用户名: 密码: 验证码:
基于非线性贝叶斯理论的多模态界面波频散曲线反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底探测和识别研究是海洋科学研究领域关注的课题之一,其研究方法和成果在海底资源勘探、海洋环境监测、海洋工程建设以及海洋军事活动等方面均具有极为重要的应用价值。界面波频散曲线反演技术是研究海底地质构造和勘探海底资源的主要手段,通过反演可以获取诸如剪切波速度剖面结构等重要的海底地质属性,剪切波速度不仅可为海底岩土工程应用提供重要的刚度指标,而且在声传播模型的建立以及声纳性能预测中具有重要作用。
     界面波频散曲线的提取精度是反演成败的关键因素。传统界面波频散曲线反演方法是基于天然或人工激发的地震波在海底沉积层中传播的频散特性来反演海底沉积层属性。但传统的界面波频散曲线提取的分辨率受到地震分布和台站位置的影响。此外,界面波频散曲线反演是一个典型的高度非线性、多参数、多极值的海洋地球物理反演问题和最优化控制问题。由于正演模拟计算和测量误差等因素的存在,通常反演结果并没有唯一的“最优解”,而现有的非线性反演方法虽然不依赖于初始模型的选取,具有全局寻优和非线性映射能力,但参数的反演结果仅仅是一组最大后验概率意义下的最优解。本文旨在发展一种不依赖于震源、高分辨率的界面波频散曲线提取方法和一种既能满足局部和全局收敛条件,又能对参数反演结果的不确定性进行定量和定性分析的反演方法。
     本文从海底地震仪记录的海底环境噪声数据中提取出高分辨率的多模态界面波频散曲线,基于新近发展的非线性贝叶斯反演理论,对基阶模态和多模态界面波频散曲线进行反演研究。论文主要工作包括传统反演理论和方法分析、基于海洋环境噪声提取界面波频散曲线、界面波频散曲线正演模型、非线性贝叶斯反演理论以及多模态界面波频散曲线反演研究等内容。
     论文的主要研究成果包括:
     1.提出了一种从海洋环境噪声中提取界面波频散曲线的方法。阐述了互相关、格林函数以及时频分析方法的基本原理,归纳了界面波提取的一般流程。海底地震环境噪声的源具有随机性,经多次散射的影响,具有与地震界面波相似的频散特性,其分辨率不依赖于震源信息,采样方向均匀,精度更高。通过对实测海洋环境噪声数据进行分析处理,获得界面波频散曲线的多模态特征,验证了该方法的可行性和有效性。
     2.实现了多模态界面波频散曲线正演模型的建立与求解。正演是反演的前提,是提高反演精度和速度的关键因素。给出了各向同性均匀平面波的弹性波动方程,采用数值模拟实例实现并验证了Thompson-Haskill矩阵算法的有效性,该方法表达形式简单、物理意义明确,且易于编程实现。
     3.完善了非线性贝叶斯反演方法。将反演问题的解转化为参数后验概率密度(PPD)的求解,首先利用非线性全局优化算法——自适应单纯形模拟退火法(ASSA)求解最大后验概率(MAP)模型,然后基于贝叶斯信息准则法(BIC)进行模型选择,对最优模型利用非线性数值积分方法——Metropolis-Hasting采样法(MHS)求解参数PPD和相关特征量,进而分析反演结果。与传统的单点估计法不同,非线性贝叶斯反演方法不仅可以有效地估计MAP模型,而且可以从统计角度对参数反演结果的不确定性进行定性和定量分析,通过一个数值算例来说明该算法的有效性。
     4.探讨了多模态界面波频散曲线联合反演的机理。传统的界面波频散曲线反演研究认为,基阶模态的能量在波场中占主导地位,在反演中通常忽略高阶模态的影响。然而,在某些频段,如高频或中频段,基阶模态将不再占据主要地位,此时高阶模态界面波对反演结果的影响应予考虑。分析了不同海底分层和常见海底剪切波速度剖面模型,分别对基阶模态和多模态界面波频散曲线进行反演计算。结果表明,多模态界面波较基阶模态界面波对海底地质结构敏感性更强,利用多模态界面波频散曲线可以获得更多的海底分层结构,特别是近海底低速层信息,提高了反演精度。
     论文在基于海洋环境噪声实现界面波频散曲线精确提取,以及利用多模态界面波频散曲线联合反演研究海底剪切波速度剖面结构方面具有创新性。
The detection and recognition study of seafloor is one of the most active front fields of the marine sciences research, which has an important academic significance and application value in the exploration and exploitation of seabed recourses, ocean environment monitoring, marine engineering construction and military operations. The inversion of interface wave dispersion curves is one of the most effective techniques to study the seabed structures and detect the seafloor resources. Recently, interface-wave inversion work has been getting more and more attention to estimate the shear-wave velocity profile structures. Shear-wave velocity provides a good indicator of sediment rigidity for seafloor geotechnical applications and shear-wave transition in shallow seabed can represent an important ocean acoustic loss mechanism which must be considered in propagation modeling and sonar performance predictions.
     The extraction resolution of interface-wave dispersion curves is a key of success or failure in inversion. The dispersion curves were extracted normally from the seismic interface-wave propagating in seabed sediments by a mean of a natural or artificial earthquake focus. The resolution of dispersion curves is affected by the distributions of source and stations. It is very important to develop a high accuracy and resolution method independent of the seismic focus to obtain the interface-wave dispersion curves and the sediment parameters are estimated by inverting the dispersion curves. In additional, inversion of interface-wave dispersion curves is typically a highly nonlinear, multi-parameter, and multi-optima inversion problem, as well as most other marine geophysical optimization problems. Usually there is not an only optimal solution due to the measurement and calculation errors. The inversion results of traditional linear search methods depend on the choice of a starting model and the accuracy of the partial derivatives, which are prone to being trapped by local minima. The available nonlinear inversion techniques such as genetic algorithm (GA) and simulated annealing (SA), have proven to be quite useful for global optimization problems, but these techniques can only determine the best-fit model and slower convergence and not provide quantitatively nonlinear uncertainty estimation of model parameters. It is necessary to develop a quantitative nonlinear uncertainty estimation approach combined global and local optimization to seabed interface-wave dispersion inversion in a rigorous manner.
     This paper applies a dataset of ocean seismic ambient noise data recorded by ocean bottom seismic cable to extract multi-mode interface-wave dispersion curves. The nonlinear Bayesian inversion is applied to estimate seabed sediment parameters and their uncertainties from interface-wave dispersion curves. The main contents of this paper include analysis of tranditional inversion theory and methods, interface-wave dispersion curves extracting from the seismic ambient noise data, the expressions and computional method of dispersion equations, nonlinear Bayesian inversion formulation and the study of multi-mode interface-wave dispersion curves inversion.
     The main contributions are as follows:
     1.A high accuracy and resolution approach to extract the interface-wave dispersion curves are applied from the ocean seismic ambient noise data. The fundamental principles of the cross-correlation, Green’s function and time-frequency analysis are illustrated and the general process to extract the interface-wave dispersion curves is summarized. The ambient noise has the dispersion characteristics because of its random sources and the effects of multiple scattering, so the resolution of dispersion is independent of the seismic sources. The multi-mode interface-wave dispersion curves are obtained by processing the noise signals recorded by an ocean bottom seismic.
     2.An appropriate forward model is built and resolved to obtain the phase velocity dispersion of interface-wave on multilayered media. The forward model is a prerequisite for inversion and determines the precision and reliability of inversion. The Thompson-Haskill matrix formalism are used to compute the phase velocity dispersion equations for elastic plane waves propagated in a semi-infinite media with n parallel, homogeneous, istropic layers. The numerical case is applied to certify the effective of this method and illustrate this method has relative simple forms, obvious physical meanings of parameters, and the advantages of easy computing and programming.
     3.A nonlinear Bayesian inversion approach is applied in this paper. In a Bayesian formulation, the multi-dimensional PPD represents the general solution to an inversion problem. The maximum a posterior (MAP) estimates are determined by minimizing misfit function numerically using adaptive simplex simulated annealing (ASSA), an effective hybrid optimization algorithm that combines the local downhill-simplex method with a very fast simulated annealing global search. The Bayesian information criterion (BIC) is applied to determine the optimal model that fully explains the observed data by the different parameterizations. An efficient and complete Metropolis Hastings sampling (MHS) algorithm is applied for computing 1-D and 2-D parameter marginal probability distributions. Bayesian inversion technique not only provides the MAP estimation, but also estimates the uncertainties of unkown parameters.
     4.The mechanism of multi-mode interface-wave dispersion curves is studied and analyzed. It is usually considered that the fundamental mode of interface-wave dominates the recorded wavefield and higher modes can be ignored. However, the higher modes contribute significant amounts of energy at higher frequencies and the higher modes of interface wave can be applied to improve the accuracy of the inverted shear-wave velocity profiles. In this paper, inversion studies are carried out for both the fundamental mode alone and for the first three modes to determine the best parameterization for the shear-wave velocity profiles considering the different parameterizations. The results show that the multi-mode of interface-wave is more sensitive to the seabed sediment structures than the fundamental mode. The multi-mode interface-wave dispersion curves inversion can obtain more shear-wave velocity profile structures, especially the near-interface structures with low-velocities layers; improve the resolution and reliability of shear-wave velocities.
     The innovation of the dissertation is appling nonlinear Bayesion inversion to estimate seabed shear-wave velocity profiles and their uncertainties using multi-mode interface wave dispersion curves extracted from ocean ambient noise data.
引文
[1]张叔英.地声学:一门研究海底的重要学科[J].物理, 1997, 26 (5):280-285.
    [2]李整林,王耀俊,马力,高天赋.海底沉积物参数对浅海中低频声传播的影响[J].声学学报, 2000, 25(3): 242-247.
    [3]金翔龙.海洋地球物理研究与海底探测声学技术的发展[J].地球物理学进展, 2007, 22(4): 1243-1249.
    [4]杨士莪.水声传播原理.哈尔滨工程大学出版社, 1994, P 80-83.
    [5] P. Roux and W. A. Kuperman. Extracting coherent wave fronts from acoustic ambient noise in the ocean [J]. J. Acoust. Soc. Amer., 2004, 116: 1995-2003.
    [6] K. G. Sabra, P. Roux and W. A. Kuperman. Arrival time structure of the time-averaged ambient noise cross correlation function in an oceanic waveguide [J]. J. Acoust. Soc. Amer., 2005, 117: 164-174.
    [7] P. Gerstoft, K. G. Sabra, P. Roux, W. A. Kuperman, and M. C. Fehler. Green’s functions extraction and surface-wave tomography from microseisms in southern California [J]. Geophysics. 2006, 71(4): S123-S131.
    [8]詹中文.地震背景噪声方法的理论与实践.中国科学技术大学.硕士学位论文. 2008.
    [9] N. M. Shapiro and M. Campillo, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise [J]. Geophys. Res. Lett. 2004, 31, L07614.
    [10] K. Aki. Space and time spectra of stationary stochastic waves with special reference to microtremors [J] . Bull. Earthquake Res. Inst. Univ. Tokyo, 1957, 35: 415-456.
    [11] J. F. Claerbout. Synthesis of a layered medium from its acoustic transmission response [J]. Geophysics, 1968, 33: 264-269.
    [12] T. Duvall, S. Jefferies and J. Harvey, et al. Time distance helioseismology [J]. Nature, 1993, 362: 430-432.
    [13] R. L. Weaver, and O. L. Lobkis. Ultrasonic without a source: thermal fluctuation correlations at MHz frequencies [J]. Phys. Rev. Lett, 2001, 87(13): 134301-1~134301-4.
    [14] R. L. Weaver, and O. L. Lobkis. On the emergence of the Green's function in the correlations of a diffuse field [J]. J. Acoust. Soc. Am., 2001, 110(6): 3011-3017.
    [15] M. Campillo and A. Paul. Long-range correlations in the diffuse seismic coda [J]. Science, 2003, 299: 547-549.
    [16] N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller. High resolution surface wave tomography from ambient seismic noise [J]. Science, 2005, 307, 1615-1618.
    [17] K. G. Sabra, P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler. Extracting time-domain Green's function estimates from ambient seismic noise [J]. Geophys. Res. Lett., 2005, 32: L03310, doi:10.1029/2004GL021862.
    [18] K. G. Sabra, P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler. Surface wavetomography from microseisms in Southern California [J]. Geophys., Res. Lett., 2005, 32, L14311 doi:10.1029/2005GL023155.
    [19] E. Larose, A. Khan, Y. Nakamura, and M. Campillo. Lunar subsurface investigated from correlation of seismic noise [J]. Geophys. Res. Lett., 2005, 32, L16201, doi: 10.1029/2005GL023518.
    [20] P. Roux, K. G. Sabra and P. Gerstoft, et.al. P-waves from cross-correlation of seismic noise[J]. Geophys. Res. Lett., 2005, 32, L19303, doi:10.1029/2005GL023803.
    [21] R. L. Weaver and O. L. Lobkis. Diffuse fields in open systems and the emergence of the Green's function [J]. J. Acoust. Soc. Am., 2004, 116: 2731-2734.
    [22] A. Derode, E. Larose and M. Tarter, et al. Recovering the Green's function from field-field correlations in an open scattering medium [J]. J. Acoust. Soc. Am., 2003, 113(6): 2973-2976.
    [23] R. Snieder. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase [J]. Physical Review E, 2004, 69: 046610-1~046610-8.
    [24] K. Wapenaar, J. Thorbecke and D. Draganov. Relations between reflection and transmission responses of three-dimensional in homogeneous media [J]. Geophys. J. Int., 2004, 156: 179-194.
    [25] Y. Yang, M. H. Ritzwoller and A. L. Levshin. Ambient noise Rayleigh wave tomography across Europe [J]. Geophys. J. Int., 2007, 168(1): 259-274.
    [26] F. Lin, M. P. Moschetti, and M. H. Ritzwoller. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps [J]. J. Int., 2008, 173: 281-298.
    [27] Bensen, G. D., M. H. Ritzwoller, and N. M. Shapiro. Broadband ambient noise surface wave tomography across the United States [J]. J. Geophys. Res., 2008, 113, B05306, doi:10.1029/2007JB005248.
    [28] H. Yao, R. D. vander Hilst, and M. V. deHoop. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps [J]. Geophys. J. Int., 2006, 166:732-744.
    [29] O. A. Godin and D. M. F. Chapman. Shear-speed gradients and ocean seismo-acoustic noise resonances [J]. J. Acoust. Soc. Am., 1999, 106: 2367-2382.
    [30] L. M. Dorman, A. E. Schreiner, L. D. Bibee, and J. A. Hildebrand. Deep-water sea-floor array observations of seismo-acoustic noise in the eastern Pacific and comparisons with wind and swell, in Natural Physical Sources of Underwater Sound, edited by B. R. Kerman (Kluwer, Dordrecht, 1993), pp. 165–174.
    [31] S. S. Alexander. Surface wave propagation in the western United States. Doctoral thesis, California Institute of Technology. 1963.
    [32] Pilant W. L., Knopoff L. Observation of multiple seismic events [J]. Bull. Seis. Soc. Am., 1964, 54: 19-39.
    [33] A. Dziewonski, S. Bloch and M. Landisman. A technique for the analysis of transient seismicsignals[J]. Bull. Seism. Soc. Am., 1969, 59: 427-444.
    [34] A. Dziewonski, J. Mills and S. Bloch. Residual dispersion measurement--A new method of surface wave analysis [J]. Bull. Seism. Soc. Am., 1972, 62: 129-139
    [35]李建平.小波分析与信号处理一理论、应用及软件实现[M].重庆出版社, 1997.
    [36] S. Nazarian, K.H. Stokoe II, and W. R. Hudson. Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement system [J]. Transportation Researeh Record, 1983, 930: 38~45.
    [37] D. S. Kim, H. C. Park. Determination of dispersive phase velocities for SASW method using Harmonic wavelets transform [J]. Dynamics and Earthquake Engineering, 2002, 22: 675-684.
    [38] J. Xia, R. D. Miller, and C. B. Park, et al. Inversion of high frequency surface waves with fundamental and higher modes [J]. Journal of Applied Geophysics, 2003, 52 (1): 45–57.
    [39] C. B. Park, R. D. Miller, and J. Xia. Multi-channel analysis of surface waves (MASW) [J]. Geophysics, 1999, 64: 800–808.
    [40] J. Xia, R. D. Miller, and C. B. Park, et.al. Comparing shear-wave velocity profiles from multichannel analysis of surface wave with borehole measurements [J]. Soil Dynamics and Earthquake Engineering, 2002, 22 (3): 181–190.
    [41] P. S. Schutz, J. F. Clearbout. Velocity estimation and downward continuation by wavefront synthesis[J]. Geophysics, 1978, 43 (3): 691-714. [ 42 ] G. A. MeMechan and M. J. Yedlin. Analysis of dispersive waves by wave field transformation[J]. Geophysics, 1981, 46 (6): 869-874.
    [43]包军强,张学强,刘江平等.浅层多波的分离识别与提取[J].物探与化探, 1998, 22(5): 336~342.
    [44]刘江平,侯卫生,许顺芳.相邻道瑞雷波法及在防渗墙强度检测中的应用[J].人民长江, 2003, 34 (2): 34-36.
    [45] P. Gabriels, R. Snieder and G. Nolet. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves [J]. Geophysical Prospecting, 1987, 35: 187-196. [ 46 ] L. Lu and B. Zhang. The analysis of dispersion curves of Rayleigh waves in frequency-wavenumber domain [J]. Canadian Geotechnical Journal, 2004, 41: 583-598.
    [47] J. C. Tokeshi, M. B. Karkee, and Y. Sugimura. Reliability of Rayleigh wave dispersion curve obtained from f-k spectral analysis of microtremor array measurement [J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 163-174.
    [48]鲁来玉.分层介质半空间瑞利波模式分析和介质参数反演[博士学位论文].北京:中国科学院声学研究所, 2004.
    [49] C. B. Park, R. D. Miller, and J. Xia. Imaging dispersion curves of surface waves on multi-channel record [J]. Technical Program with biographies, SEG, 68th Annual Meeting, New Orleans, Louisiana, 1995, 1377-1380.
    [50] C. P. Lin, and T. Chang. Multi-station analysis of surface wave dispersion [J]. Dynamic sandEarthquake Engineering, 2004, 24(11): 877-886.
    [51] X. Song, H. Gu. Utilization of multimode surface wave dispersion for characterizing roadbed structure [J]. Journal of Applied Geophysics, 2007, 63(2): 59-67.
    [52] J. Xia, Y. Xu, and R. D. Miller. Generating image of dispersive energy by frequency decomposition and slant stacking [J]. Pure and Applied Geophysics, 2007,164 (5): 941-956.
    [53] D. Garbor. Theory of Communication [J]. IEE (London), 1946, 93 (3): 429-457.
    [54]科恩L著,白居宪译.时频分析:理论与应用[M].西安:西安交通大学出版社. 1998.
    [55] W. H. Prosser, M. D. Seale. Time-frequency analysis of the dispersion of Lamb modes [J]. J. Acoust. Soc. Am., 1999, 105(5): 2669-2676
    [56] M. Niethammer, L. J. Jacobs, J. Qu, and J. Jarzynski. Time-frequency representations of Lamb waves [J]. J. Acoust. Soc. Am., 2001, 109(5): 1841-1847
    [57]郑祥明,顾向华和史立丰等.超声兰姆波的时频分析[J].声学学报, 2003, 28(4): 368-374
    [58] R. Latif, E. H. Aassif, and G. Maze, et a1. Determination of the group and phase velocity from time-frequency representation of wigner-ville [J]. NDT&E International, 1999, 32: 415-422.
    [59] R. Latif, E. H. Aassif, and A. Moudden, et al. Determation of the cutoff frequency of an acoustic circumferential wave using a time-frequency analysis [J]. NDT&E, International, 2000, 33: 373-376.
    [60]杜立志.瞬态瑞雷波勘探中的数字处理技术研究.硕士学位论文.长春:吉林大学, 2005.
    [61] N. A. Haskell. The dispersion of surface waves on multilayered media [J]. Bulletin of the Seismological Soeiety of America, 1953, 43: 17-34.
    [62] P. John. Rayleigh waves in a porous、elastic、saturated solid [J]. Journal of the acoustical society of American, 1961, 33 (7): 88-94.
    [63] D. G. Harkrider. Surface waves in multi-layed elastic media [J].Bull. Seism .soc. Am., 1964, 54 (2): 627-679.
    [64]夏唐代,吴世明.流体一固体介质中瑞利波特性[J].水利学报, 1994, 1 (1): 67-75.
    [65]夏唐代,蔡袁强,吴世明等.各向异性成层地基中Rayleigh波的弥散特性[J].振动工程学报, 1996, 9 (2): 191-196.
    [66]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性[J].岩上工程学报, 1998, 20 (3): 6-9.
    [67]凡友华,肖柏勋,刘家琦.层状介质中轴对称柱而瑞利面波频散函数的计算[J].地震工程与工程振动, 2001, 21 (3): 1-5.
    [68] L. Knopoff. A matrix method for elastic wave problems [J]. Bull. Seism. Soc. Am., 1964, 54 (1): 431-438.
    [69] F. Schwab, and L. Knopoff. Surface-wave dispersion computations [J]. Bulletin of the Seismological Society of America, 1970, 60: 321-344.
    [70] J. W. Dunkin. Computation of modal solutions in layered elastic media at high frequencies [J]. Bulletin of the Seismological Society of America. 1965, 55: 335-358.
    [71] T. H. Watson. A note on fast computation of Rayleigh wave dispersion in multilayered half-space [J]. Bulletin of the Seismological Society of America, 1970, 60: 161~166.
    [72] P. W. Buchen, and R. Ben-Hador. Free-mode surface-wave computations [J]. Geophysical Journal International, 1996, 124: 869~887. [ 73 ] A. Abo-Zena. Dispersion function computation for unlimited frequency values [J]. Geophysical Journal of the Royal Astronomical society, 1979, 58: 91-105.
    [74] W. Menke. Comment on‘Dispersion function computations for unlimited frequency values’by Anas Abo-Zena [J]. Geophysical Joumal of the Royal Astronomical Society. 1979, 59: 315-323.
    [75] R. Mittet. Free-surface boundary conditions for elastic staggered-grid modeling schemes [J]. Geophysics, 2002, 67(5):1616~1623.
    [76]陈云敏,吴世明.成层地基的Rayleigh波特征方程的解法[J].浙江大学学报, 1991, 25 (1): 61-67.
    [77]张碧星,喻明,熊伟,等.层状介质中的声波场及面波研究[J].声学学报, 1997, 22(3): 230~241.
    [78]张碧星,喻明,熊伟等.多层介质中有低速层出现时的陷模研究[J].中国有色金属学报, 1998, 8(2): 340-346.
    [79]张碧星,肖柏勋,杨文杰等.瑞雷波勘探中“之”形频散曲线的形成机理及反演研究[J].地球物理学报, 2000, 43 (4): 557-567.
    [80]凡友华,刘家琦.层状介质中瑞雷面波的频散研究[J].哈尔滨工业大学学报. 2001, 33(5): 577~581.
    [81]凡友华.层状介质中瑞利面波频散曲线的正反演研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2001.
    [82]凡友华,陈晓非,刘雪峰等. Rayleigh波的频散方程高频近似分解和多模式激发数目[J].地球物理学报. 2007, 50 (1):233-239.
    [83]宋先海.基于模式识别算法的高频瑞雷波频散曲线非线性反演研究.中国地质大学博士论文, 2008.
    [84]杨学林,吴世明.考虑高阶模态时SASW法的反演[J].浙江大学学报, 1996, 30(2): 149-156.
    [85] V. Ganji, N. Gucunski, and S. Nazarian. Automated inversion procedure for spectral analysis of surface waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(8): 757-770.
    [86] T. Forbriger. Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms [J]. Geophysical Journal International, 2003, 153: 735-752.
    [87] J. Xia, R. D. Miller, and C. B. Park. Estimation of near-surface shear-wave velocity by inversion of Rayleigh Waves [J]. Geophysics, 1999, 64 (3): 691-700.
    [88]胡家富,温一波,谢应齐.利用地震面波频散反演岩石圈结构的奇异值分解算法[J].地球物理学报. 1998, 41 (2): 211-217.
    [89]宋先海,顾汉明.用瞬态瑞雷波反演横波速度试验研究[J].人民长江, 2006, 37 (4): 62-63.
    [90] Y. Luo, J. Xia, and J. Liu, et.al, Joint inversion of high-frequency surface waves with fundamental and higher modes [J]. Journal of Applied Geophysics, 2007, 62: 375-384.
    [91] H. Dong, L. Liu, M. Thompson and A. Morton. Estimation of seismic interface wave dispersion using ambient noise recorded by ocean bottom cable [J]. Istanbul, 2010.
    [92] S. C. Constable, R. L. Parker, and C. G. Constable. Occam's Inversion: A practical algorithm for generating smooth models from electromagnetic sounding data [J]. Geophysics, 1987, 52(3): 289-300.
    [93]欧阳联华,王家林,吴健生.利用面波频散反演场地参数的Occam法[J].物探化探计算技术. 2003, 25 (1): 1-4.
    [94] C. G. Lai, G. J. Rix, and S. Foti, et al. Simultaneous measurement and inversion of surface dispersion and attenuation curves [J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 923-930.
    [95] C. G. Lai, S. Foti, and G. J. Rix. Propagation of data uncertainty in surface wave inversion [J]. Journal of Environmental & Engineering Geophysics, 2005, 10(2): 219-228.
    [96] A. O'Neill, M. Dentith and R. List. Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications [J]. Exploration Geophysics, 2003, 34: 158-173.
    [97] S. Zhang and L. Chan. Possible effects of misidentified mode number on Rayleigh wave inversion [J]. Journal of Applied Geophysics, 2003, 53: 17-29.
    [98] X. Song, H. Gu, and J. Liu, et al. Estmation of shallow subsurface shear-wave velocity by inverting fundamental and higher-mode Rayleigh waves [J]. Soil Dynamics and Earthquake Engineering, 2007, 27(7): 599-607.
    [99] P. L. Stoffa and M. K. Sen. Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms [J]. Geophysics, 1991, 56(11): 1794-1810.
    [100]赵东,土光杰,土兴泰等.用遗传算法进行瑞利波反演[J].物探与化探, 1995, 19 (3): 178-185.
    [101] H. Yamanaka and H. Ishida. Application of genetic algorithms to an inversion of surface wave dispersion data [J]. Bulletin of the Seismological Society of America, 1996, 86: 436-444.
    [102] S. Pezeshk and M. Zarrabi. A new inversion procedure for spectral analysis of surface waves using a genetic algorithm [J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1801-1808.
    [103] G. D. Moro, M. Pipan and P. Gabrielli. Rayleigh wave dispersion curve inversion via geneticalgorithms and Marginal Posterior Probability Density estimation [J]. Journal of Applied Geophysics, 2007, 61(1): 39-55.
    [104] S. Feng, T. Sugiyama, H. Yamanaka. Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations [J]. Exploration Geophysics, 2005, 36: 26-33.
    [105]鲁来玉,张碧星,汪承灏.基于瑞利波高阶模式反演的实验研究[J].地球物理学报, 2006, 49(4): 1082-1091.
    [106] L. Lu, C. Wang and B. Zhang. Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: numerical and laboratory study [J]. Geophysical Journal International, 2007, 168: 1235-1246.
    [107] M. D. Martinez, X. Lana, and J. Olarte,et al. Inversion of Rayleigh wave phase and group velocities by simulated annealing [J]. Physics of the Earth and Planetary Interiors, 2000, 122: 3-17.
    [108]曹小林,洪学海,曹俊兴.面波波形反演中的模拟退火法[J].成都理工学院学报, 2000, 27 (3): 296-301.
    [109] K. S. Beaty, D. R. Schmitt, M. Sacchi. Simulated annealing inversion of multimode Rayleigh-wave dispersion curves for geological structure [J]. Geophysical Journal International, 2002, 151: 622-631.
    [110] K. S. Beaty and D. R. Schmitt. Repeatability of multimode Rayleigh-wave dispersion studies [J]. Geophysics, 2003, 68(3): 782-790.
    [111]崔建文.一种改进的全局优化算法及其在面波频散曲线反演中的应用[J].地球物理学报, 2004, 47(3): 521-527.
    [112] H. Yamanaka. Comparison of the performance of heuristic search methods for phase velocity inversion in the shallow surface wave method [J]. Journal of Environmental & Engineering Geophysics, 2005, 10(2): 163-173.
    [113] N. Ryden, C. B. Park. Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra [J]. Geophysics, 2006, 71(4): R49-R58.
    [114] S. Molnor, S. E. Dosso and J. F. Cassidy. Bayesian inversion of microtremor array disperson data in southwestern British Colubia [J]. Geophysical Journal International, 2010, 183 (2): 923-940.
    [115] A. Caiti, R. D. Stoll, and T. Akal. Estimation of shear wave velocity in shallow marine sediments [J]. IEEE J. Ocean. Eng., 1994, 19(1): 58-72.
    [116] R. D. Stoll and E. Bautista. New tools for studying seafloor geotechnical and geoacoustic properties [J]. J. Acoust. Soc. Am., 1994, 96(5): 2937-2944.
    [117] J. A. Collins, G. H. Sutton, and J. I. Ewing. Shear-wave velocity structure of shallow-water Sediments in the East China Sea [J]. J. Acoust. Soc. Am., 1996, 100(6): 3646-3654.
    [118] D. Wilken, S. Wolz, C. Muller, and W. Rabbel. FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution seismic reflection andScholte-wave dispersion analysis [J]. J. Applied Geophysics, 2009, 68: 117-123.
    [119] K. Ohta, S. Matsumoto, K. Okabe, K. Asano, and Y. Kanamori. Estimation of shear-wave speed in ocean-bottom sediment using electromagnetic induction source [J]. IEEE J. Oceanic Eng., 2008, 33: 233-239.
    [120] O. A. Godin and D. M. F. Chapman. Dispersion of interface waves in sediments with power-law shear speed profiles. I. Exact and approximate analytic results [J]. J. Acoust. Soc. Amer., 2001, 110: 1890-1907.
    [121] D. M. F. Chapman and O. A. Godin. Dispersion of interface waves in sediments with power-law shear speed profiles. II. Experimental observations and seismo-acoustic inversions [J]. J. Acoust. Soc. Amer., 2001, 110: 1908-1916, 2001.
    [122] R Parker. Geophysical inversion theory.Princeton university press.1994.
    [123]姚姚.地球物理反演基本理论与应用方法[M].北京:中国地质大学出版社, 2002.
    [124] C. E. Lindsay, N. R. Chapman. Matched field inversion for geoacoustic model parameters using adaptive simulated annealing [J]. IEEE Journal of Oceanic Engineering.1993,18: 224~231.
    [125] M. R. Fallat, S. E. Dosso. Geoacoustic inversion for the Workshop 97 benchmark test cases using simulated annealing [J]. Journal of computational acoustics, 1998, 6: 29~34.
    [126] P. Gertoft. Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions [J]. Journal of the Acoustical Society of America. 1994, 95 (2): 770~782.
    [127] C. F. Huang and W. S. Hodgkiss. Mached-Field geoacoustic inversion of of low-frequency source tow data from ASIAEX east China sea experiment [J]. IEEE Journal of Oceanic Engineering. 2004, 29 (4): 952~963.
    [128] S. E. Dosso, M. J. Wilmut, and A. S. Lapinski. An adaptive hybrid algorithm for geoacoustic inversion [J]. IEEE Journal of Oceanic Engineering, 2001,21:324~336.
    [129]王家映.地球物理反演理论(第二版) [M].北京:高等教育出版社, 2002.
    [130] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi. Optimization by simulated annealing [J]. Science, 1983, 220 (4598): 671-680.
    [131] R. L. Weaver. Information from Seismic Noise [J]. Science, 2005, 307: 1568-1569.
    [132] K. Wapenaar and J. Fokkema. Green’s function representations for seismic interferometry [J]. Geophysics, 2006, 71, SI33-SI46.
    [133] E. Larose, A. Derode, and D. Corennec, et al. Passive retrieval of Rayleigh waves in disordered elastic media [J]. Phys. Rev. E., 2005, 72: 046607-1~046607-8.
    [134] P. Gouédard, L. Stehly, and F. Brenguier, et al. Cross-correlation of random fields: mathematical and applications[J]. Geophysical Prospecting, 2008, 56: 375-393.
    [135]房立华.华北地区瑞利面波噪声层析成像研究.中国地震局地球物理研究所,博士学位论文. 2009.
    [136] P. Roux, K. G. Sabra, W. A. Kuperman, et al. Ambient noise cross correlation in free space: Theoretical approach [J]. J. Acoust. Soc. Am., 2005, 117:79-84.
    [137]高频贤.趋势项对时域参数识别的影响及消除[J].振动、测试与诊断, 1994(6):8-10.
    [138]黄文海,熊桂林,杨勇.信号分析与处理[M].长沙:国防科技大学出版社, 2000.
    [139] E. Larose, A. Derode, M. Campillo, et al. Imaging from one-bit correlations of wideband diffuse wave fields [J]. Journal of Applied Physics, 2004, 95: 8393-8399.
    [140] G. D. Bensen, M. H. Ritzwoller, M. P. Barmin, et al. Processing seismic ambient noise datato obtain reliable broad-band surface wave dispersion measurements [J]. Geophys. J. Int., 2007, 169: 1239-1260.
    [141] A. L. Levshin, T. B. Yanovskaya, A. V. Lander, et al. Recording, identification and measurement of surface wave parameters [J]. In: Keilis-Borok, V.L (Ed.), Seismic Surface Waves in a Laterally Inhomogeneous Earth. Kluwer Academic Publishing, Dordrecht, 1989: 131-182.
    [142] R.N. Bracewell. The Fourier Transform and its applications, McGraw-Hill, 2nd edition, New York, 1978.
    [143] N. M. Shapiro, and M. H. Ritzwoller. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle [J]. Geophys. J. Int., 2002, 151: 88–105.
    [144] J. Trampert, and J. H. Woodhouse. Global phase velocity maps of Love and Rayleigh waves between 40 and 150s [J]. Geophys. J. Int., 1995, 122: 675–690.
    [145] G. Ekstrom, J. Tromp, and E.W.F. Larson. Measurements and global models of surface wave propagation [J]. J. geophys. Res., 1997, 102: 8137–8157.
    [146] F. C. Lin, M. H. Ritzwoller, and J. Townend, et al. Ambient noise Rayleigh wave tomography of New Zealand [J]. Geophys.J. Int., 2007, 170(2): 649 -666.
    [147] A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier, 1987.
    [148] M. K. Sen and P. L. Stoffa. Bayesian inference, Gibbs’sampler and uncertainty estimation in geophysical inversion [J]. Geophys. Prospect. 1996, 44: 313–350.
    [149] W. R. Gilks, S. Richardson, and G. J. Spiegelhalter, Markov Chain Monte Carlo in Practice (Chapman and Hall, London, 1996).
    [150] M. K. Sen and P. L. Stoffa, Global Optimization Methods in Geophysical Inversion (Elsevier, Amsterdam, 1995).
    [151] S. E. Dosso, P. L. Nielsen and M. J. Wilmut. Data error covariance in matched-field geoacoustic inversion [J]. J. Acoust.Soc. Am., 2006, 119: 208-219.
    [152] P. Gerstoft and C. F. Mecklenbr?uker. Ocean acoustic inversion with estimation of a posteriori probability distributions [J]. J. Acoust.Soc. Am., 1998, 104: 808-819.
    [153] D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis (John Wiley and Sons, New York, 1992).
    [154] P. Gerstoft and Z-H. Michalopoulou. Global optimization in matched field inversion [J], in Proc. 4th Euro. Conf. Underwater Acoustics, Rome, Italy, 2000, 27–32
    [155] D. Collins and L. Fishman. Efficient navigation of parameter landscapes [J]. J. Acoust. Soc. Amer., 1995, 98 (3): 1637–1644.
    [156] H. Szu and R. Hartley. Fast simulated annealing [J]. Phys. Lett., 1987, A122: 157–162.
    [157] M. Sen and P. L. Stoffa. Global Optimization Methods in Geophysical Inversion. Amsterdam. The Netherlands: Elsevier, 1995, ch. 4.
    [158] M. R. Fallat and S. E. Dosso. Geoacoustic inversion via local, global, and hybrid algorithms [J]. J. Acoust. Soc. Amer., 1999, 105: 3219–3230.
    [159] L. Ingber. Very fast simulated reannealing [J]. Math. Comput. Model. 1989, 12: 967–973.
    [160] J. A. Nelder and R. Mead. A simplex method for function minimization [J]. Comput. J., vol. 7, pp. 308–313.
    [161] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 1992.
    [162] R. E. Kass and A. E. Raftery. Bayes factors [J]. J. Am. Stat. Assoc. 1995, 90: 773–795.
    [163] J. Dettmer and S. E. Dosso. Model selection and Bayesian inference for high-resolution seabed reflection inversion [J]. J. Acoust. Soc. Am. 2009, 125 (2):706-716.
    [164] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge, 2003.
    [165] S. Chib. Marginal likelihood from the Gibbs output [J]. J. Am. Stat. Assoc. 1995, 90: 1313–1321.
    [166] J. Skilling, Bayesian Statistics 8 _Oxford University Press, Oxford, 2007, pp. 491–524.
    [167] A. E. Gelfand, D. K. Dey, and H. Chang. Bayesian Statistics 4 OxfordUniversity Press, Oxford, 1992, 147–167.
    [168] A. E. Gelfand and D. K. Dey. Bayesian model choice: Asymptotics and exact calculations[J]. J. R. Stat. Soc. 1994, 56: 501–514.
    [169] M. A. Newton and A. E. Raftery. Approximate Bayesian inference with the weighted likelihood bootstrap with discussions[J]. J. R. Stat. Soc. 1994, 56: 3–48.
    [170] S. Chib and I. Jeliazkov. Marginal likelihood from the Metropolis-Hastings output[J]. J. Am. Stat. Assoc. 2001, 96: 270–281.
    [171] J. R. Shaw, M. Bridges, and M. P. Hobson. Efficient Bayesian inference for multimodal problems in cosmology[J]. Mon. Not. R. Astron. Soc. 2006, 378: 1365–1370.
    [172] P. J. Green. Reversible jump markov chain Monte Carlo computation and Bayesian. Biometrika[J]. 1995, 82: 711–732.
    [173] A. Malinverno and W. S. Leaney. Monte-Carlo Bayesian look-ahead inversion of walkaway vertical seismic profiles[J]. Geophys. Prospect. 2005, 53: 689–703.
    [174] A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling[J]. Stat. Sci. 1998, 13: 163-185.
    [175] R. E. Kass and A. E. Raftery. A reference Bayesian tests for nested hypotheses and its relationship to the Schwarz criterion[J]. J. Am. Stat. Assoc. 1995, 90: 928–934.
    [176] C. H. Harrison and J. A. Harrison. A simple relationship between frequency and range averages for broadband sonar[J]. J. Acoust. Soc. Am. 1995, 97: 1314–1317.
    [177] G. Schwartz. Estimating the dimension of a model[J]. Ann. Stat. 1978, 6: 461– 464.
    [178] H. Dong and S. E. Dosso. Bayesian inversion of interface-wave dispersion for seabed shear wave velocity profiles [J]. IEEE Journal of Oceanic Engineering. 2011, vol. 36 (1): 1-11.
    [179] H. Akaike, Proceedings of the Second International Symposium in Information Theory [J]. Akademiai Kiado, Budapest, 1973: 267–281.
    [180] D P Landau, and K Binder. A guide to Monte Carlo simulations in statistical physics. London: Cambridge, 2005.
    [181] A F M Smith, G O Robert. Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods[J]. Journal of Royal Statistical Society Series B. 1993, 55: 3~23.
    [182] S. E. Dosso. Quantifying uncertainty in Geoacoustic inversion I. A fast Gibbs sampler approach [J]. Journal of the Acoustical Society of America. 2002, 111(1):129~142.
    [183] S. E. Dosso. Quantifying uncertainty in Geoacoustic inversion II. Application to broadband shallow-water data [J]. Journal of the Acoustical Society of America.2002, 111(1): 143~159.
    [184] E. T. Jaynes. Information theory and statistical mechanics, Physical Review 1957, 106:620
    [185] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A Teller, E Teller. Equation of state calculation by fast computing machines [J]. Journal of Chemical Physics. 1953, 21: 1087~1092.
    [186] W. K. Hasting. Monte Carlo sampling method using Markov Chains and their applications [J]. Biometrika. 1970,57(1): 97~109
    [187] S. E. Dosso S and M. J. Wilmut. Bayesian acoustic source track prediction in an uncertain ocean environment [J]. IEEE J. Ocean. Eng., 2010,35(4): 811-820.
    [188] S. E. Dosso S and M. J. Wilmut. Simultaneous Bayesian localization of multiple sources in an uncertainty ocean environment [J]. J. Acoust. Soc. Amer., 2010,128(4): 2327.
    [189] S. E. Dosso S and M. J. Wilmut. Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion [J]. J. Acoust. Soc. Amer., 2008,124: 82-97.
    [190] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge U.P., Cambridge, 1992).
    [191] J. J. K. O. Ruanaidh and W. J. Fitzgerald, Numerical Bayesian Methods Applied to Signal Processing (Springer-Verlag, New York, 1996).
    [192] C. A. Gillard, D. J. Thomson, and G. J. Heard. Estimating geoacoustic parameters using matched-field inversion methods [J]. IEEE J. Ocean. Eng. 2003, 28: 394–413.
    [193] D. J. Battle, P. Gerstoft, W. S. Hodgkiss, W. A. Kuperman, and P. L. Nielsen. Bayesian model selection applied to self-noise geoacoustic inversion [J]. J. Acoust. Soc. Am. 2004, 116: 2043–2056.
    [194] B. F. Brooks and L. N. Frazer. Importance reweighting reduces dependence on temperature in Gibbs samplers: An application to the inverse coseismic geodetic problem [J]. Geophys. J. Int. 2005, 161: 12–20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700