用户名: 密码: 验证码:
松潘造山带马尔康强过铝质花岗岩的成因及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松潘构造带位于青藏高原东北部,是我国三个主要大陆板块(华北板块、扬子板块和青藏高原板块)的构造交汇地带,表层主要被面积为20多万平方公里的三叠系复理石沉积地层所覆盖。该块体内广泛出露印支期后碰撞型花岗岩类,它们侵入于三叠系地层中,其中包括埃达克质花岗岩类、A型花岗岩和Ⅰ型花岗岩,但目前人们对该区印支期强过铝质花岗岩尚未有深入的研究。
     为了更全面地了解松潘带印支期花岗岩类成因类型的多样性,本文重点研究了松潘造山带马尔康地区出露的强过铝质花岗岩,对其开展了LA-ICP-MS锆石U-Pb定年、地球化学和Sr-Nd-Hf同位素地球化学的综合研究。论文主要取得如下认识:
     1.马尔康花岗岩岩石类型主要为中粒二云母花岗岩和中细粒二云母花岗岩,两者均属于后碰撞强过铝质花岗岩(A/CNK=1.10-1.20)。中粒二云母花岗岩和中细粒二云母花岗岩所分选的锆石类似,极大部分为无色透明,有较好的自形程度,在阴极发光图像上呈现密集的岩浆型锆石的振荡环带,但含有较多的继承型锆石。中粒二云母花岗岩岩浆型锆石的年龄变化于204-214Ma之间,206Pb/238U:年龄的加权平均年龄为208±2 Ma(MSWD=2.8),解释为其岩浆结晶年龄;中细粒二云母花岗岩岩浆型锆石的年龄变化于197-210Ma之间,206Pb/238U年龄的加权平均年龄为200±2 Ma(MSWD=1.6),解释为其岩浆结晶年龄。综合两个样品的年龄结果,马尔康强过铝质花岗岩的岩浆结晶年龄为208-200Ma。
     2.中粒二云母花岗岩SiO2=73.46%74.74%,K2O/Na2O=1.13-1.75, CIPW标准矿物计算结果含有刚玉(C),含量为0.91%-3.01%,并且除1个样品的A/CNK=1.04外,其余样品的A/CNK=1.10-1.20,表明它们主要为强过铝质岩石。中细粒二云母花岗岩SiO2=69.57%-73.70%, K2O/Na2O=1.35-1.71, CIPW标准矿物计算结果也含有刚玉(C),含量为1.46%-1.85%,并且样品的A/CNK=1.08-1.12,表明它们也应为强过铝质岩石。两者均为高钾钙碱性系列,中粒二云母花岗岩和中细粒二云母花岗岩比较,前者具有相对较高的SiO2、K2O含量和相对较低的CaO、MgO含量。在微量元素组成上,中粒二云母花岗岩和中细粒二云母花岗岩均以富Rb、Th、U,贫Sr、Ba、Co和Ni等元素为特征,中粒二云母花岗岩与中细粒二云母花岗岩相比,前者Rb相对偏高,而Th、Sr和Ba相对偏低;这些特征明显不同于Ⅰ型、A型和M型花岗岩的微量元素组成特征,而与S型花岗岩相似;在稀土元素组成上,中粒二云母花岗岩和中细粒二云母花岗岩均为轻稀土富集型的稀土元素组成模式,轻、重稀土分异程度比较明显,(La/Yb)N=6.08-51.84,平均为18.20;中粒二云母花岗岩存在强到中等的负Eu异常(Eu/Eu*=0.15-0.44),中细粒二云母花岗岩存在中等的负Eu异常(Eu/Eu*=0.50-0.65)。
     3.中粒二云母花岗岩的ISr=0.70712-0.71137,εNd(t)=-10.4-8.4, Nd同位素一阶段亏损地幔模式年龄(TDM1)=1.70-6.77Ga,二阶段亏损地幔模式年轮TDM2=1.69-1.81Ga;中细粒二云母花岗岩的ISr=0.70882-0.70967,εNd(t)=-9.4--8.5, TDM1=1.64-1.69Ga,TDM2=1.69-1.76Ga.上述结果表明,马尔康强过铝质花岗岩应来自于地壳物质的部分熔融,这与它们含有较为丰富的古老继承型锆石的观察是一致的。在中粒二云母花岗岩定年的锆石中,挑选了12颗岩浆型锆石进行锆石Lu-Hf同位素测定。它们的176Hf/177Hf变化于0.282314-0.282618,176Lu/177Hf变化于0.000146-0.001464;εHf(208)值变化于-11.8--1.1,加权平均值为-9.1±1.4,Hf同位素亏损地幔模式年龄TDM2变化于1.3-2.0 Ga,平均为1.8 Ga。在中细粒二云母U-Pb定年的锆石中,挑选了15颗岩浆型锆石进行锆石Lu-Hf同位素测定。它们的176Hf/177Hf变化于0.282445-0.282584,176Lu/177Hf变化于0.000709-0.001788;εHf(200)值变化于-7.4--2.4,加权平均值为-4.1±0.8,TDM2变化于1.4-1.7Ga,平均值为1.5Ga。上述结果表明,中粒二云母花岗岩和中细粒二云母花岗岩的岩浆均来自于地壳物质的部分熔融无明显幔源物质的加入。
     4.地球化学和Sr-Nd-Hf同位素组成一致表明它们的岩浆来自于地壳物质的部分熔融,其中中粒二云母花岗岩的源岩类型主要为地壳中的泥质岩类,而中细粒二云母花岗岩的源岩主要为地壳中的杂砂岩类。结合松潘带的地质背景、区域构造-岩浆事件及其岩浆岩的组合分析,印支期岩石圈拆沉作用可以用来解释马尔康强过铝质花岗岩的形成机制。在松潘带.,印支期岩石圈拆沉作用导致软流圈物质上涌,这不仅促使了加厚下地壳物质发生部分熔融,如松潘带印支期埃达克质和Ⅰ型花岗岩浆的形成,而且还诱发了中地壳物质的部分熔融,如马尔康强过铝质花岗岩的形成。这表明松潘带印支期岩石圈拆沉作用已使地壳不同层次发生部分熔融作用。
The Songpan fold belt, located in the easten part of the Tibetan Plateau, is confined by the North China, South China (Yangtze) and North Tibet (Qiangtang) blocks. The belt is a folded Triassic flysch basin which is a huge triangular area with an area of more than 200,000 km2. In the Songpan fold belt, Indosinian post-collision granitoids, including adakitic, A-type and I-type granitoids, are widespread. However, studies on Indosinian strongly peraluminous granite in this area are rare.
     This paper carries out a study of U-Pb dating, geochemical and Sr-Nd-Hf isotopic compositions from the Markan granites. Some conclusions are sumarried as follows.
     1. The Markan granites, including medium-grained two-mica granite and medium-fine grained two-mica granite, are strongly peraluminous, with Al index (A/CNK)=1.10-1.20. Zircons from the medium-grained two-mica granite and the medium-fine grained two-mica granite granite are colourless. Zircon CL images show clear magma rhythmic zoning. Some zircons of the Markan granites display inherited zircon cores. Most analyses are concordant. The zircons from the medium-grained two-mica granite yields 206Pb/238U ages ranging from 204 to 214Ma with a weighted mean age of 208±2Ma(MSWD=2.8), which represents the magma crystallization age. Zircons from the medium-fine grained two-mica granite display 206Pb/238U ages ranging from 197 to 210 Ma, with a weighted mean age of 200±2Ma(MSWD=1.6), which represents the magma crystallization age of the medium-fine grained two-mica granite granite. Our data indicate that the magma crystallization age of the Markan granites is 208-200 Ma.
     2. The medium-grained two-mica granite shows SiO2=73.46%-74.74%, K2O/Na2O=1.13-1.75, Corundum(C)= 0.91%-3.01%. Most samples have A/CNK=1.10-1.20, indicating that they are strongly peraluminous.The medium-fine grained two-mica granite displays SiO2=69.57%-73.70%, K2O/Na2O=1.35-1.71, Corundum (C)= 1.46%-1.85% and A/CNK= 1.08-1.12, also indicating that they are strongly peraluminous. Both of them lie in a field of high-potassic calc-alkaline. Trace elemental data show that the Markan strongly peraluminous granites are enriched in Rb、Th、U and depleted in Sr、Ba、Co and Ni. The medium-grained two-mica granite displays higher Rb and lower Th, Sr and Ba than the medium-fine grained two-mica granite. These characteristics are distinct from A-type、I-type and M-type granitoids, but are similar to S-type granitoids. In rare earth element (REE) compositions, both the medium-grained medium-fine grained two-mica granites display strongly fractionated REE patterns with (La/Yb)N= 6.08-51.84, Eu/Eu*= 0.15-0.44 for the medium-grained two-mica granite and Eu/Eu*= 0.50-0.65 for the medium-fine grained two-mica granite.
     3. The medium-grained two-mica granite has initial Sr isotopic ratios (ISr) of 0.70712-0.71137 andεNd(t) values of-10.4--8.4, the single-stage Nd depleted-mantle model ages (TDm1) range from 1.70 to 6.77Ga, the two-stage Nd depleted-mantle model ages (TDM2) range from 1.69 to 1.81Ga. The medium-fine grained two-mica granite has ISr of 0.70581-0.70804 andεNd(t) values of-3.73 to-4.72, TDM1=1.64-1.69Ga, TDM2=1.69-1.76Ga The Sr-Nd isotopic composition of the Markan granites provides an additional eveidence that both the granites were derived from crustal source and it is agreement with occurrence of abundant inherited zircons. The medium-grained two-mica granite has 176Hf/177Hf from 0.282314 to 0.282618 and 176Lu/177Hf from 0.000146 to 0.001464, zirconεHf(208) values of-11.8--1.1 with a weighted mean value of -9.1±1.4. The medium-fine grained two-mica granite has 176Hf/177Hf from 0.282445 to 0.282584 and 176Lu/177Hf from 0.000709 to 0.001788, zirconεHf(200) values of-7.4--2.4 with a weighted mean value of -4.1±0.8. The two-stage Hf model ages of medium-grained two-mica granite and medium-fine grained two-mica granite are 1.3-2.0Ga and 1.4-1.7Ga, respectively. Hf isotopic data suggest that the magmas for the Markan granite were mainly derived from patial melting of crust.
     4. Geochemical and Sr-Nd-Hf isotopic compositions suggest that the magmas for the medium-grained and the medium-fine grained two-mica granites were derived from patial melting of argillaceous and greywacke sediments, respectively. Combined with geological background, regional tectono-magmatic events and magmatism association, Indosinian lithospheric delamination can account for the magma generation of the Markan strongly peraluminous granites. The Indosinian lithospheric delamination resulted in mantle asthenospheric upwelling, which promoted not only partial melting of the thickened lower crust (e.g. the adakitic andⅠ-type granitoid magma gerneration), but also partial melting of the middle-lower crust (e.g. the Markan granite gerneration). This indicates that the Indosinian lithospheric delamination in the Songpan fold belt had resulted in crustal partial melting at different crustal levels.
引文
[1]Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos,1998,45:29-44.
    [2]Pitcher, W.S. Granite type and tectonic environment. In: Hsu K(eds). Mountain Building Processes. Academic Press,1983, London:19-40.
    [3]Pearce, J.A., Harris, N.W., Tindle, A.G.. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrology,1984,25:956-983.
    [4]Harris, N.W., Pearce, J.A., Tindle, A.G. Geochemical characteristics of collision-zone magmatism.In:Coward Mp and Rise AC(eds). Collision Tectonics. Geological Society Special Publication 19,1986, Blackell Scientific Publications:67-82.
    [5]Pamic, J., Lanphere, M.,Belak, M. Hercynian Ⅰ-type and S-type granitoids from the Slavonian mountains southern. Pannonian Basin,,1996,171:155-186.
    [6]Bellieni, G., Cavazzini, G, Fioreti, A.M., et al. The Cima di Vila (Zinsnock) Intrusion, Eastern Alps:Evidence for crustal melting.acid-mafic magma mingling and Wallrock fluid effects. Mineralogy and Petrology,1996,56:125-146.
    [7]Finger, F., Roberts, M., Haunschmid, B., et al. Variscan granitoids of central Europe:Their typology, potential sources and tectonothermal relations. Mineralogy and Petrology,1997, 61:67-96.
    [8]Searle, M., Parrish, R., Hodges, K., et al. Shisha Pangma leucogranite.South Tibetan Himalaya: Fieldrelations, Geochemistry age origin and emplacement. J. Petrology,1997, 105:295-317.
    [9]Barbarin, B. Genesis of the two main types of peraluminous granitoids. Geology,1996,24: 295-298.
    [10]Harris, N., Ayres, M., Massey, J. Geochemistry of granitic melt s produced during the incongruent melting of muscovite:Implication for the ext raction of Himalayan leucogranite mamas. J. Geophysical Research,1995,100:15767-15777.
    [11]Harrison, T.M., Lovera, O.M., Grove, M. New insights into the origin of two cont rasting Himalayan granite belts. Geology,1997,25:899-902.
    [12]Roger, F., Malavieille, J., Leloup, P.H., et al.. Timing of Granite Emplacement and Cooling in the Songpan-Garze Fold Belt (Eastern Margin of the Tibetan Plateau) with Tectonic Implications. J. Asian Earth Sci.,2004,22:465-481.
    [13]胡健民,孟庆任,石玉若,等.松潘-甘孜地体内花岗岩错石SHRIMP定年及其构造意义.岩石学报,2005,21:67-80.
    [14]Zhang, H.F., Zhang, L., Harris, N., et al.. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibet Plateau: Constraints on Petrogenesis, Nature of Basement and Tectonic Evolution. Contrib. Mineral. Petrol., 2006,152:75-88.
    [15]Zhang, H.F., Parrish, R., Zhang, L. A-type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Implication for Lithospheric Delamination. Lithos,2007,97:323-335.
    [16]赵永久,袁超,周美夫,等.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约.岩石学报,2007,23:995-1006.
    [17]Enkin, R., Yang, Z.,Chen, Y. Paleomagnetic Constraints on the Geodynamic History of the Major Blocks of China from the Permian to the Ppresent. J. Geophysical Reseach,1992,97: 13953-13989.
    [18]Reid, A.J., Wilson, C.J.L., Liu, S. Structural Evidence for the Permo-Triassic Tectonic Evolution of the Yidun arc, Eastern Tibetan Plateau. J. Structural Geology,2005,27: 119-137.
    [19]Harrowfield, M.J., Wilson, C.J.L. Indosinian Deformation of the Songpan Garze Fold Belt, Northeast Tibetan Plateau. J. Structural Geology,2005,27:101-117.
    [20]Xiao, L., Zhang, H.F., Clemens, J.D., et al. Late Triassic Granitoids of the Eastern Margin of the Tibetan Plateau:Geochronology, Petrogenesis and Implications for Tectonic Evolution. Lithos,2007,96:436-452.
    [21]Weislogel, A.L.Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics, 2008,451:331-345.
    [22]Zhou, M.F., Yan, D.P., Vasconcelos, P.M., et al. Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetan plateau. J. Asian Earth Sci.,2008,33:414-427.
    [23]许志琴,侯立炜,王宗秀,等.中国松潘-甘孜造山带的造山过程.北京:地质出版社,1992.
    [24]Burchfiel, B.C., Chen, Z., Liu, Y, et al. Teconics of the Longmen Shan and adjacent regions, Central China. Inter. Geol. Review,1995,37:661-735.
    [25]Yin, A., Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth Planet. Sci.,2002,28:211-280.
    [26]Nie, S.Y, Yin, A., Rowley, D.B., et al. Exhumation of the Dabie Shan Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch Sequence, Central China. Geology, 1994,22:999-1002.
    [27]Hsu, K.,15others. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis. Inter. Geol. Review,1995,37:473-508.
    [28]袁海华,张志兰,张平.龙门山老君沟花岗岩体的隆升及冷却史.成都地质学院学报,1991,18:17-22.
    [29]四川省地质矿产局.四川省区域地质志.北京:地质出版社,1991.
    [30]袁海华,张志兰.龙门山冲断带西侧印支-燕山期花岗岩类岩石年代学研究.龙门山造山带的崛起和四川盆地的形成与演化(罗志立主编),成都:成都科学技术大学出版社,330-337,1994.
    [31]Yuan C., Zhou M.F., Sun M., et al. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet. Sci. Let.,2010,290:481-492.
    [32]Sengor, A.M.C. Tectonic Subdivisions and Evolution of Asia. Bull. Tech. Univ. Istanbul, 1985,46:355-435.
    [33]Wang, X.F., Metcalfe, I., Jian, P., et al. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigfraphy, Age and Evolution. J. Asian Earth Sci.,2000,18:675-690.
    [34]Mattauer, M., Malavieille, J., Calassou, S., et al. La chaine triasique de Songpan-Garze (Quest Sechuan et Est Tibet):une chaine de plissement-decollement sur marge passive. Comptes Rendus de l'Academie des Sciences Paris,1992,314:619-626.
    [35]Huang, M., Maas, R., Buick, I.S., et al. Crustal response to continental collisions between the Tibet,Indian,South China and North China Bloeks:geochronological constraints from the Songpan-Garze Orogenie Belt, westen China. J. Metamorphic Geology,2003.21:223-240.
    [36]沈渭洲,陆怀鹏,徐士进,等.丹巴地区变质沉积岩Sm-Nd同位素研究.地质科学,1998,33(3):367-373.
    [37]Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China):provenance and tectonic correlations. Earth Planet. Sci. Lett.,1997,152(1-4):217-231.
    [38]陈岳龙,唐金荣,刘飞,等.松潘-甘孜碎屑沉积岩的地区化学与Sm-Nd同位素地区化学.中国地质,2006,33:109-118.
    [39]Weislogel A. L., Graham S.A., Chang E.Z. et al., Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology,2006,34:97-100.
    [40]Calassou, S. Etude tectonique d'une chaine de decollement: A) Tectonique Triasique et Tertiaire de la Chaine de Songpan-Garze. B) Geometrie et Cinematique des Deformations Dans les Prismes D'accretion Sedimentaire:Modelisation Analogique. PhD Thesis, Univ, Montpellier Ⅱ,,2004,1-400.
    [41]Zhang H. F., Gao S., Zhong Z. Q., et al.. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology,2002,186: 281-299.
    [42]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,5(增刊):26-30.
    [43]Wiedenbeck M, Alle P, Corfu F, et al. Three nautral zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl,1995,19:1-23.
    [44]Yuan H L, Gao S, Liu X. M., et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand.Newsl., 2004,28:353-370.
    [45]Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol.,2002,192:59-79.
    [46]Ludwig K R. Users manual for Isoplot/Ex (rev.2.49): A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center,2001, Special Publication No.la,55.
    [47]Wu F Y, Yang YH, Xie L W. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology,2006,234:105-126.
    [48]DeBievre P, Taylor P D P. Table of the isotopic composition of the elements. Int J. Mass. Spectrom. Ion Process,1993,123:149.
    [49]Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,2002,34:745-748.
    [50]Blichert-Toft J, Albarede F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth Planet Sci. Let.,1997,148:243-258.
    [51]Amelin Y, Lee DC, Halliday A.N. Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim.Cosmochim. Acta,2000, 64:4205-4225.
    [52]Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002, 61:237-269.
    [53]Maniar, P.D.,Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. America Bull., 1989,101:635-643.
    [54]Sun, S., McDonough, W.F. Chemical and isotopic systematics of oceanic basalts:imlications for mantle composition and processes,In Saunders AD and Norry MJ(eds).Magmatism in the Ocean Basin. Geological Society Special Publication. Blackwell Sientific Publications,1989, 42:313-346.
    [55]Taylor S R, McLennan S. M. The continental crust: Its composition and evolution. Oxford: Blackwell Scientific Publication,1985.1-132.
    [56]Healy, B, Collins, W.J., Richards, S. W. A hybrid origin for Lachlan S-type granites:The Murrumbridgee batholith example. Lithos,1995,79:197-216.
    [57]Blichert-Toft, J., Albarede, F.,1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth Planet. Sci. Let.,148:243-258.
    [58]Amelin,Y., Lee, D.C., Halliday, A.N.,2000. Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim.Cosmochim. Acta,64:4205-4225.
    [59]White, A.J.R., Chappell, B.W.. Ultrametamorphism and granitoid genesis. Tectonophysics, 1977,43:7-22.
    [60]Patino Douce, A.E., Harris, N. Experimental const raints on Himalayan anatexis. J. Petrology,1998,39:689-710.
    [61]Bolhar, R., Weaver, S.D., Whitehouse, M.J., Palin, J.M., Woodhead, J.D., Cole, J.W. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet. Sci. Lett.,2008,268:312-324.
    [62]Chappell, B.W., White, A.J.R. I and S-type granites in the Lachlan Fold Belt.Trans. R.Soc. Edinburgh:Earth Sci.,1992,83:1-26.
    [63]Patino Douce, A.E., Johnston, A.D. Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peralumious granitoids and aluminous granulites. Contrib. Mineral. Petrol.,1991,107:202-218.
    [64]Patino Douce,A.E., Beard, J.S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrology,1995,36:707-738.
    [65]Skjerlie, K.P., Johnston, A.D.. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases:Imlications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrology,1996,37:661-691.
    [66]Watson, E.B., Harrison. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett.,1983,64:295-304.
    [67]Miller, C.F., McDowell, S.M., Mapes, R.W. Hot and cold granite? Implications of zircon saturation temperatures and preservation of inheritance. Geology,2003,31:529-532.
    [68]Zhang, H.F., Harris, N., Parrishc, R. et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet. Sci. Let.,2004, 228:195-212.
    [69]廖忠礼,莫宣学,潘桂棠,等.西藏过铝花岗岩的岩石化学特征及成因探讨.地质学报,2006,80:1329-1341.
    [70]Roberts, M.P., Clemens, J.D. Origin of high-potassium, calcalkaline, I-type granitoids. Geology,1993,21:825-828.
    [71]Thompson, A.B. Some time-space relationships for crustal melting and granitic intrusion at various depths.In:Castro A et al.(eds) Understanding granites:integrating new and classical techniques. Geol. Soci. Ameriean Bull.,1999,168:7-25.
    [72]Patino Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?From:Carstro A., Fernandez C.and Vigneresse J.L. (eds) Understanding Granites:Intergrating New and Classic Techniques. Geologieal Society, London, Special Publications,1999,168:55-75.
    [73]Turner, S., Hawkesworth, G., Liu, J., et al. Timing of Tibetan Uplift Constrained by Analysis of Volcanic Rocks. Nature,1993,364:50-54
    [74]Jung, S., Mezger, K.,H oernes, S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites-a major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia; Lithos,1998,45:147-175.
    [75]Wu, F.-Y., Sun, D.-Y., Li, H.-M., et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology,2002,187:143-173.
    [76]Wu, F.-Y., Lin, J.-Q., Wilde, S.A., et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett.,2005,233:103-119.
    [77]Ilbeyli, N., Pearce, J.A., Thirlwall, M.F., et al. Petrogenesis of collision-related plutonics in Central Anatolia,Turkey. Lithos,2004,72:163-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700