    Linthorst H J, Danhash N, Brederode F T, Van Kan J A, De Wit P J, Bol J F. 1991. Tobacco and tomato PR proteins homologous to win and pro-hevein lack the "hevein" domain. Mol Plant Microbe Interact, 4(6): 586~592
    Liu B, Lu Y, Xin Z, Zhang Z. 2009. Identification and antifungal assay of a wheatβ-1,3-glucanase. Biotechnol Lett, 31(7): 1005~1010
    Livak K J and Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 25(4): 402~408
    Loppnau P, Tanguay P, Breuil C. 2004. Isolation and disruption of the melanin pathway polyketide synthase gene of the softwood deep stain fungus Ceratocystis resinifera. Fungal Genet Biol, 41(1): 33~41
    Lu S, Lyngholm L, Yang G, Bronson C, Yoder O, Turgeon B. 1994. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Nat Acad Sci, 91(26): 12649~12653
    Lusso M and Ku J. 1996. The effect of sense and antisense expression of the PR-N gene for β-1,3-glucanase on disease resistance of tobacco to fungi and viruses. Physiol Mol Plant Pathol, 49(4): 267~283
    Münch-Garthoff S, Neuhaus J, Boller T, Kemmerling B, Kogel K. 1997. Expression of beta-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitor-treated near-isogenic wheat lines showing Sr5- or Sr24-specified race-specific rust resistance. Planta, 201(2): 235~244
    Métraux J P, Streit L, Staub T. 1988. A pathogenesis-related protein in cucumber is a chitinase. Physiol Mol Plant Pathol, 33(1): 1~9
    Malehorn D, Scott K, Shah D. 1993. Structure and expression of a barley acidicβ-glucanase gene. Plant Mol Biol, 22(2): 347~360
    Malonek S and Meinhardt F. 2001. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet, 40(2): 152~155
    Masoud S, Zhu Q, Lamb C, Dixon R. 1996. Constitutive expression of an inducible beta-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp. medicaginis, but does not reduce disease severity of chitin-containing fungi. Trans Res, 5(5): 313~323
    Mauch F, Mauch-Mani B, Boller T. 1988. Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase andβ-1,3-glucanase. Plant Physiol, 88(3): 936~942
    Mauch F and Staehelin L. 1989. Functional implications of the subcellular localization of ethylene-induced chitinase and beta-1,3-glucanase in bean leaves. The Plant Cell Online, 1(4): 447~457
    Melchers L, Groot M, van der Knaap J, Ponstein A, Sela-Buurlage M, Bol J, Cornelissen B, van den Elzen P, Linthorst H. 1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J, 5(4): 469~480
    Melchers L and Stuiver M. 2000. Novel genes for disease-resistance breeding. Curr opin plant biol, 3(2): 147~152
    Meyer V, Mueller D, Strowig T, Stahl U. 2003. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet, 43(5): 371~377
    Michielse C, Hooykaas P, van den Hondel C, Ram A. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet, 48(1): 1~17
    Michielse C, Salim K, Ragas P, Ram A, Kudla B, Jarry B, Punt P, Hondel C. 2004. Development of a system for integrative and stable transformation of the Zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Genet Genom, 271(4): 499~510
    Mikosch T S, Lavrijssen B, Sonnenberg A S, van Griensven L J. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr Genet, 39(1): 35~39
    Mishra N and Tatum E. 1973. Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proc Nat Acad Sci, 70(12): 3875~3879
    Mullins E, Chen X, Romaine P, Raina R, Geiser D, Kang S. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 91(2): 173~180
    Nakamura Y, Sawada H, Kobayashi S, Nakajima I, Yoshikawa M. 1999. Expression of soybean beta-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants. Plant Cell Rep, 18(7): 527~532
    Nasser W, De Tapia M, Burkard G. 1990. Maize pathogenesis-related proteins: characterization and cellular distribution ofβ-1,3-glucanases and chitinases induced by brome mosaic virus infection or mercuric chloride treatment. Physiol Mol Plant Pathol, 36(1): 1~14
    Oh H Y and Yang M S. 1995. Nucleotide sequence of genomic DNA encoding the potato beta-1,3-glucanase. Plant Physiol., 107(4): 1453
    Ohme-Takagi M and Shinshi H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell Online, 7(2): 173~182
    Okushima Y, Koizumi N, Kusano T, Sano H. 2000. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol, 42(3): 479~488
    Olmedo-Monfil V, Cortés-Penagos C, Herrera-Estrella A. 2004. Three decades of fungal transformation key concepts and applications. Methods Mol Biol, 267: 297~313
    Ownby J. 1993. Mechanisms of reaction of hematoxylin with aluminium-treated wheat roots. Physiologia Plantarum, 87(3): 371~380
    Pardo A, Hanif M, Raudaskoski M, Gorfer M. 2002. Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol Res, 106(2): 132~137
    Park S M and Kim D H. 2004. Transformation of a filamentous fungus Cryphonectria parasitica usingAgrobacterium tumefaciens. Biotechnol Bioprocess Engineer, 9(3): 217~222
    Payne G, Ward E, Gaffney T, Goy P, Moyer M, Harper A, Meins F, Ryals J. 1990. Evidence for a third structural class ofβ-1,3-glucanase in tobacco. Plant Mol Biol, 15(6): 797~808
    Pegg G. 1977. Glucanohydrolases of higher plants: A possible defense mechanism against parasitic fungi. In: Solheim B, Raa J. Cell Wall Biochemistry Related to Specificity in Host-Plant Pathogen Interaction. Troms?: Universitetsforlaget: 371~382
    Pflieger S, Palloix A, Caranta C, Blattes A, Lefebvre V. 2001. Defense response genes co-localize with quantitative disease resistance loci in pepper. Theor Appl Genet, 103(6): 920~929
    Redman R, Freeman S, Clifton D, Morrel J, Brown G, Rodriguez R. 1999. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol, 119(2): 795~804
    Redman R and Rodriguez R. 1994. Factors affecting the efficient transformation of Colletotrichum species. Exp Mycol, 18(3): 230~246
    Rhee M, Lemmers R, Bol J. 1993. Analysis of regulatory elements involved in stress-induced and organ-specific expression of tobacco acidic and basic beta-1,3-glucanase genes. Plant Mol Biol, 21(3): 451~461
    Rho H S, Kang S, Lee Y H. 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells, 12(3): 407~411
    Ridout C, Skamnioti P, Porritt O, Sacristan S, Jones J, Brown J. 2006. Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. The Plant Cell Online, 18(9): 2402~2414
    Rogers C W, Challen M P, Green J R, Whipps J M. 2004. Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiol Lett, 241(2): 207~214
    Rolland S, Jobic C, Fevre M, Bruel C. 2003. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet, 44(3): 164~171
    Romero G, Simmons C, Yaneshita M, Doan M, Thomas B, Rodriguez R. 1998. Characterization of rice endo-β-glucanase genes (Gns2–Gns14) defines a new subgroup within the gene family. Gene, 223(1-2): 311~320
    Rushton P and Somssich I. 1998. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol, 1(4): 311~315
    Ryals J, Ward E, Ahl-Goy P, Metraux J. 1992. Systemic acquired resistance: an inducible defence mechanism in plants. In: Wray J L. Inducible Plant Proteins: Their Biochemistry and Molecular Biology. New York: Cambridge University Press: 205~229
    Sambrook J, Russell D. 2001. Molecular cloning: A laboratory manual: Third edition. Vol 1. New York: CSHL Press
    Schillberg S, Tiburzy R, Fischer R. 2000. Transient transformation of the rust fungus Puccinia graminis f. sp. tritici. Mol Gen Genet, 262(6): 911~915
    Schr?der M, Hahlbrock K, Kombrink E. 1992. Temporal and spatial patterns of 1,3-β-glucanase and chitinase induction in potato leaves infected by Phytophthora infestans. Plant J, 2(2): 161~172
    Schweizer P, Christoffel A, Dudler R. 1999. Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J, 20(5): 541~552
    Schweizer P, Pokorny J, Abderhalden O, Dudler R. 1999. A transient assay system for the functional assessment of defense-related genes in Wheat. Mol Plant-Microbe Interact, 12(8): 647~654
    Sela-Buurlage M, Ponstein A, Bres-Vloemans S, Melchers L, Van den Elzen P, Cornelissen B. 1993. Only specific tobacco (Nicotiana tabacum) chitinases and beta-1,3-glucanases exhibit antifungal activity. Am Soc Plant Biol, 101(3): 857~863
    Selitrennikoff C. 2001. Antifungal proteins. Am Soc Microbiol, 67(7): 2883~2894
    Shah J and Klessig D. 1996. Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related beta-1,3-glucanase gene, PR-2d. Plant J, 10(6): 1089-~1101
    Simmons C, Litts J, Huang N, Rodriguez R. 1992. Structure of a riceβ-glucanase gene regulated by ethylene, cytokinin, wounding, salicylic acid and fungal elicitors. Plant Mol Biol, 18(1): 33~45
    Sock J, Rohringer R, Kang Z. 1990. Extracellular beta-1,3-glucanases in stem rust-affected and abiotically stressed wheat leaves: Immunocytochemical localization of the enzyme and detection of multiple forms in gels by activity staining with dye-labeled laminarin. Plant Physiol, 94(3): 1376~1389
    Sohn K, Lei R, Nemri A, Jones J. 2007. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. The Plant Cell Online, 19(12): 4077~4090
    Somssich I, Schmelzer E, Bollmann J, Hahlbrock K. 1986. Rapid Activation by Fungal Elicitor of Genes Encoding``Pathogenesis-Related''Proteins in Cultured Parsley Cells. Proc Nat Acad Sci, 83(8): 2427~2430
    Southerton S and Deverall B. 1990. Histochemical and chemical evidence for lignin accumulation during the expression of resistance of leaf rust fungi in wheat. Physiol Mol Plant Pathol, 36(6): 483~494
    Sperisen C, Ryals J, Meins F. 1991. Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco glucan endo-1,3-beta-glucosidase gene family. Proc Nat Acad Sci, 88(5): 1820~1824
    Staples R C. 2000. Research on the Rust Fungi during the Twentieth Century. Annu Rev Phytopathol, 38: 49~69
    Staskawicz B, Dahlbeck D, Keen N. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Nat Acad Sci, 81(19): 6024
    Stergiopoulos I and de Wit P J G M. 2009. Fungal Effector Proteins. Ann Rev Phytopathol, 47(1): 233~263
    Sugui J A, Chang Y C, Kwon-Chung K J. 2005. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl Environ Microbiol, 71(4): 1798~1802
    Sullivan T D, Rooney P J, Klein B S. 2002. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell, 1(6): 895~905
    Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T. 2004. Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol, 70(2): 93~96
    Takeuchi Y, Yoshikawa M, Takeba G, Tanaka K, Shibata D, Horino O. 1990. Molecular cloning andethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor,β-1,3-endoglucanase, in soybean. Plant Physiol, 93(2): 673~682
    Takken F, Luderer R, Gabri?s S, Westerink N, Lu R, De Wit P, Joosten M. 2000. A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant J, 24(2): 275~283
    Tanguay P and Breuil C. 2003. Transforming the sapstaining fungus Ophiostoma piceae with Agrobacterium tumefaciens. Can J Microbiol, 49(4): 301~304
    Terras F, Schoofs H, De Bolle M, Van Leuven F, Rees S, Vanderleyden J, Cammue B, Broekaert W. 1992. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem, 267(22): 15301~15309
    Thon M, Nuckles E, Vaillancourt L. 2000. Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol Plant-Microbe Interact, 13(12): 1356~1365
    Tsuji G, Fujii S, Fujihara N, Hirose C, Tsuge S, Shiraishi T, Kubo Y. 2003. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J Gen Plant Pathol, 69(4): 230~239
    V?geli-Lange R, Fründt C, Hart C, Nagy F, Meins F. 1994. Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I beta-1,3-glucanase B promoter. Plant Mol Biol, 25(2): 299~311
    V?geli U, Meins F, Boller T. 1988. Co-ordinated regulation of chitinase andβ-1,3-glucanase in bean leaves. Planta, 174(3): 364~372
    Van den Bulcke M, Bauw G, Castresana C, Van Montagu M, Vandekerckhove J. 1989. Characterization of vacuolar and extracellularβ-1,3-glucanases of tobacco: Evidence for a strictly compartmentalized plant defense system. Proc Nat Acad Sci, 86(8): 2673~2677
    Van der Leij F, Abeln E, Hesseling-Meinders A, Feenstra W. 1993. A putative beta-glucanase pseudogene behind the potato GBSS gene. Plant Mol Biol, 21(3): 567~571
    Van Kan J, Joosten M, Wagemakers C, Berg-Velthuis G, Wit P. 1992. Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol Biol, 20(3): 513~527
    Van Kan J, Van den Ackerveken G, De Wit P. 1991. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mole Plant-Microbe Interact, 4(1): 52~59
    Van Loon L. 1982. Regulation of changes in proteins and enzymes associated with active defense against virus infection. Active Defense Mechanisms in Plants. 1st edition. Plenum Press, New York: 247~273
    Van Loon L. 1983. The induction of pathogenesis-related proteins by pathogens and specific chemicals. Euro J Plant Pathol, 89(6): 265~273
    Van Loon L. 1985. Pathogenesis-related proteins. Plant Mol Biol, 4(2): 111~116
    Van Loon L. 1990. The nomenclature of pathogenesis-related proteins. Physiol Mol Plant Pathol, 37(3): 229~230
    Van Loon L and Van Strien E. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol, 55(2): 85~97
    Vera P and Conejero V. 1988. Pathogenesis-related proteins of tomato 1 P-69 as an alkaline endoproteinase. Plant Physiol, 87(1): 58~63
    Villalba F, Lebrun M, Hua-Van A, Daboussi M, Grosjean-Cournoyer M. 2001. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact, 14(3): 308~315
    Vithalani K, Shoffner J, Lozanne A. 1996. Isolation and characterization of a novel cytokinesis-deficient mutant in Dictyostelium discoideum. J cellular biochem, 62(2):290~301
    Wang C, Huang L, Buchenauer H, Han Q, Zhang H, Kang Z. 2007. Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat--Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol, 71(4-6): 230~239
    Ward E, Payne G, Moyer M, Williams S, Dincher S, Sharkey K, Beck J, Taylor H, Ahl-Goy P, Meins F. 1991. Differential regulation ofβ-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol, 96(2): 390~397
    Webb C A, Szabo L J, Bakkeren G, Garry C, Staples R C, Eversmeyer M, Fellers J P. 2006. Transient expression and insertional mutagenesis of Puccinia triticina using biolistics. Funct Integr Genomics, 6(3): 250~260
    Wei Y, Zhang Z, Andersen C, Schmelzer E, Gregersen P, Collinge D, Smedegaard-Petersen V, Thordal-Christensen H. 1998. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol, 36(1): 101~112
    Weld R, Plummer K, Carpenter M, Ridgway H. 2006. Approaches to functional genomics in filamentous fungi. Cell Res, 16(1): 31~44
    White D and Chen W. 2006. Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation. Curr Genet, 49(4): 272~280
    Wu S, Kriz A, Widholm J. 1994. Nucleotide sequence of a maize cDNA for a class II, acidic β-1,3-glucanase. Plant Physiol, 106(4): 1709~1710
    Xu P, Harvey A J, Fincher G B. 1994. Heterologous expression of cDNAs encoding barley (Hordeum vulgare) (1-3)-beta-glucanase isoenzyme GV. FEBS Lett, 348(2): 206~210
    Yang G, Rose M, Turgeon B, Yoder O. 1996. A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. The Plant Cell Online, 8(11): 2139~2150
    Yoshikawa M and Sugimoto K. 1993. A specific binding site on soybean membranes for a phytoalexin elicitor released from fungal cell walls byβ-1, 3-endoglucanase. Plant Cell Physiol, 34(8): 1229~1237
    Young D and Pegg G. 1982. The action of tomato and Verticillium albo-atrum glycosidases on the hyphal wall of V. albo-atrum. Physiol Plant Pathol, 21(3): 411~423
    Yun S, Turgeon B, Yoder O. 1998. REMI-induced mutants of Mycosphaerella zeae-maydislacking the polyketide PM-toxin are deficient in pathogenesis to corn. Physiol Mol Plant Pathol, 52(1): 53~66
    Zadoks J, Chang T, Konzak C. 1974. A decimal code for the growth stages of cereals. Weed Res, 14(6): 415~421
    Zeilinger S. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet, 45(1): 54~60
    Zhang A, Lu P, Dahl-Roshak A, Paress P, Kennedy S, Tkacz J, An Z. 2003. Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediatedtransformation of Glarea lozoyensis. Mol Genet Genomics, 268(5): 645~655
    Zhang Y, Qu Z, Zheng W, Liu B, Wang X, Xue X, Xu L, Huang L, Han Q, Zhao J, Kang Z. 2008. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp tritici. BMC Genomics, 9(1): 203-212
    Zhang Y, Zhang G, Xia N, Wang X, Huang L, Kang Z. 2009. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol, 73(4-5): 88~94
    Zhang Z, Collinge D, Thordal-Christensen H. 1995. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J, 8(1): 139~145
    Zhao B, Ardales E, Raymundo A, Bai J, Trick H, Leach J, Hulbert S. 2004. The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Mol Plant-Microbe Interact, 17(7): 771~779
    Zhu Q, Maher E, Masoud S, Dixon R, Lamb C. 1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Nature Biotechnol, 12(8): 807~812
    Zwiers L and De Waard M. 2001. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet, 39(5): 388~393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700