用户名: 密码: 验证码:
罗布麻叶总黄酮抗抑郁作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症,是一种常见的精神障碍性疾病,影响着世界将近21%的人口。主要症状表现为情绪低落,悲观厌世,兴致减低或缺失,意志减退,食欲不振,睡眠障碍,缺乏主动性,严重者甚至出现自杀念头等。世界卫生组织报道到2020年抑郁症将成为危害人类健康的世界第二大疾病。因此,对于抑郁症的发病机制和治疗方面的研究越来越受到科研工作者的重视。但其发病机制尚不十分清楚,主要认为与单胺类神经递质、神经营养因子、信号转导通路等因素密切相关。目前,抗抑郁药物主要是合成药,但是合成药物普遍存在抗抑郁谱窄、存在耐药性、副作用大的弊端。因此开发安全、高效、低毒的天然抗抑郁药物成为了该领域的研究热点。罗布麻是我国的传统中药和常用中药,本研究提取它的主要有效成分之一罗布麻叶总黄酮,在评价其抗抑郁活性的基础上,对其抗抑郁作用及机制进行研究,为新型抗抑郁药物的开发及应用提供一定的理论和实验依据。
     1.罗布麻叶总黄酮抗抑郁作用的活性评价
     采用经典抑郁动物模型小鼠悬尾、小鼠强迫游泳、大鼠强迫游泳实验,小鼠开野实验评价罗布麻叶总黄酮的抗抑郁活性。结果表明罗布麻叶总黄酮具有明确的抗抑郁作用。
     2.罗布麻叶总黄酮对抑郁大鼠脑内单胺类神经递质及其代谢产物含量的影响
     利用HPLC-MS/MS联用方法测定罗布麻叶总黄酮对抑郁大鼠脑内去甲肾上腺素(NE)、5-羟色胺(5-HT)和多巴胺(DA)及其代谢产物5-吲哚乙酸(5-HIAA)、高香草酸(HVA)和3,4-二羟基苯乙酸(DOPAC)含量的影响。结果表明,抑郁模型大鼠脑内NE, DA及其代谢产物DOPAC、HVA,5-HT、5-HIAA的含量较正常组明显降低,罗布麻叶总黄酮处理后大鼠脑内NE、DA、HVA、DOPAC的含量较抑郁组明显升高,与氟西汀组结果相似,但对5-HT及其代谢产物5-HIAA含量作用不明显,与氟西汀结果相反,氟西汀显著增加了5-HT/5-HIAA含量。该结果证实了抑郁症发病的神经递质假说,同时发现罗布麻叶总黄酮可以逆转抑郁大鼠脑内单胺类物质(NE、DA)及其代谢产物(HVA、DOPAC)的降低。
     3.罗布麻叶总黄酮抗抑郁作用参与单胺能系统可能机制的研究
     研究选择相关NE、5-HT、DA受体阻断剂(5-HT1A→Way100635、5-HT2→赛庚啶、5-HT2A→酮舍林、a1-NE受体阻断剂→哌唑嗪、α2-NE受体阻断剂→哌唑嗪、αβ-NE受体阻断剂→普萘洛尔、D1→SCH23390、D2→舒必利,采用小鼠悬尾实验,来进一步探讨罗布麻叶总黄酮的抗抑郁机制。结果表明,5-HT2A、5-HT2受体阻断剂酮舍林(5 mg/kg)、赛庚啶(3mg/kg);α1、α2、αβ-NE受体阻断剂哌唑嗪(1 mg/kg)、哌唑嗪(1 mg/kg)、普萘洛尔(2 mg/kg);D1、D2受体阻断剂SCH23390 (0.05 mg/kg)、舒必利(50 mg/kg)与罗布麻叶总黄酮50 mg/kg联合连续灌胃给药10天后与罗布麻叶总黄酮50 mg/kg单独给药相比,能明显延长悬尾小鼠累计不动时间(p<0.05),表明罗布麻叶总黄酮的抗抑郁活性与去甲肾上腺素能系统(α1、α2、αβ-去甲肾上腺素受体)、5-羟色胺能系统(5-HT2A、5-HT2受体)、多巴胺能系统(D1、D2受体)有关。
     4.罗布麻叶总黄酮神经保护作用机制的研究
     采用高浓度皮质酮处理PC12细胞以模拟抑郁症病人脑神经元损伤状态,运用MTT法、Ca2+离子浓度([Ca2+]i)检测法、LDH检测法、流式细胞术法考察罗布麻叶总黄酮对皮质酮损伤的PC12细胞的保护作用。结果表明,罗布麻叶总黄酮预先处理后,与皮质酮诱导的PC12细胞损伤组相比,PC12细胞的存活率显著上升,在100μg/mL时达到78%;其LDH释放量、细胞内[Ca2+]i均显著降低(P<0.01),同时细胞S期显著延长(P<0.01),表明罗布麻叶总黄酮对皮质酮诱导损伤的PC12细胞具有神经保护作用,这种神经保护作用可能通过减少细胞内LDH的漏出、降低胞内Ca2+超载、促进细胞增殖实现的。
     5.罗布麻叶总黄酮抗抑郁相关基因BDNF、CREB表达水平的研究
     研究通过Real-time RT-PCR从基因水平对各组药物处理后的PC12细胞中BDNF、CREB表达水平进行检测发现,皮质酮(0.01 mmol·L-1)处理后的PC12细胞中BDNF、CREB基因的表达量最低,罗布麻叶总黄酮(25,50 and 100μg/mL)处理48小时候后,其表达量显著增加,在100μg/mL时较用药前增加了近10倍。研究结果表明,抑郁症的发病机制可能与脑中BDNF、CREB基因表达降低密切相关,罗布麻叶总黄酮的抗抑郁机制可能是通过(AC-cAMP-CREB)信号通路促进BDNF、CREB的基因表达而发挥的。
     本研究在评价了罗布麻叶总黄酮的抗抑郁作用的基础上,揭示了罗布麻叶总黄酮抗抑郁作用与提高抑郁大鼠脑内单胺类神经递质NE、DA及其代谢产物HVA、DOPAC含量有关;并首次证实其抗抑郁活性与去甲肾上腺素能系统(α1、α2、αβ-去甲肾上腺素受体)、5-羟色胺能系统(5-HT2A、5-HT2受体)、多巴胺能系统(D1、D2受体)有关;在此基础上,进一步阐明了其抗抑郁作用的神经保护作用机制可能是通过减少LDH的漏出、降低胞内Ca2+超载、促进细胞增殖实现的,同时推测抑郁症的发病机制可能与脑中BDNF、CREB基因表达降低密切相关,罗布麻叶总黄酮的抗抑郁机制可能是通过(AC-cAMP-CREB)信号通路促进BDNF、CREB的基因表达而发挥的。研究结果为进一步探讨抑郁症的发病机制打下了基础,也利用天然抗抑郁药物治疗抑郁症提供了新思路。
Depression is a prevalent psychiatric disorder which affects 21% of the world population. The symptoms of depression are intense feelings of sadness, loss of interest or pleasure, hopelessness, and despair, disturbed in sleeppatterns and appetite, as well as the inability to experience pleasure in usual activities, as its worst, can lead to suicide thoughts. The World Health Organization (WHO) report has predicted that major depression will become the second cause of illness induced disability by the year 2020. Consequently, more and more researchers have paid attention to pathogenesy and therapy of depression, however, the mechanism of antidepressants is still far from clearly understood. Indeed, studies have been proposed as possible mechanisms that depression is closely related to monoamine neurotransmitters, neurotrophic factors, signal transduction and other factors. The majority of Antidepressant drugs currently used has lead too much concern shortage, such as narrow-spectrum antidepressant, drug resistance, side effect and so on. From this perspective, we need to development new type of antidepressant drugs, while the naturally medications have higher antidepressant curative effect and fewer adverse effect. Apocynum venetum (AV) L. (Apocynaceae) is a traditional drug has been the subject of intensive research in China. In the present study, we extracted the major active component of Apocynum venetum-flavonoid, investigated its antidepressant effect, and corresponding mechanisms based on antidepressant-like effect.The present study will prescribe clinical application to provide the certain theories and experiments according to develop new natural mediciations.
     1. Evaluated the antidepressant-like effect of AV-extract
     In this study, the classical animal models of depression including the tail suspention and force swimming of the mouse, and open-field test were applied to evaluate the antidepressant-like effect of AV-extract.The results showed that AV-extract showed a clear antidepressant-like effect in variety of animal models of depression.
     2. Influence of AV-extract on monoamine neurotransmitters and its metabolites in rat brain tissue
     The LC-MS/MS detection was applied to investigate the variation of norepinephrine (NE), 5-hydroxytryptamine (5-HT), dopamine (DA) and its metabolites 5-hydroxyindole-3-acetic acid (5-HIAA),3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in rats brain tissue. The results showed that the concentration of NE、DA、HVA、DOPAC、5-HT、5-HIAA in depression rats'brain were degraded compared with the control group. While the content of NE、DA、HVA、DOPAC in AV-extract group were higher than depression group, the results were similar to fluoxetine group. However, the AV-extract have no effect on 5-HT/5-HIAA contrast to fluoxetine which can increased levels of 5-HT and/or 5-HIAA in rat brain regions.These results confirmed the neurotransmitter hypothesis of depression, as well as we found that AV-extract colud reversed the variation of NE、DA、HVA、DOPAC in rat brain tissue.
     3. Involvement of monoaminergic systems in the antidepressant-like effect of AV-extract
     To further search for the neurotransmitter mechanism of antidepression of AV-extract, additionally, the monoaminergic mechanisms involved in the antidepressant-like effect of AV-extract in mice were also assessed. The anti-immobility effect of AV-extract (50 mg/kg, p.o.) was completely prevented by the pretreatment of mice with ketanserin (5 mg/kg, i.g., a serotonin 5-HT2A receptor antagonist), cyproheptadine (3 mg/kg, i.g., a serotonin 5-HT2 receptor antagonist), prazosin(1 mg/kg, i.g., anα1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.g., anα2-adrenoceptor antagonist) or propranolol (2 mg/kg, i.g.,αβ-adrenoceptor antagonist) SCH23390 (0.05 mg/kg, i.g.. a dopamine D1 receptor antagonist) or sulpiride (50 mg/kg, i.g., a dopamine D2 receptor antagonist). On the other hand, the pretreatment of mice with WAY 100635 (0.1 mg/kg, s.c., a serotonin 5-HT1A receptor antagonist), did not block the antidepressant-like effect of AV-extract in the TST. Taken together, the data demonstrated that AV-extract produced an antidepressant-like effect that seems to be dependent on its interaction with the serotonergic (5-HT2A and 5-HT2 receptors), noradrenergic (α1-adrenoceptor, a2-adrenoceptor, aβ-adrenoceptor) and dopaminergic (D1 and D2 receptors) systems.
     4. The mechanism of neuroprotective effect of AV-extract
     Neuroprotective effect of AV extract was studied in corticosterone-induced neurotoxicity, using PC 12 cells as a suitable vitro model of depression to illustrate elementarily the pharmacologieal mechanism of antidepressant activity of AV extract. Cell viability was quantitated by 3-(4,5-Dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca2+concentration was measured using kit, cell period change was tested by flow cytometry. The results showed that AV extract (25, 50 and 100μg/mL) increased the survival rate of PC 12 cells, especially in 100mg/kg arrived to 78%, but decreased LDH release and Ca2+concentration significantly (P<0.01), S period of the cells reduced significantly with the corresponding corticosteron-treated PC 12 cells. These results suggest AV extract could generate a neuroprotective effect on corticosterone-induced neurotoxicity in PC 12 cells, pointing to a possible action pathway of AV extract in vivo by decreasing decreased LDH release and Ca2+concentration to promote cell proliferation.
     5. Study on the expression of antidepressant effect associate-gene CREB and BDNF of AV-extract
     Taqman quantitative testing technique was used to test the expression of the BDNF and CREB of PC 12 cells in the presence of corticosterone (0.01 mmol·L-1) and flavonoid extract from Apocynum venetum leaves (25,50 and 100μg/ml) for 48 h. The result showed that the expression level of BDNF、CREB was reduced significantly after treatmented by corticosterone, but was elevated significantly by Apocynum venetum treatment which was up-regulated approximately 10 times corresponding to corticosterone treated. The result showed that the possible mechanism of Apocynum venetum maybe related to elevation the expression of BDNF、CREB through the signal path AC-cAMP-CREB.
     In conclusion, the study presented herein on the basis of evaluating the antidepressant effect of AV-extract demonstrated that the possible mechanism of these effect may be related to reduce the concentration of NE、DA、HVA、DOPAC, and for the first time the study investigated the antidepressant-like effect of AV-extract mediated by an interaction with the serotonergic (5-HT2A and 5-HT2 receptors), noradrenergic (α1-adrenoceptor,α2-adrenoceptor, aβ-adrenoceptor) and dopaminergic (D1 and D2 receptors)systems. Further works clarified that the antidepressant mechanism of neuroprotection may be achieved by decreasing LDH release and Ca2+ concentration to promote cell proliferation, and then speculated that the possible mechanism of Apocynum venetum antidepressant maybe related to elevating the expression of BDNF、CREB through the signal path AC-cAMP-CREB. The results presented here would be helpful to further study the pathogenesis of depression, and also provided a new idea for the use of natural anti-depressant medication to cure depression.
引文
[1]Thase ME.Treating major depression:antidepressant algorithms[J]. J Clin Psychiatry,2009, 70(12):46.
    [2]Botella, Cristina, Pilar MN. Cognitive behavioural treatment for hypochondrias.Handbook of Cognitive and behavioral treatments for psychological disorders[M]. Oxford, UK: Pergamonm,1998.
    [3]Feldstein A, HoaglandH, Rivera Oktem M, et al. MAO inhibition and antidepressant activity [J]. Int J Neuropsychiatry,1965,1 (4):384-387.
    [4]Goodwin FK, Bunney WE Jr. Depressions following reserpine:a reevaluation[J]. Semin Psychiatry.1971,3(4):435-448
    [5]Schildkraut JJ. The Catecholamine hypothesis of affective disorders:a review of supporting evidence[J]. Am J Psychiatry,1965,122(5):509-522
    [6]Bunney WE Jr, Davis JM. Norepinephrine indepressive reactions:a review[J]. Arch Gen Psychiatry,1965,13(6):483-494
    [7]Maas JW, Fawcett JA, Dekirmenjian H. Catecholamine metabolism, depressive illness, and drug response[J]. Arch Gen Psychiatry,1972,26(3):252-262
    [8]Sonnenberg CM, Deeg DJ, Comijs HC, et al. Trends in antidepressant use in the older population:Results from the LASA-study over a period of 10 years[J]. J Affect Disord,2008, 111(2-3):299-305
    [9]Cristina Lanni, Stefano Govoni, Adele Lucchelli, et al. Depression and antidepressants: molecular and cellular aspects [J]. Cell.Mol.Life Sci,2009,66:2985-3008
    [10]安磊.小补心汤总黄酮抗抑郁的神经生物学机制研究[D].北京:中国协和医科大学,2008
    [11]Pandey GN, Ren X, Pandey SC, et al. Hyperaetive phosphoinositide signaling pathway in platelets of depressed patients:effect of desipramine treatment [J]. Psychiatry Researeh,2001, 105 (1-2):23-32.
    [12]Ossowska G, Nowa G, Kata R. Brain monoamine in receptor s in a chronic unpredictable stress model in rats[J].Neural Transm.2001,108:311-319.
    [13]沈渔村.精神病学[M].北京:人民卫生出版,1998.
    [14]Berg KA, Harvey JA, Spampinato U, et al. Physiological and therapeutic relevance of onstitutive activity of 5-HT2A and 5-HT2C receptors for the treatment of depression[J].Prog Brain Res,2008,172:287-305.
    [15]Nishi K, Kanemaru K, Hasegawa S, et al. Both acute and chronic buspirone treatments have different effects on regional 5-HT synthesis in Flinders Sensitive Line rats(a rat model of depression)than in control rats[J]. Neurochem Int,2009,54(3-4):205-214.
    [16]Prange AJ Jr, Wilson 1C, Lynn CW, et al. L-tryptophan in mania.Contribution to a permissive hypothesis of affeetive disorders [J]. Areh Gen Psyehiatry,1974,30(1):56-62
    [17]Orrego F, Villanueva S. The chemical nature of the main central excitatory transmitter:a critical appraisal based upon release studies and synaptic vesicle localization[J]. Neuroscience,1993,56:539-555
    [18]Sanacora S, Zarate CA, Krystal JH, et al. Targeting the glutamatergic system to develop novel, improved thera-peutics for mood disorders[J]. Nat Rev Drug Discov,2008,7(5):426^437
    [19]Kim JS, Schmid-Burgk W, Claus D, et al. Increased serum glutamate in depressed patients[J]. Arch Psychiatr Nervenkr,1982,232:299-304
    [20]Altamura CA, Mauri MC, Ferrara A, et al. Plasma and platelet excitatory amino acids in psychiatric disorders[J]. Am J Psychiatry,1993,150:1731-1733
    [21]Mauri MC, Ferrara A, Boscati L, et al. Plasma and platelet amino acid con-centrations in patients affected by major depression and under fluvoxamine treatment[J]. Neuropsychobiology,1998,37:124-129
    [22]Mitani H, Shirayama Y, Yamada T, et al. Correlation between plasma levels of glutamate, alanine and serine with severity of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry,2006,30:1155-1158
    [23]Levine J, Panchalingam K, Rapoport A, et al. Increased cerebrospinal fluid glutamine levels in depressed patients[J]. Biol Psychiatry,2000,47:586-593
    [24]Frye MA, Tsai GE, Huggins T, et al. Low cerebrospinal fluid glutamate and glycine in refractory affective disorder[J]. Biol Psychiatry,2006,61:162-166
    [25]Francis PT, Poynton A, Lowe SL, et al. Brain amino acid concentrations and Ca2+-dependent release in intractable depression assessed antemortem[J]. Brain Res,1989,494:315-324
    [26]Nudmamud-Thanoi S, Reynolds GP. The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders[J]. Neurosci Lett,2004, 372:173-177
    [27]Mundo E, Tharmalingham S, Neves-Pereira M, et al. Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder[J]. Mol Psychiatry, 2003,8:241-245
    [28]Martucci L, Wong AH, De Luca V, et al. N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder:polymorphisms and mRNA levels[J]. Schizophr Res,2006,84:214-221
    [29]Meador-Woodruff JH, Hogg AJ Jr, Smith RE. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder[J]. Brain Res Bull,2011,55:631-640
    [30]Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia[J]. Synapse,2006,60:585-598
    [31]Laje G, Paddock S, Manji H, et al. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression[J]. AmJ Psychiatry,2007,164:1530-1538
    [32]Menke A, Lucae S, Kloiber S, et al. Genetic markers within glutamate receptors associated with antidepressant treatment-emergent suicidal ideation[J]. Am J Psychiatry,2008,165 (7):917-918
    [33]Hasler G, van der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/glutamine and gammaaminobutyric acid levels in major depression deter-mined using proton magnetic resonance spectroscopy[J]. Arch Gen Psychiatry,2007,64:193-200
    [34]Kugaya A, Sanacora G. Beyond monoamines:glutamatergic function in mood disorders[J]. CNS Spectr,2005,10:808-819
    [35]During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain[J]. Lancet,1993,341:1607-1610
    [36]Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders[J]. Proc Natl Acad Sci USA,1998,95:13290-13295
    [37]Cotter D, Mackay D, Landau S, et al. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder[J]. Arch Gen Psy-chiatry,2001, 58:545-553
    [38]Cotter D, Pariante CM, Rajkowska G. Glial pathology and major psychiatric disorders. In: Agam G, Everall I, Bel-maker RH (eds) The postmortem brain in psychiatric research[M]. Boston:Mass Kluwer Academic Publishers,2002, pp 49-73
    [39]Bowley MP, Drevets WC, Ongur D, et al. Low glial numbers in the amygdala in major depressive disorder [J]. Biol Psychiatry,2002,52:404-412
    [40]Zarate CA, Singh JB, Carlson PJ, et al. A ran-domized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression[J]. Arch Gen Psychiatry,2006,63:856-864
    [41]Maeng S, Zarate CA Jr. The role of glutamate in mood disorders:results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects[J]. Curr Psychiatry Rep,2007,9(6):467-474
    [42]Ferguson JM, Shingleton RN. An open-label, flexible-dose study of memantine in major depressive disorder[J]. Clin Neuropharmacol,2007,30(3):136-144
    [43]Paredes RG, Agmo A. GABA and behavior:the role of receptor subtypes[J]. Neurosci Biobehav Rev,1992,16(2):145-170
    [44]Petty F. GABA and mood disorders:a brief review and hypothesis[J]. J Affect Disord,1995, 34(4):275-281
    [45]Sanacora G, Mason GF, Krystal JH. Impairment of GABAergic transmission in depression: new insights from neuroimaging studies[J]. Crit Rev Neurobiol,2000,14:23-45
    [46]Krystal JH, Sanacora G Blumberg H, et al. Gluta-mate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments[J]. Mol Psychiatry,2002,7:S71-S80
    [47]Petty F, Kramer GL, Gullion CM, et al. Low plasma c-aminobutyric acid levels in male patients with depression[J]. Biol Psychiatry,1992,32:354-363
    [48]Gerner R, Hare TA. CSF GABA levels in normal subjects and patients with depression, schizophrenia, mania and anorexia nervosa[J]. Am J Psychiatry,1981.138:1098-1101
    [49]Kasa K, Otsuki S, Yamamoto M, et al. Cerebrospinal fluid c-aminobutyric acid and homova-nillic acid in depressive disorders[J]. Biol Psychiatry,1982,17:877-883
    [50]Roy A, Dejong J, Ferraro T. CSF GABA in depressed patients and normal controls[J]. Psychol Med,1991,21:613-618
    [51]Sanacora G, Mason GF, Rothman DL, et al. Reduced cortical c-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy[J]. Arch Gen Psychiatry,1999,56:1043-1047
    [52]Sanacora G, Mason GF, Rothman DL, et al. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors[J]. Am J Psychiatry,2002,159:663-665
    [53]Sanacora G, Mason GF, Rothman DL, et al. Increased occipital cortex GABA concentrations following electroconvulsive therapy in depressed patients[J]. Am J Psychiatry,2003, 160:577-579
    [54]Tunnicliff G, Ngo TT. Regulation of c-aminobutyric acid synthesis in the vertebrate nervous system[J]. Neurochem Int,1986,8:287-297
    [55]Fatemi SH, Stary JM, Earle JA, et al. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and reelin proteins in cerebellum[J]. Schizophr Res,2005,72:109-122
    [56]Benes FM, Todtenkopf MS, Logiotatos P, et al. Glutamate decarboxylase (65)-immune-oreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain[J]. J Chem Neuroanat,2000,20(3-4):259-269
    [57]Heckers S, Stone D, Walsh J, et al. Differential hippocampal expression of glutamic acid decar-boxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia[J]. Arch Gen Psychiatry,2002,59(6):521-529
    [58]Sanacora G, Saricicek A. GABAergic contributions to the pathophysiology of depression and the mechanism of antidepressant action[J]. CNS Neurol Disord Drug Targets,2007, 6(2):127-140
    [59]Horiuchi Y, Nakayama J, Ishiguro H, et al. Possible association between ahaplotype of the GABA-A receptor alpha 1 subunit gene (GABRA1) and mood disorders[J]. Biol Psychiatry, 2004,55(l):40-45
    [60]Yamada K, Watanabe A, Iwayama-Shigeno Y, et al. Evidence of association between gamma-aminobutyric acid type A receptor genes located on 5q34 and female patients with mood disorders[J]. Neurosci Lett,2003,349(1):9-12
    [61]Serretti A, Macciardi F, Cusin C, et al. GABAA alpha-1 subunit gene not associated with depressive symptomatology in mood disorders[J]. Psychiatr Genet,1998,8(4):251-254
    [62]Mitchell AJ. The role of corticotropin releasing factor in depressive illness:a critical review[J]. Neurosci Biobehav Rev,1998,22:635-651
    [63]Nemeroff CB. The neurobiology of depression[J]. Sci Am,1998,278:42-49
    [64]Gilad GM. The stress-induced response of the septohippocampal cholinergic system:A vectorial outcome of psychoneuroendocrinological interactions[J]. Psychoneuroendocrin ology,1987,12:167-184
    [65]Janowsky DS, Risch SC. Cholinomimetic and anticholinergic drugs used to investigate an acetylcholine hypothesis of affective disorders and stress[J]. Drug Devel Res,1984, 4:125-142
    [66]Janowsky DS, El-Yousef MK, Davis JM, et al. A cholinergic-adrenergic hypothesis of mania and depression[J]. Lancet,1972,2:632-635
    [67]Janowsky DS, El-Yousef MK, Davis JM, et al. Parasympathetic suppression of mania by physostigmine[J]. Arch Gen Psych,1973,28:542-547
    [68]Janowsky DS, Overstreet DH, Nurnberger JI Jr. Is cholinergic sensitivity a genetic marker for the affective disorders? [J]. Am J Med Genet,1994,54:335-344
    [69]Davis KL, Berger PA, Hollister LE, et al. Physostigmine in man[J]. Arch Gen Psychiatry, 1978,35:119-122
    [70]O'Keane V, O'Flynn K, Lucey J, et al. Pyridostigmine-induced growth hormone responses in healthy and depressed subjects:evidence for cholinergic supersensitivity in depression[J]. Psychol Med,1992,22:55-60
    [71]Gillin JC, Salin-Pascual R, Velazquez-Moctezuma J, et al. Cholinergic receptor subtypes and REM sleep in animals and normal controls[J]. Prog Brain Res,1993,98:379-387
    [72]Janowsky DS. Risch SC, Kennedy B, et al. Central muscarinic effects of physostigmine on mood, cardiovascular function, pituitary and adrenal neuroendocrine[J]. Psychopharmacology, 1986,89:150-154
    [73]Riemann D, Berger M. Sleep, age depression and the cholinergic induction test with RS86[J]. Prog Neuropsychopharmacol Biol Psychiatry,1992,16:311-316
    [74]Bymaster FP, Felder CC. Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents[J]. Mol Psychiatry,2002,7:S57-S63
    [75]Burt T, Sachs GS, Demopulos C. Donepezil in treatment-resistant bipolar disorder[J]. Biol Psychiatry,1999,45:959-964
    [76]Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine:a randomized, placebo-controlled clinical trial [J]. Arch Gen Psychiatry,2006,63 (10):1121-1129
    [77]Janowsky DS. Scopolamine as an antidepressant agent:theoretical and treatment considerations[J]. Curr Psychiatry Rep,2007,9(6):447-448
    [78]Liu HF, Zhou WH, Xie XH, et al. Muscarinic receptors modulate the mRNA expression of NMDA receptors in brainstem and the release of glutamate in periaqueductal grey during morphine withdrawal in rats[J]. Sheng Li Xue Bao,2004,56(1):95-100 (article in Chinese)
    [79]Shytle RD, Silver AA, Lukas RJ, et al. Nicotinic acetylcholine receptors as targets for antidepressants[J]. Mol Psychiatry,2002,6:525-535
    [80]Silver AA, Shytle RD, Sheehan KH, et al. Multicenter, double-blind, placebo-controlled study of mecamylamine monotherapy for Tourette's disorder[J]. J Am Acad Child Adolesc Psychiatry,2001,40(9):1103-1110
    [81]Sacco KA, Bannon KL, George TP. Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders[J]. J Psychopharmacol,2004,18(4):457-474
    [82]Rozzini L, Vicini Chilovi B, Bertoletti E, et al. Acetylcholinesterase inhibitors and depressive symptoms in patients with mild to moderate Alzheimer's disease[J]. Aging Clin Exp Res, 2007,19(3):220-223
    [83]Wynn ZJ, Cummings JL. Cholinesterase inhibitor therapies and neuropsychiatric manifestations of Alzheimer's disease[J]. Dement Geriatr Cogn Disord,2004,17 (1-2):100-108
    [84]Salzman C. Practical considerations for the treatment of depression in elderly and very elderly long-term care patients[J]. J Clin Psychiatry,1999,60(20):30-33
    [85]Mottram P, Wilson K, Strobl J. Antidepressants for depressed elderly[J]. Cochrane Database Syst Rev,2006, (1):CD003491
    [86]Mizoguehi K, Yuzurihara M, Ishige A, et al. Chronic stress differeniially regulates Glucoco-rticoid negative feedback response in rats[J]. Psychoneuroendoerinology,2001,26 (5):443-459.
    [87]陆建华,宋艳玲,黎海蒂,等.海马NMDA受体在大鼠严重烫伤后HPA轴兴奋性变化中的作用[J].第三军医大学学报,2003,25(3):216-218
    [88]Zahorodna A, Tokarski K, Bijak M. Electrophysiologic tests for testing the effeets of antidepressant drugs and cortieosterone on reaetivity of serotonin receptors in the hippocampus[J]. PostePy Hig Med Dosw,2000,54(3):391-401.
    [89]Lueassen PJ, Muller MB, Holsboer F, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucoeorticoid overexposure[J]. Am J Pathol,2001,158(2):453-468.
    [90]阐红,卫明亮.HTR在抑郁症发病及治疗中的作用[J].山东医药,2005,45(1):66-68
    [91]王学铭.精神与精神病的生物化学[M].北京:人民卫生出版社,2002
    [92]Sapelsky RM. The possibility of neurotoxicity in the hippocampus in major depression:a primer on neuron death[J]. Biolpsyehiatry,2000,48(s):713-714.
    [93]史亚飞,严灿,吴丽丽,等.加味四逆散对束缚制动心理应激大鼠HPA轴调节作用的影响[J].中药材,2008,31(1):88-91.
    [94]Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression[J]. Arch Gen Psychiatry,1997,54(7):597-606
    [95]李云峰,罗质璞.应激诱发抑郁症机制的研究进展[J].生理科学进展,2002,33(2):142-144.
    [96]Katz RJ, Roth KA, Carmll BJ. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression[J]. Neurosci Biobehav Rev,1981,5(2):247-251.
    [97]Xu Y, Ku B, Tie L, et al.Cureumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB[J]. Brain Res,2006,1122(1):56-64.
    [98]Mamounas LA, Blue ME, Siuciak JA, et al. Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain[J]. J Neurosci,1995,15:7929-7939
    [99]Dwivedi Y, Rizavi HS, Conley RR, et al. Altered gene expression of Brain derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects[J]. Arch Psychiatry,2003,60(8):804-815.
    [100]Chen B, Dowlatshahi D, MaeQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medieation[J]. Biol Psychiatry, 2001,50(4):260-265.
    [101]Siuciak JA., Clark MS, Rind HB et al. BDNF induction of tryptophan hydroxylase mRNA levels in therat brain[J]. J Neurosci Res,1998,52:149-158
    [102]Lyons WE, Mamounas LA, Ricaurtre G.A, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities[J]. ProcNatl Acad Sci USA,1999,96:15239-15244.
    [103]Galter D, Unsicker K. Sequential activation of the 5-HT1(A) serotonin receptor and TrkB induces the serotonergic neuronal phenotype[J]. Mol Cell Neurosci,2000,15:446-455;
    [104]Rumajogee P, Madeira A, Verge D, et al. Up-regulation of the serotoninergic phenotype in vitro:BDNF and cAMP share TrkB-dependent mechanisms[J]. J Neurochem,2002,83:1525-1528.
    [105]Hashimoto K, shimizu E, IyoM. Critieal role of brain derived neurotrophic factor in mood disorders[J]. Brain Res Rev,2004,45(2):104-114.
    [106]Alana C, Conti JF, Cryan AD. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endorcrine responses to antidepressant drugs[J]. J Neurosci,2002,22(8):3262-3268
    [107]王珍琦,刘光伟,龚守良.抗抑郁药的神经保护作用及其机制[J].吉林大学学报(医学版),2004,30(5):827-830)
    [108]戈宏炎.柴胡皂苷抗抑郁作用及其机制的研究[D].吉林:吉林大学,2010
    [109]Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression[J]. Neuron,2002, 34:13-25.
    [110]Meller R, Babity JM, Gravame-Smith, et al.5HT2A receptoractivation leads to increased BDNF mRNA expression in C6 glioma cells[J]. Neuromol Med,2002,1:197- 205.
    [111]Conti AC, Cryan JF, Dalvi A, et al. CREB is essential for the upregulation of BDNF transcription, but not the behavioural or endocrine responses to antidepressant drugs[J]. J Neurosci,2002,22:3262-3268
    [112]Kuroda Y, Mc Ewen BS. Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein 43, and micro-tubule-associated protein 2 mRNA expression in rat hippocampus[J]. Mol Brain Res,1998,59:35-39.
    [113]Kumarnsit E, Keawpradup N, Nuankaew W. Fos-like immunoreactivity in rat dorsal raphe nuclei induced by alkaloid extract of Mitragyna speciosa[J]. Neurosci. Lett,2007, 416:128-132.
    [114]Kumarnsit E, Keawpradup N, Nuankaew W. Effects of Mitragyna speciosa aqueous extract on ethanol withdrawal symptoms in mice[J]. Fitoterapia,2007,78:182-185.
    [115]Farah Idayu N, Taufik Hidayat M, Moklas MA, et al. Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa Korth in mice model of depression[J]. Phytomedicine,2011,18(5):402-407
    [116]Seol GH, Shim HS, Kim PJ, et al. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats[J]. J Ethnopharmacol,2010,130(1):187-90
    [117]崔承彬,杨明,姚志伟.中药巴戟天中抗抑郁活性成分的研究[J].中国中药杂志,1995,20(1):36-39
    [118]张中启,袁莉,罗质璞,等.巴戟天对大鼠低速率差式强化程序和小鼠强迫性游泳的影响[J].军事医学科学院院刊,2004,24(2):114-117.
    [119]李云峰,罗质璞.巴戟天寡糖的抗应激、抗抑郁效应研究[J].中国药理学会通讯,2000,17(2):54-55
    [120]翁深宏,程自立,王高华.刺五加胶囊治疗抑郁症的临床对照研究[J].湖北中医杂志,2001,23(6):8-9
    [121]Butterweck V, Nishibe S, Sasaki T, et al. Antidepressant effects of Apocynum venetum leaves in the forced swimming test[J]. Biol Pharm Bull,2001,24 (7):848-851
    [122]周本宏,冯琪,李小军,等.罗布麻叶抗抑郁活性部位的筛选[J].中国药师,2007,10(12):1173-1175
    [123]Chung IW, Kim SR, Kim EG. Dopamine-2 and serotonin-2 receptor bindings in antipsychotic medicines from natural products[J]. J Kor. Neuropsychiatr Assoc,1992,31, 856-867.
    [124]Huang KC. The Pharmacology of Chinese Herbs[M]. CRC Press, Boca Raton, FL,1993.
    [125]P Liu, Y Hu, Guo DH, et al. Potential antidepressant properties of Radix Polygalae (Yuan Zhi)[J]. Phytomedicine,2010,17:794-799
    [126]许实波.姜黄素的药理作用研究概况[J].中草药,1991,22(8):137-139
    [127]徐英,库宝善,姚海燕,等.姜黄素的抗抑郁作用[J].中国临床康复,2005,44(9):162-164
    [128]Yeung HC. An excellent Chinese herbal giving information on over 500 species. Rather Technical and Probably Best Suited to the More Accomplished User of Herb[J]. Institute of Chinese Medicine, Los Angeles,1985
    [129]Duke JA, Ayensu ES. Details of over 1,200 medicinal plants of China and brief details of their uses. Often includes an analysis, or at least a list of constituents. Heavy going if you are not into the subject[R]. In:Medicinal Plants of China. Reference Publications,1985
    [130]Luo L, Nong Wang J, Kong LD. Et al. Antidepressant effects of Banxia Houpu decoction, a traditional Chinese medicinal empirical formula[J]. Journal of Ethnopharmacology,2000,73, 277-281.
    [131]Seungjoo L, Dong HK, Chang HL, et al. Antidepressant-like activity of the aqueous extract of Allium macrostemon in mice[J]. Journal of Ethnopharmacology,2010,131:386-395
    [132]Tani T, Katsuki T, Kubo M, et al. Histochemistry:IX. Distribution of saikosaponins in Bupleurum falcatum root[J]. J Chromatogr,1986,360:407-412
    [133]Abe H, Sakaguchi M, Yamada M, et al. Pharmacological actions of saikosaponins isolated from Bupleurum falcatum.1. Effects of saikosaponins on liver function[J]. Planta Med 1980, 40:366.
    [134]Kumazawa Y, Kawakita T, Takimoto H, et al. Protective effect of saikosaponin A, saikosaponin D and saikogenin D against Pseudomonas aeruginosa infection in mice[J]. Int J Immunopharmacol,1990,12(5):531-537.
    [135]Takagi K, Shibata M. Pharmacological studies on Bupleurum falcatum LI1 antiinflammat -ory and other pharmacological actions of crude saikosides[J]. Yakugaku Zasshi 1969, 89(10):1367-1378.
    [136]Yamamoto M, Kumagai A, Yamamura Y. Structure and action of saikosaponins isolated from Bupleurum falcatum L. II. Metabolic actions of saikosaponins, especially a plasma cholesterol-lowering action[J]. Arzneimittelforschung,1975,25(8):1240-1243.
    [137]Zhang LD, Zhang YL, Xu SH, et al. Traditional Chinese medicine typing of affective disorders and treatment[J]. Am J Chin Med,1994,22(3-4):321-327.
    [138]Kwon S, Lee B, Kim M, et al. Antidepressant-like effect of the methanolic extract from Bupleurum falcatum in the tail suspension test[J]. Prog Neuropsychopharmacol Biol Psychiatry,2010,34(2):265-270.
    [139]Jiang D, Gao QP, Shi SP, et al. Triterpenoid saponins from the fruits of Akebiae quinata[J]. Chem Pharm Bull (Tokyo),2006,54:595-597.
    [140]Zhou D, Jin H, Lin HB. Antidepressant effect of the extracts from Fructus Akebiae[J]. Pharmacol Biochem Behav,2010,94(3):488-495.
    [141]李亚明,陈红梅.石菖蒲对行为绝望动物抑郁模型的抗抑郁作用[J].中药材,2001,24(1):40-41.
    [142]姚李吉,沈洪.抗抑郁中医方药的实验研究进展[J].光明中医,2008,5(23):696-698
    [143]李云峰,袁莉,杨明,等.棉籽总黄酮抗抑郁作用的研究[J].中国药理学通报,2006,22(1):60-62.
    [144]李云峰,杨明,赵毅民,等.无毒棉籽水提物对皮质酮诱导的PC12细胞损伤的对抗作用[J].2002,27(06):442-446
    [145]Sakakibara H, Ishida K, Grundmann O, et al. Antidepressant effect of extracts from Ginkgo bilobaleaves in behavioral models[J]. BiolPharm Bull,2006,29(8):1767-1760.
    [146]张林娜,陈振强.银杏叶片治疗老年抑郁症的疗效观察[J].辽宁中医杂志,1999,26(12):560-560.
    [147]钟海波,潘颖,孔令东.淫羊藿提取物抗抑郁作用研究[J].中草药,2005,36(10):1506-1510.
    [148]赵志宇.甘草苷对慢性应激抑郁模型大鼠的抗抑郁作用[J].中国临床康复,2006,10(27):69-72.
    [149]Hu SJ, Fang Q, Liu JS. et al. Clinical study on intervention of Liuwei Dihuang Pill onhormonotherapy intreating nephrotic syndrome[J]. Chinese Journal of Integrated Traditional and Western Medicine,2005,25,107-110.
    [150]Zhang D, Wen XS, Wang XY, et al. Antidepressant effect of Shudihuang on mice exposed to unpredictable chronic mild stress[J]. J Ethnopharmacol,2009,123(1):55-60.
    [151]庞武耀,李明亚,李娟好.甘麦大枣合百合地黄汤加减的抗抑郁作用[J].广东药学院学报,2008,24(6):587-589
    [152]张有志,于能江.小补心汤总黄酮对强迫游泳和获得性无助模型动物的抗抑郁作用[J].中国药理学与毒理学杂志,2008,22(1):1-8.
    [153]傅强,马世平,瞿融.半夏厚朴汤抗抑郁作用的研究[J].中国药科大学学报,2002,33(6):514-517
    [154]李建梅,杨澄,张伟云,孔令东.半夏厚朴汤醇提物对大鼠慢性抑郁模型的影响[J].中国中药杂志,2003,(1):55-59
    [155]Yamada K, Kanba S. Kampo therapy and stress in the field of neuropsychiatry[J]. Progress in Medicine,1997,17,817-822.
    [156]Zhu WL, Ma SP, Qu R,et al. Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism[J]. Life Sciences,2006,79:749-756
    [157]张有志,聂惠民,张德昌,等.柴胡加龙骨牡蛎汤等经方治疗抑郁症的动物行为学研究[J].中国中医基础医学杂志,2001,7(7):30-32.
    [158]王振勤.罗布麻叶(茶)的研究进展[J].中国中药杂志,1991,16(4):250-252
    [159]中国药典[S].2005年版.一部.147
    [160]Butterweck V, Simbrey K, Seo S, et al. Long-term efects of an Apocynum velleturn extract on brain monoamine levels and beta-AR density in rats[J]. Pharm Bio&Behavior,2003, 75(3):557-564
    [161]Butterweck V, Jurgenliemk G, Nahrstedt A, et al. Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test [J]. Planta Med,2000,66: 3261-3266
    [162]Nakazawa T, Yasuda T, Ueda J, et al. Antidepressant-like effects of apigenin and 2,4, 5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test [J]. Biol Pharm Bull,2003,26 (4):474-480.
    [163]Dan Z, Hong JH.Bing L, Yang XM, et al. Antidepressant effect of the extracts from Fructus Akebiae[J]. Pharmacol Biochem Behav,2010,94(3):488-495
    [164]郭澄,郑清明,郑汉臣.元宝草黄酮类成分的抗抑郁作用研究[J].药学实践杂志,2005,23(6):345-347
    [165]Porsolt RD, Bertin A, Jalfre M. Behavioural despair in mice:A primary screening test for antidepressants[J]. Arch lnt Pharmacodyn Ther,1997,229(2):327-336
    [166]Steru L, Chermat R, Thierry B, et al.The tail suspension test:a new method for screening anti depressants in mice[J]. Psychopharmacology (Berl),1985,85(3):367-670
    [167]Porsolt RD, LePichon M, Jalfre M. Depression:A new animal model sensitive to antidepressant treatment[J]. Nature,1977,266(5604):730-732
    [168]徐斌,王效道,刘士林.心身医学-心理生理医学基础与临床[M].北京:中国科学技术出版社,2000:13-32
    [169]Steru L, Chermat R, Thierry B, et al. The tail suspension test:a new method for screening antidepressants in mice[J]. Psychophamraeology (Berl),1985,85(3):367-670
    [170]张均田.现代药理实验方法(上册)[M].北京:北京医科大学中国协和医科大学联合出版社,1998,1064
    [171]Borsini F, Voltera G, Meli A. Does the behavioral "despair" test measure "despair?"[J]. Physiology&Bhavior,2003, (38):385-386
    [172]Yi LT, Xu HL, Feng J.et al. Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin[J]. Physiol Behav,2011,102:1-6.
    [173]Takahashi E, Katayama M, Nimii K, et al. Additive subthreshold dose effects of cannabinoid CB1 receptor antagonist and selective serotonin reuptake inhibitor in antidepressant behavioral tests[J]. Euro.J.Pharmacol,2008,589:149-156.
    [174]Kwon S, Lee B, Kim M, et al. Antidepressant-like effect of the methanolic extract from Bupleurum falcatum in the tail suspension test[J]. Prog Neuropsychopharmacol Biol Psychiatry,2010,34,265-270.
    [175]Williams JW Jr, Mulrow CD, Chiquette E, et al. A systematic review of newer Pharmaco -therapies for depression in adults:evidence report summary[J]. Annals of Internal Medicine, 2000,132(9):743-756.
    [176]吕峻华,钟玲.实验性抑郁症动物模型的评价[J].中国病理生理学杂志,2001,17(9):916-919.
    [177]Ye Xiao ping, Song Chun qing. Review of saikoside pharmacologic action[J]. Chinese Traditional and Herbal Drugs,2004,35(12):1434-1436.
    [178]Jernej B, Banovic M, Cicin-Sain. Physiological characteristics of platelet/circulatory serotonin:study on a large human population[J]. Psychiatry Res,2000,94(2):153
    [179]付敏,张东朋,马万云,等.多巴胺和5-羟色胺的毛细管电泳测定.分析测试学报,2002,221(2):1-3
    [180]王晓峰,尹乾坤,李拴德,等.立体定向毁损大鼠杏仁核及隔核对脑内单胺类递质含量的影响.中国临床神经科学,2004,2(2):147-149
    [181]Piletz J E; Halaris.A Gas-liquid chromatographic method for routine detection of plasma sulfo-, gluco-, and free 3-methoxy-4-hydroxyphenylglycol[J]. Clin chim Acta,1989,185(2): 165-176
    [182]Chan E C, Ho P C. High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometric method for the analysis of catecholamines and metanephrines in human urine[J]. Rapid Commun Mass Spectrom,2000,14(2):1959-1964
    [183]梁天天,黄亦佳,朱卡琳,等.气相色谱质谱法测定大鼠脑中5-羟色胺的含量[J].色谱,1998,16(3):271-273
    [184]黄建国,徐幸民,印道春.高效液相色谱一紫外光检测法测定血清5-羟色胺[J].宁夏医学杂志,2002,24(12):745-746
    [185]Lakshmana MK.Raju TR An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat[J]. Anal Biochem, 1997,246(2):106
    [186]Fumiko Mashige, Akiyuki Ohkubo, Yoshikazu Matsushima, et al. High-performance liquid chromatographic determination of catecholamine metabolites and 5-hydroxyindoleacetic acid in human urine using a mixed-mode column and an eight-channel electrode electrochemical detector[J]. J Chromatography B Biomed Appl,1994,658(1):63-68
    [187]Jacob P 3rd, Wilson M, Yu L, et al. Determination of 4-hydroxy-3-methoxyphenylethylene glycol 4-sulfate in human urine using liquid chromatography-tandem mass spectrometry[J]. Anal Chem.2002,74(20):5290-5296
    [188]Manini P, Andreoli R, Poli D, et al. Liquid chromatography/electrospray tandem mass spectrometry characterization of acidic monoamine metabolites[J]. J Chromatography B, 2000,744(2):423-431
    [189]Magera MJ, Stoor A, Helgeson JK, et al. Determination of homovanillic acid in urine by stable isotope dilution and electrospray tandem mass spectrometry[J]. Clin Chim Acta.2001, 306(1-2):35-41.
    [190]Tornkvist A, Sjoberg PJ, Markides KE, et al. Analysis of catecholamines and related substances using porous graphite carbon as separation media in liquid chromatography tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2004, 801(2):323-329.
    [191]Li W, Rossi DT, Fountain ST. Development and validation of a semi-automated method for L-DOPA and dopamine in rat plasma using electrospray LC/MS/MS[J]. J Pharm Biomed Anal.2000,24(2):325-333
    [192]Kushnir MM, Urry FM, Frank EL. et al. Analysis of catecholamines in urine by positive ion electrospray tandem mass spectrometry[J]. Clin Chem,2002,48(2):323-31
    [193]Hows ME, Lacroix L, Heidbreder C, et al. High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples[J]. Neurosci Methods,2004 138(1-2):123-32.
    [194]张峰,曹仲伟,张学杰,等.柴胡对大鼠慢性应激抑郁模型脑单胺类神经递其代谢物含量的影响[J].山东中医药大学学报,2005,3(29):224-226.
    [195]Kreiss DB, Lucki I. Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo[J]. Pharmacol Exp Ther 1995, 274:866-876.
    [196]Arborelius L, Nomikos GG, Hertel P, et al.The 5-HTlA receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram[J]. Naunyn Schmiedeberg's Arch Pharmacol,1996,353(6):630-640.
    [197]Butterweck V, Simbrey K, Seo S, et al. Long-term effects of an Apocynum venetum extract on brain monoamine levels and beta-AR density in rats[J]. Pharmacol Biochem Behav,2003, 75(3):557-64
    [198]Su FL, Wang F, Zhu RH, et al. Determination of 5-Hydroxytryptamine, Norepinephrine, Dopamine and their metabolites in rat brain tissue by LC-ESI-MS-MS[J].Chromatographia, 2009,69:207-213
    [199]毛庆秋,黄真.抗抑郁药与抑郁动物模型[J].国际精神病学杂志,2005,32(4):216.
    [200]Elhwuegi AS. Central monoamines and their role in major depression[J]. Prog Neuropsychopharmacol Biol Psychiatry,2004,28:435-451.
    [201]Amat J, Baratta MV, Paul E, et al. Medial pref rontal cortex determines how st ressor cont reliability affect s behavior and dorsal raphe nucleus[J]. Nat Neurosci,2005,8 (3):365-371.
    [202]Henn FA, Vollmayr B. Neurogenesis and depression:etiology or epiphenomenon [J]. Biol Psychiatry,2004,56 (3):146-150.
    [203]Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans:a meta-analysis of monoamine depletion studies [J]. Mol Psychiatry,2007,12 (4):331-359.
    [204]Malagie'I, David DJ, Jolliet P, et al. Improved efficacy of fluoxetine in increasing hippocampal 5-HT outflow in 5-HT1B receptor knockout mice[J]. Eur J Pharmacol,2002, 443,99-104.
    [205]Gordon JA, Hen R. Genetic approaches to the study of anxiety[J]. Annu Rev Neurosci.2004, 27:193-222
    [206]Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists[J]. Brain Res Bull,2001,56:441-451
    [207]Gross C, Santarelli L, Brunner D, et al. Altered fear circuits in 5-HT1Areceptor KO mice[J]. Biological Psychiatry,2000,48(12):1157-1163
    [208]Gross C, Zhuang X, Stark K et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult[J]. Nature,2002,416,396-400
    [209]Andiara E Freitas, Budni Josiane, Lobato, et al. Antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice:Evidence for the involvement of the monoaminergic system[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2010,34(2):335-343.
    [210]Sarnyai Z, Sibille EL, Pavlides C, et al. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors[J]. Proc Natl AcadSci U S A,2000,97(26):14731-14736
    [211]Fisher P M, Meltzer CC, Ziolko SK, et al. Capacity for 5-HT1A/3 mediated autoregulation predict samygdala reactivity[J]. Nat Neurosci,2006,9 (11):1362-1363.
    [212]高霄飞,王雪琦,何成,等. 抑郁症单胺类递质受体研究进展[J].兰理科学进展,2002,33(1):17-20.
    [213]刘效巍,许晶.5-羟色胺受体与抑郁症[J].临床精神医学杂志,2002,12(6):375-376.
    [214]Yates M, Leake A, Candy JM, et al.5-HT2 receptor changes in major depression[J]. Biol Psychiatry,1990,27:489-496,
    [215]Ulak G, Mutlu O, Tanyeri P, et al. Involvement of serotonin receptor subtypes in the antidepressant-like effect of TRIM in the rat forced swimming test[J]. Pharmacol Biochem Behav,2010,95:308-314
    [216]Celada P, PuigM, Amargos-BoschM, et al. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression[J]. J Psychiatry Neurosci,2004,29 (4):252-265.
    [217]Marek GJ, Carpenter LL, McDougle CJ, et al. Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders[J]. Neurop sychopharmacology,2003,28(2):402-412.
    [218]Van Oekelen D, Megens A, Meert T, et al. Functional study of rat 5-HT2A receptors using antisense oligonucleotides[J]. J Neurochem,2003,85:1087-1100.
    [219]Weisstaub N, Vetter DE, Elgoyhen AB, et al. Cortical 5-HT2A Receptor Signaling Modulates Anxiety-Like Behaviors in Mice[J]. Science,2006,313 (5786):536-540.
    [220]Plein H, Berk M. Changes in the platelet intracellular calcium response to serotonin in patient s with major depression treated with electroconvulsive therapy:State or trait marker status[J]. Int Clin Psychopharmacol,2000,15 (2):93-98.
    [221]Brunello N, Blier P, Judd LL, et al. Noradrenaline in mood and anxiety disorders:basic and clinical studies[J]. Int Clin Psychopharmacol,2003,18(4):191-202.
    [222]Benmansour S, Altamirano AV, Jones DJ, et al. Regulation of the norepinephrine transporter by chronic administration of antidepressants[J]. Biol Psychiatry,2004,55(3):313-316
    [223]代英杰,范骏,孟昭义.抑郁症的神经生化特征及进展[J].中国临床康复,2003,7(30):4126-4127.
    [224]PilcA, Vetulani J. Depression by chronic electroconvulsive treatment of clonidine hypotherma and [3H] clonidine binding to rat cortical membranes[J]. Eur J Pharmacol,1982, 80(1):109-113.
    [225]Brunello N, Mendlewicz J, Kasper S, et al. The role of noradrenaline and selective noradrenaline reuptake inhibition in depression[J]. Eur Neurop sychopharmacol,2002,12 (5):461-475.
    [226]Brunswick DJ, Amsterdam JD, Mozley PD, et al. Greater availability of brain dopamine transporters in major depression shown by [99mTc] TRODAT21 SPECT imaging [J]. Am J Psychiatry,2003,160(10):1836-1841.
    [227]OssowsEa G, Nowa G, Kata R, et al. Brain monoamine receptors in a chronic unpredictable stress model in rats [J]. J Neural Transm,2001,108:311-319.
    [228]陈箐筠,干信.槲皮素对皮质酮损伤的PC12细胞的保护作用[J].化学与生物工程,2009,26(1):47-49
    [229]Sheline YI, Wang PW, Gado MH, et al. Hippocampal atrophy in recurrent major depression [J]. Proc Natl Acad Sci USA,1996,93 (9):3908-3913.
    [230]Anderson DJ, Michelsohn A. Role of glucocorticoids in the chromaffin neuron developmental decision[J]. Int J Dev Neurosci,1989,7 (5):475-487.
    [231]Song Li, Che Wang, Minwei Wang, et al. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms[J]. Life Sciences,2007,80:1373-1381
    [232]Weili Zhu, Shiping Ma, Rong Qu, et al. Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism[J]. Life Sciences,2006, 79:749-756
    [233]Han YS, Lee CS. Antidepressants reveal differential effect against 1-methyl-4-phenylpyri-dinium toxicity in differentiated PC 12 cells[J]. European Journal of Pharmacology,2009, 604:36-44
    [234]Son D, Lee P, Lee J, et al. Neuroprotective effect of wogonin in hippocampal slice Culture exposed too xygen and glucose deprivation[J]. Eur J Pharmacol,2004:493(1-3):99-102
    [235]Molina-Jimenez MF, Sanehez-Reus MI, Andres D, et al. Neuroprotective effect of Frxaetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells[J]. Brain Res,2004, 1009(1-2):9-16
    [236]Hong H, Liu GQ. Protection against hydrogen peroxide-indued cytotoxicity in PC 12 cells by scutellarin[J]. Life SCI,2004,74(24):2959-2973
    [237]Dajas F, Rivera-Megret F, Blasina F, et al. Neuroprotection by flavonoids[J]. Braz J Med Biol Res,2003,36(12):1613-1620
    [238]Lee H, Kim YO, Kim H, et al. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of mieroglia[J]. FASEB J,2003,17(13):1943-1944
    [239]张庆建,赵毅民,杨明,等.黄酮类化合物对中枢神经系统的作用[J].中国中药杂志,2001,26(8):511-514
    [240]陈箐筠,干信.槲皮素对皮质酮损伤的PC12细胞的保护作用[J].化学与生物工程,2009,26(1):47-49
    [241]Liu Zhiyong, Tao Xinyi, Zhang Chongwei, et al. Protective effects of hyperoside (quercetin-3-o-galactoside) to pc12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide[J]. Biomedicine & Pharmacot herapy,2005,59 (9):481-490.
    [242]Zhen Huang, Qing-Qiu Mao, Xiao-Ming Zhong, et al. Herbal formula SYJN protect PC 12 cells from neurotoxicity induced by corticosterone[J]. Journal of Ethnopharmacology,2009, 125:456-460
    [243]Koh JY, Choi DW. Quantitative determination of glutamate mediatedcortical neuronal injury in cell culture by lactate dehydrogenase efflux assay[J].J Neurosci Methods,1987, 20(1):83-90.
    [244]Zhou JZ, Zheng JQ, Zhang YX, et al. Corticosterone impairs cultured hippocampal neurons and facilitates Ca2+ influx throughvoltage-dependent Ca2+channel[J]. Acta Pharmacol Sin, 2000,21(2):156-160
    [245]Zhou H, Li X, Gao M. Curcumin protects PC 12 cells from corticosterone induced cytotoxicity:possible involvement of the ERK1/2 pathway[J]. Basic Clin Pharmacol Toxicol, 2008,104(3):236-240
    [246]Li YF, Liu YQ, Yang M, et al. The cytoprotective effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC 12 cells against the lesion induced by corticosterone[J]. Life Sci,2004,75 (13):1531-1538
    [247]Schinder AF, Closon EC, Spitzer NC, et al. Mitochondrial dysfunction is primay event in glutamate neurotoxicity[J]. J Neurosci,1996,16(19):6125.
    [248]Zhu MY, Wang WP, Bissette G. Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons[J]. Neuroscience,2006,141 (4):2019-2027
    [249]Zhu W, Ma S, Qu R, Kang D. Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism[J]. Life Sci,2006,79 (8)-.749-756
    [250]Pang Z, James WG. Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropoinic acid:acute excitotoxic necrosis and delayed apoptosis[J]. Neurosci,1997, 17(9):3061.
    [251]Zamzami N, Hirsch T, Dallaporta B, et al. Mitochondrial implication in accidental and programmed cell death:apoptosis and necrosis[J]. Bioenergetics Biomembrences,1997,29 (2):185-193.
    [252]Duman RS, Monteggia LM. A neurotrophic model for stress-relatedmood disorders[J].Biol Psychiatry,2006,59:1116-1127.
    [253]A lana C, Conti JF, Cryan AD, et al. cAM P response element-binding protein is essential for the up regulation of brain-derived neurotrophic factor transcription, but not the behavioral or endorcrine responses to antidepressant drugs [J]. Neurosci,2002,22 (8):3262-3268.
    [254]Chen B, Wang JF, Sun XJ, et al. Regulation of GAP-43 expression by chronic desipramine treatment in rat cultured hippocampal cells[J]. Biol Psychiatry,2003,53(6):530-537
    [255]Molteni R, Calabrese F, Bedogni F, et al. Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions[J]. Int. J. Neuropsychoph-armacol,2006,9:307-317
    [256]Kalman J, Palotas A, Juhasz A, et al.Impact of venlafaxine on gene expression profile in lymphocytes of the elderly with major depression:Evolution of antidepressants and the role of the "neuroimmune" system[J]. Neurochem Res,2005,230:1429-14381
    [257]吴彬,胡胜娣,潘慧,等. 可卡因-苯丙胺调节转录肽激活ERK促进海马神经元合成BDNF [J]中国病理生理杂志,2007,,23(7):1289-1292.
    [258]陈家旭,李伟,赵歆,等.三种中药复方对慢性束缚应激大鼠皮层和海马BDNF、 TrkB的影响[J].中国病理生理杂志,2007,23(7):296-1300.
    [259]Duman RS, Monteggia LM. A neurotrophic model for stress-relatedmood disorders[J]. Biol Psychiatry,2006,59:1116-1127.
    [260]Vaidya VA, Marek GJ, Aghajanian GK, et al.5-HT2A receptor mediated:regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex[J]. Neurosci, 1997,17:2785-2795.
    [261]Mamounas LA, Blue ME, Siuciak JA, et al. Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain[J]. Neurosci,1995,15(12): 7929-7939
    [262]Siuciak JA, Clark MS, Rind HB, et al. BDNF induction of tryptophan hydroxylase mRNA levels in therat brain[J]. Neurosci Res,1998,52(2):149-158
    [263]Gaiter D, Unsicker K. Sequential activation of the 5-HT)Aserotonin receptor and TrkB induces the serotonergic neuronal phenotype[J]. Mol. Cell Neurosci,2000,15(5):446-455
    [264]Czeh B, Michaelis T, Watanabe T, et al. Stress-induced changes incerebralmetabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine[J]. Proc. Natl. Aead. Sci., USA,2001,98(22):12796-12801
    [265]Dias BG, Banerjee SB, Duman RS, et al. Differential regulation of brain delved: neurotrophic factor transcripts by antidepressant treatments in the adult ratbrain[J]. Neuropharmacology,2003,45:553-563.
    [266]Vinet J, Carra S, Blom JM, et al. Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKK alpha and CaMKK beta mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor[J], Neuropharmacology,2004,47:1062-1069.
    [267]Karege F, Vaudan G, Schwald M, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drags[J]. Brain ResMol Brain Res,2005,136:29-37.
    [268]Gonul AS,Akdeniz F,Taneli F, et al.Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients[J]. EurArch Psychiatry Clin Neurosci,2005,255:381-386.
    [269]于琦,金光亮.三种复方对慢性应激模型大鼠海马CREB、 BDNF基因表达的影响[J].中国病理生理杂志,2009,25(3):591-594
    [270]N ibuya M, N estler EJ, Duman RS, et al. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus [J], Neuro sci,1996,16 (7):2365-2372.
    [271]Thome J, SakaiN, Sh in K, et al. cAMP response element-mediated gene transcription in up regulated by chronic antidepressant [J]. Neuro sci,2000,20:4030-4036.
    [275]张黎明,李云峰,宫泽辉.神经元再生-抑郁症治疗的新策略[J].生理科学进展,2005,36(2):109-112.
    [276]Alana C, Conti JF, Cryan AD, et al. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endorcrine responses to antidepressant drugs[J]. Neurosci,2002,22(8):3262-3268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700