用户名: 密码: 验证码:
转染ALDH2基因对海马神经元的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:4-羟基壬烯醛(4-Hydroxynonenal,4-HNE)是一种重要的过氧化应激标志物,在阿尔茨海默氏病(Alzheimers Disease,AD)等神经退行性疾病中大量沉积。大量研究表明4-HNE的神经毒性作用包括抑制神经突起生长,影响神经微管蛋白功能,破坏神经微管;4-HNE还可改变蛋白质的信号转导机制而介导神经细胞凋亡;4-HNE也可通过损伤线粒体而引起氧化应激反应等。4-HNE在神经退行性疾病的发生发展过程中起重要作用,因此对抗4-HNE的神经毒性作用可能成为治疗神经退行性病变的一个靶点。线粒体乙醛脱氢酶(aldehyde dehydrogenase-2,ALDH2)是一个核编码线粒体酶,定位于线粒体基质。ALDH2在中枢神经系统中广泛表达,然而ALDH2在中枢神经系统中的功能以及中枢神经系统相关疾病中的作用目前仍不明确。须然ALDH2和4-HNE代谢之间的关系尚不清楚,但ALDH2在醛类代谢中起关键作用,由此本实验假设可以通过ALDH2基因转染抑制4-HNE的神经毒性,阻止神经元突起损伤和神经元凋亡而起到治疗神经退行性疾病的作用。目的:在体外培养原代海马神经元模型上探讨转染ALDH2基因对4-HNE诱导神经毒性的改善作用及其机制。方法:构建含有ALDH2 cDNA的pEGFP-N2载体,在细胞水平用电穿孔的方法在原代海马神经元中转染。分别进行免疫印迹法、免疫组织化学和免疫荧光染色法、实时定量逆转录聚合酶链反应法、激酶的活性测定、MTT比色法、免疫沉淀法、Axiovision软件分析法来检测过表达ALDH2对4-HNE诱导神经毒性的改善作用及其机制。结果:(1)在体外培养的原代海马神经元中,ALDH2基因转染有效地提高了ALDH2 mRNA和ALDH2融合蛋白的表达;(2)ALDH2基因转染有效地逆转了4-HNE诱导的神经突起损伤;
     (3) ALDH2基因转染可使神经元存活率升高,有效地逆转了4-HNE诱导的神经细胞死亡;(4)ALDH2基因转染通过使casepase-3, Bax活性降低的机制,有效地逆转了4-HNE诱导的神经细胞凋亡;(5) ALDH2基因转染通过抑制线粒体膜电位下降和减少氧自由基水平有效地改善了4-HNE诱导的氧化应激反应的机制实现神经保护作用。结论:ALDH2基因转染不仅抑制4-HNE的神经毒性而且还可减少氧化应激损伤,从而有效逆转神经突起损伤和神经元凋亡。ALDH2可作为对抗4-HNE的神经毒性作用这一个靶点,达到预防和治疗神经退行性疾病的目的。
Background:4-Hydroxynonenal (4-HNE) is an important marker of oxidative stress in Alzheimer's disease (AD) and other neurodegenerative diseases, which can also accumulate in these diseases. Numerous studies show that 4-HNE neurotoxicity includes inhibition of neurite growth, damaging the nervous microtubules and neuronal tubulin; 4-HNE can also act directly on the receptor or the catalytic protein signaling pathway, change the protein signal transduction mechanisms which can lead to neuronal apoptosis; 4-HNE can also cause mitochondrial oxidative stress reactions.4-HNE may play an important role in the development process of neurodegenerative diseases, so treatments against the neurotoxicity of 4-HNE may be a therapeutic target for neurodegenerative diseases. Mitochondrial aldehyde dehydrogenase (aldehyde dehydrogenase-2, ALDH2) is a nuclear encoded mitochondrial enzyme, which is located in the mitochondrial matrix. ALDH2 is widely expressed in the central nervous system, but its functions in the central nervous system and roles in central nervous system-related diseases are still uncertain. We are not sure of the intrinsic link between 4-HNE and ALDH2, however ALDH2 plays a key role in the metabolism of aldehydes, so we assume that overexpression of ALDH2 could inhibit 4-HNE-induced neuronal injury and neuronal apoptosis processes, the purpose of treating neurodegenerative diseases achieved. Objective:we transfect ALDH2 gene in primary hippocampal neurons, and study the neuroprotective effects of ALDH2 and its mechanisms. Methods:we construct pEGFP-N2 vector containing ALDH2 cDNA, we use electroporation method to transfect ALDH2 cDNA into primary hippocampal neurons at the cellular level. We use Western blot, immunohistochemistry and immunofluorescence staining, real-time quantitative reverse transcription polymerase chain reaction, kinase activity assay, MTT assay, immunoprecipitation, and Axiovision software analysis method to detect over-expression of ALDH2 that can block 4HNE and reduce neurotoxicity. Results:(1) in cultured primary hippocampal neurons, ALDH2 gene transfection effectively improved ALDH2 ALDH2 mRNA expression and fusion protein expression; (2) ALDH2 gene transfection effectively reversed the 4-HNE-induced nerve neurite injury; (3) ALDH2 gene transfection can increase neuronal survival, effectively reversed the 4-HNE-induced neuronal cell death; (4) ALDH2 gene transfection can decrease casepase-3 and Bax activity, effectively reversing the 4-HNE-induced neuronal apoptosis; (5) In cultured primary hippocampal neurons, ALDH2 gene transfection effectively reverse the 4-HNE induced oxidative stress by inhibiting mitochondrial membrane potential decrease and reducing neuronal ROS level. Conclusions:ALDH2 gene transfection not only inhibits the neurotoxicity of 4-HNE but also to reduce oxidative stress, thus effectively reversing neurite injury and neuronal apoptosis, so ALDH2 can be used as a potential target for prevention and treatment of neurodegenerative diseases.
引文
[1]Hirata K, Yamaguchi H, Takamura Y, et al. A novel neurotrophic agent, T-817MA attenuates amyloid-beta-induced neurotoxicity and promotes neurite outgrowth in rat cultured central nervous system neurons. J Pharmacol Exp Ther,2005,314(1):252-9
    [2]Jantas D, Lason W. Protective effect of memantine against Doxorubicin toxicity in primary neuronal cell cultures:influence a development stage. Neurotox Res,2009,15(1):24-37
    [3]Florang VR, Rees JN, Brogden NK, et al. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Neurotoxicology,2007,28(1):76-82
    [4]Kosuge Y, Koen Y, Ishige K, et al. S-allyl-L-cysteine selectively protects cultured rat hippocampal neurons from amyloid beta-protein-and tunicamycin-induced neuronal death. Neuroscience,2003,122(4):885-95
    [5]Johnson MD, Xiang H, London S, et al. Evidence for involvement of Bax and p53, but not caspases, in radiation-induced cell death of cultured postnatal hippocampal neurons. J Neurosci Res,1998,54(6):721-33
    [6]Zhu MY, Wang WP, Bissette G. Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience,2006,141(4):2019-27
    [7]Semkova I, Schilling M, Henrich-Noack P, et al. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF. Brain Res, 1996,717(1-2):44-54
    [8]Zundorf G, Kahlert S, Bunik VI, et al. alpha-Ketoglutarate dehydrogenase contributes to production of reactive oxygen species in glutamate-stimulated hippocampal neurons in situ. Neuroscience,2009,158(2):610-6
    [9]Kim DM, Ryu SW, Choi C. Long-term treatment of farnesyltransferase inhibitor FTI-277 induces neurotoxicity of hippocampal neurons from rat embryo in a ROS-dependent manner. Biochem Biophys Res Commun,2010,403(1):91-6
    [10]Yin ST, Tang ML, Deng HM, et al. Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol,2009,379(6):551-64
    [11]Li C, Xing T, Tang M, et al. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+ -induced neuronal death in cultured hippocampal neurons. Toxicol Appl Pharmacol,2008,229(3):351-61
    [12]Cho SO, Ban JY, Kim JY, et al. Aralia cordata protects against amyloid beta protein induced neurotoxicity in cultured neurons and has antidementia activities in mice. J Pharmacol Sci,2009,111(1):22-32.
    [13]Mark RJ, Keller JN, Kruman I, et al. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res,1997,756(1-2):205-14
    [14]Zhang Y, Bhavnani BR. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. BMC Neurosci,2005,6(1):13-14
    [15]Sheline CT, Wei L. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience,2006,140(1): 235-46
    [16]Kruman Ⅱ, Nath A, Mattson MP. HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol,1998,154(2):276-88
    [17]Park KW, Jin BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons:role of neuronal NADPH oxidase. J Neurosci Res,2008, 86(5):1053-63
    [18]Yang Y, Quitschke WW, Brewer GJ. Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Res Mol Brain Res,1998,60(1):40-9
    [19]Swanwick CC, Shapiro ME, Vicini S, et al. Flotillin-1 mediates neurite branching induced by synaptic adhesion-like molecule in hippocampal neurons. Mol Cell Neurosci,2010,45(3):213-25
    [20]Wang PY, Chen JJ, Su HM. Docosahexaenoic acid supplementation of primary rat hippocampal neurons attenuates the neurotoxicity induced by aggregated amyloid beta protein(42) and up-regulates cytoskeletal protein expression. J Nutr Biochem, 2010,21(4):345-50
    [21]杨云,卞广兴,吕秋军等.甘草苷对原代海马神经细胞的保护和营养作用.中国中药杂志,2008,33(8):931-5
    [22]赵秀鹤,迟兆富,迟令懿.新生大鼠海马神经元的体外原代培养.基础医学与临床,2007,(03):31-35
    [23]方蓉,李芳秋,武建国.MTT比色法条件的探讨.临床检验杂志,2003,(01):21-26
    [24]于天贵,王韦玮,张庆柱等.超低分子量肝素抑制神经细胞内钙释放保护谷氨酸损伤原代培养大鼠神经元.中国药理学通报,2007,23(10):21-26
    [25]Jankowski MP, Cornuet PK, Mcllwrath S, et al. SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience, 2006,143(2):501-14
    [26]Kajta M, Lason W, Kupiec T. Effects of estrone on N-methyl-D-aspartic acid-and staurosporine-induced changes in caspase-3-like protease activity and lactate dehydrogenase-release:time-and tissue-dependent effects in neuronal primary cultures. Neuroscience,2004,123(2):515-26
    [27]Hu M, Schurdak ME, Puttfarcken PS, et al. High content screen microscopy analysis of A beta induced neurite outgrowth reduction in rat primary cortical neurons: neuroprotective effects of alpha neuronal nicotinic acetylcholine receptor ligands. Brain Res,2007,1151:227-35.
    [28]Abad MA, Enguita M, DeGregorio N, et al. Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer's brain. J Neurosci,2006,26(49):12735-47
    [29]Ahlemeyer B, Beier H, Semkova I, et al. S-100beta protects cultured neurons against glutamate-and staurosporine-induced damage and is involved in the antiapoptotic action of the 5 HT-receptor agonist, Bay x 3702. Brain Res,2000,858(1):121-8
    [30]Ring RH, Alder J, Fennell M, et al. Transcriptional profiling of brain-derived-neurotrophic factor-induced neuronal plasticity:a novel role for nociceptin in hippocampal neurite outgrowth. J Neurobiol,2006,66(4):361-77
    [31]Alonso R, Poirier J, O'Donnell D, et al. Statin, a marker of cell cycle arrest, is overexpressed during the early phase of delayed NMDA toxicity in hippocampal cell cultures. Mol Cell Neurosci,1994,5(6):530-9
    [32]Liu RT, Zou LB, Lu QJ. Liquiritigenin inhibits Abeta(25-35)-induced neurotoxicity and secretion of Abeta(1-40) in rat hippocampal neurons. Acta Pharmacol Sin,2009, 30(7):899-906
    [33]Chien CL, Liu TC, Ho CL, et al.. Overexpression of neuronal intermediate filament protein alpha-internexin in PC12 cells. J Neurosci Res,2005,80(5):693-706
    [34]Kimura K, Matsumoto N, Kitada M, et al. Neurite outgrowth from hippocampal neurons is promoted by choroid plexus ependymal cells in vitro. J Neurocytol,2004, 33(4):465-76
    [35]Wang WP, Iyo AH, Miguel-Hidalgo J, et al. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res,2006, 1084(1):210-6
    [36]Kim JH, Cho SY, Lee JH, et al. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res,2007,1136(1): 190-9
    [37]Doherty P, Fruns M, Seaton P, et al. A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature,1990,343(6257):464-6
    [38]Semkova I, Wolz P, Schilling M, et al. Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol,1996,315(1):19-30
    [39]Araujo IM, Ambrosio AF, Leal EC, et al. Neurotoxicity induced by antiepileptic drugs in cultured hippocampal neurons:a comparative study between carbamazepine, oxcarbazepine, and two new putative antiepileptic drugs, BIA 2-024 and BIA 2-093. Epilepsia,2004,45(12):1498-505
    [40]Pellitteri R, Spatuzza M, Russo A, et al. Olfactory ensheathing cells represent an optimal substrate for hippocampal neurons:an in vitro study. Int J Dev Neurosci, 2009,27(5):453-8
    [41]Pugazhenthi S, Nesterova A, Jambal P, et al. Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons. J Neurochem,2003, 84(5):982-96
    [42]Veronesi MC, Yard M, Jackson J, et al. An analog of thyrotropin-releasing hormone (TRH) is neuroprotective against glutamate-induced toxicity in fetal rat hippocampal neurons in vitro. Brain Res,2007,1128(1):79-85
    [43]Morii H, Shiraishi-Yamaguchi Y, et al. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J Neurobiol,2006,66(10):1101-14
    [44]Lee BY, Ban JY, Seong YH. Chronic stimulation of GABAA receptor with muscimol reduces amyloid beta protein (25-35)-induced neurotoxicity in cultured rat cortical cells. Neurosci Res,2005,52(4):347-56
    [45]Papa L, Gomes E, Rockwell P. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis,2007,12(8):1389-405
    [46]Li SY, Gilbert SA, Li Q, et al. Aldehyde dehydrogenase-2 (ALDH2) ameliorates chronic alcohol ingestion-induced myocardial insulin resistance and endoplasmic reticulum stress. J Mol Cell Cardiol,2009,47(2):247-55
    [47]Gorbacheva L, Pinelis V, Ishiwata S, et al. Activated protein C prevents glutamate-and thrombin-induced activation of nuclear factor-kappaB in cultured hippocampal neurons. Neuroscience,2010,165(4):1138-46
    [48]Negishi T, Ishii Y, Kyuwa S, et al. Inhibition of staurosporine-induced neuronal cell death by bisphenol A and nonylphenol in primary cultured rat hippocampal and cortical neurons. Neurosci Lett,2003,353(2):99-102
    [49]Park JA, Lee JY, Sato TA, et al. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J Neurosci,2000,20(24):9096-103
    [50]Matsuzawa M, Weight FF, Potember RS. Directional neurite outgrowth and axonal differentiation of embryonic hippocampal neurons are promoted by a neurite outgrowth domain of the B2-chain of laminin. Int J Dev Neurosci,1996,14(3): 283-95
    [51]Clarris HJ, Nurcombe V, Small DH, et al. Secretion of nerve growth factor from septum stimulates neurite outgrowth and release of the amyloid protein precursor of Alzheimer's disease from hippocampal explants. J Neurosci Res,1994,38(3):248-58
    [52]Liu Q, Zhao B. Nicotine attenuates beta-amyloid peptide-induced neurotoxicity, free radical and calcium accumulation in hippocampal neuronal cultures. Br J Pharmacol, 2004,141(4):746-54
    [53]Howard S, Bottino C, Brooke S, et al. Neuroprotective effects of bcl-2 overexpression in hippocampal cultures:interactions with pathways of oxidative damage. J Neurochem,2002,83(4):914-23
    [54]Skladchikova G, Ronn LC, Berezin V, et al. Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res,1999,57(2):207-18
    [55]Jordan J, Galindo MF, Gonzalez-Garcia C, et al. Role and regulation of p in depolarization-induced neuronal death. Neuroscience,2003,122(3):707-15
    [56]Zhou M, Baudry M. EUK-207, a superoxide dismutase/catalase mimetic, is neuroprotective against oxygen/glucose deprivation-induced neuronal death in cultured hippocampal slices. Brain Res,2009,1247:28-37
    [57]Peng H, Wen TC, Tanaka J, et al. Epidermal growth factor protects neuronal cells in vivo and in vitro against transient forebrain ischemia-and free radical-induced injuries. J Cereb Blood Flow Metab,1998,18(4):349-60
    [58]You JM, Yun SJ, Nam KN, et al. Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol,2009,87(6): 440-7
    [59]Shen H, Yuan Y, Ding F, et al. Achyranthes bidentata polypeptides confer neuroprotection through inhibition of reactive oxygen species production, Bax expression, and mitochondrial dysfunction induced by overstimulation of N-methyl-D-aspartate receptors. J Neurosci Res,2010,88(3):669-76
    [60]Williams EJ, Doherty P, Turner G, et al. Calcium influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J Cell Biol,1992,119(4):883-92
    [61]Vaisid T, Barnoy S, Kosower NS. Calpastatin overexpression attenuates amyloid-beta-peptide toxicity in differentiated PC12 cells. Neuroscience,2008, 156(4):921-31
    [62]Wen TC, Tanaka J, Peng H, et al. Interleukin 3 prevents delayed neuronal death in the hippocampal CA1 field. J Exp Med,1998,188(4):635-49
    [63]Sengpiel B, Preis E, Krieglstein J, et al. NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons:role of mitochondria. Eur J Neurosci,1998,10(5):1903-10
    [64]Xiao XQ, Zhang HY, Tang XC. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res,2002,67(1): 30-6
    [65]Domoki F, Kis B, Gaspar T, et al. Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons. Am J Physiol Cell Physiol,2009,296(1):C97-105
    [66]Sin WC, Moniz DM, Ozog MA, et al. Regulation of early neurite morphogenesis by the Na+/H+ exchanger NHE1. J Neurosci,2009,29(28):8946-59
    [67]Ohsawa I, Nishimaki K, Yasuda C, et al. Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC 12 cells. J Neurochem, 2003,84(5):1110-7
    [68]Jinsmaa Y, Florang VR, Rees JN, et al. Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate. Chem Res Toxicol,2009,22(5):835-41
    [69]Brot S, Rogemond V, Perrot V, et al. CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci,2010,30(32): 10639-54
    [70]Choi YT, Jung CH, Lee SR, et al. The green tea polyphenol epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci,2001,70(5):603-14
    [71]Shetty AK, Turner DA. Neurite outgrowth from progeny of epidermal growth factor-responsive hippocampal stem cells is significantly less robust than from fetal hippocampal cells following grafting onto organotypic hippocampal slice cultures: effect of brain-derived neurotrophic factor. J Neurobiol,1999,38(3):391-413
    [72]Zundorf G, Kahlert S, Reiser G. Gap-junction blocker carbenoxolone differentially enhances NMDA-induced cell death in hippocampal neurons and astrocytes in co-culture. J Neurochem,2007,102(2):508-21
    [73]Cortinez G, Sapag A, Israel Y. RNA interference against aldehyde dehydrogenase-2: development of tools for alcohol research. Alcohol,2009,43(2):97-104
    [74]Hu SQ, Zong YY, Fan LM, et al. Overexpression of PDZ1 domain prevents apoptosis of rat hippocampal neurons induced by kainic acid. Neurosci Lett,2009, 460(2):133-7
    [75]Rohn TT, Ivins KJ, Bahr BA, et al. A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis. J Neurochem,2000,74(6):2331-42
    [76]van den Pol AN, Spencer DD. Differential neurite growth on astrocyte substrates: interspecies facilitation in green fluorescent protein-transfected rat and human neurons. Neuroscience.2000,95(2):603-16
    [77]Skotniczna D, Kajta M, Lason W. Memantine attenuates staurosporine-induced activation of caspase-3 and LDH release in mouse primary neuronal cultures. Brain Res,2006,1069(1):145-53
    [78]Walter IB. Triiodothyronine exerts a trophic action on rat sensory neuron survival and neurite outgrowth through different pathways. Eur J Neurosci.1996,8(3): 455-66
    [79]Mellstrom B, Cena V, Lamas M, Perales C, Gonzalez C, Naranjo JR. Gasl is induced during and participates in excitotoxic neuronal death. Mol Cell Neurosci, 2002,19(3):417-29
    [80]Doser TA, Turdi S, Thomas DP, et al. Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction. Circulation,2009,119(14):1941-9
    [81]Mattson MP. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci,2004,1012: 37-50
    [82]Perluigi M, Fai Poon H, Hensley K, et al. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic micc--a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med,2005,38(7):960-8
    [83]Shibata N, Nagai R, Miyata S, et al. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Acta Neuropathol,2000,100(3):275-84
    [84]Pedersen WA, Chan SL, Mattson MP. A mechanism for the neuroprotective effect of apolipoprotein E:isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal. J Neurochem,2000,74(4):1426-33
    [85]Castellani RJ, Perry G, Siedlak SL, et al. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett,2002,319(1):25-8
    [86]Calabrese V, Lodi R, Tonon C, et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci,2005,233(1-2): 145-62
    [87]Abdul HM, Butterfield DA. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. Free Radic Biol Med,2007,42(3):371-84.
    [88]Di Matteo V, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord,2003,2(2):95-107
    [89]Lipton SA, Gu Z, Nakamura T. Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol,2007,82:1-27
    [90]Vigh L, Smith RG, Soos J, et al. Sublethal dose of 4-hydroxynonenal reduces intracellular calcium in surviving motor neurons in vivo. Acta Neuropathol,2005, 109(6):567-75
    [91]Li SY, Gomelsky M, Duan J, et al. Overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene prevents acetaldehyde-induced cell injury in human umbilical vein endothelial cells:role of ERK and p38 mitogen-activated protein kinase. J Biol Chem,2004,279(12):11244-52
    [92]Li SY, Li Q, Shen JJ, Dong F, Sigmon VK, Liu Y, Ren J. Attenuation of acetaldehyde-induced cell injury by overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene in human cardiac myocytes:role of MAP kinase signaling. J Mol Cell Cardiol.2006,40(2):283-94
    [93]Ma H, Li J, Gao F, Ren J. Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol:role of protein phosphatase and forkhead transcription factor. J Am Coll Cardiol.2009,54(23):2187-96
    [94]王季石,胡秀英,方琴等ALDH2基因导入对K562细胞增殖和抗氧化损伤的影响[J].中华血液学杂志,2010,31(11):721-725
    [95]Barkats M, Millecamps S, Abrioux P, Geoffroy MC, Mallet J. Overexpression of glutathione peroxidase increases the resistance of neuronal cells to Abeta-mediated neurotoxicity. J Neurochem.2000,75(4):1438-46
    [96]Zhu Y, Hoell P, Ahlemeyer B, Sure U, Bertalanffy H, Krieglstein J. Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson's disease. Neurochem Int.2007,50(3):507-16
    [97]Xu D, Guthrie JR, Mabry S, Sack TM, Truog WE. Mitochondrial aldehyde dehydrogenase attenuates hyperoxia-induced cell death through activation of ERK/MAPK and PI3K-Akt pathways in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol.2006,291(5):L966-75
    [98]Doom JA, Hurley TD, Petersen DR. Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal. Chem Res Toxicol. 2006,19(1):102-10
    [99]Ren J, Babcock SA, Li Q, Huff AF, Li SY, Doser TA. Aldehyde dehydrogenase-2 transgene ameliorates chronic alcohol ingestion-induced apoptosis in cerebral cortex. Toxicol Lett.2009,187(3):149-56
    [100]Cheng Y, Yu LC. Galanin protects amyloid-beta-induced neurotoxicity on primary cultured hippocampal neurons of rats. J Alzheimers Dis.2010,20(4):1143-57
    [101]Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi J, Jiang B. Catalpol protects primary cultured cortical neurons induced by Abeta(1-42) through a mitochondrial-dependent caspase pathway. Neurochem Int.2009,55(8):741-6
    [102]Ma H, Yu L, Byra EA, Hu N, Kitagawa K, Nakayama KI, Kawamoto T, Ren J. Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression:role of protein phosphatases. J Mol Cell Cardiol.2010,49(2):322-9
    [103]Castella P, Wagner JA, Caudy M. Regulation of hippocampal neuronal differentiation by the basic helix-loop-helix transcription factors HES-1 and MASH-1. J Neurosci Res.1999,56(3):229-40
    [104]Chen YJ, Huang XB, Li ZX, Yin LL, Chen WQ, Li L. Tenuigenin protects cultured hippocampal neurons against methylglyoxal-induced neurotoxicity. Eur J Pharmacol. 2010,645(1-3):1-8
    [105]Hernandez-Fonseca K, Massieu L. Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res.2005,82(2):196-205
    [106]Wang JY, Shum AY, Ho YJ, Wang JY. Oxidative neurotoxicity in rat cerebral cortex neurons:synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3. J Neurosci Res.2003,72(4): 508-19
    [107]King M, Nafar F, Clarke J, Mearow K. The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of beta-amyloid peptide. J Neurosci Res. 2009,87(14):3161-75
    [108]Ban JY, Cho SO, Choi SH, Ju HS, Kim JY, Bae K, Song KS, Seong YH. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J Pharmacol Sci.2008,106(1):68-77
    [109]Schwab C, DeMaggio AJ, Ghoshal N, Binder LI, Kuret J, McGeer PL. Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases. Neurobiol Aging.2000,21(4):503-10
    [110]Kato S, Kato M, Abe Y, Matsumura T, Nishino T, Aoki M, Itoyama Y, Asayama K, Awaya A, Hirano A, Ohama E. Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS):immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models. Acta Neuropathol.2005,110(2):101-12
    [111]Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem.2004, 279(13):13256-64
    [112]Trojanowski JQ, Goedert M, Iwatsubo T, Lee VM. Fatal attractions:abnormal protein aggregation and neuron death in Parkinson's disease and Lewy body dementia. Cell Death Differ.1998,5(10):832-7
    [113]Tabner BJ, Turnbull S, El-Agnaf O, Allsop D. Production of reactive oxygen species from aggregating proteins implicated in Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. Curr Top Med Chem.2001,1(6):507-17
    [114]Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MP. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci. 1997,17(13):5089-100
    [115]Butterfield DA, Castegna A, Drake J, Scapagnini G, Calabrese V. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci.2002, 5(4):229-39
    [116]Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol.1998,44(5):819-24
    [117]Calabrese V, Guagliano E, Sapienza M, Mancuso C, Butterfield DA, Stella AM. Redox regulation of cellular stress response in neurodegenerative disorders. Ital J Biochem.2006,55(3-4):263-82
    [118]Wang JY, Wen LL, Huang YN, Chen YT, Ku MC. Dual effects of antioxidants in neurodegeneration:direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des.2006, 12(27):3521-33
    [119]Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging.2002,23(5):719-35
    [120]Dhib-Jalbut S, Arnold DL, Cleveland DW, Fisher M, Friedlander RM, Mouradian MM, Przedborski S, Trapp BD, Wyss-Coray T, Yong VW. Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol.2006,176(1-2):198-215
    [121]Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G. RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol.2009,118(1):151-66
    [122]Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, Hof PR. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders:a comparative immunohistochemical analysis. Brain Res.1994,650(1): 20-31
    [123]Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol.2005,70(12):1796-806
    [124]Lavara-Culebras E, Munoz-Soriano V, Gomez-Pastor R, Matallana E, Paricio N. Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-lbeta mutants. Gene.2010,462(1-2):26-33
    [125]Xu W, Chi L, Xu R, Ke Y, Luo C, Cai J, Qiu M, Gozal D, Liu R. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord.2005,43(4):204-13
    [126]Lee KS, Iijima-Ando K, Iijima K, Lee WJ, Lee JH, Yu K, Lee DS. JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin Ⅱ reduces oxidative stress and extends life span. J Biol Chem.2009,284(43): 29454-61
    [127]Risso-de Faverney C, Orsini N, de Sousa G, Rahmani R. Cadmium-induced apoptosis through the mitochondrial pathway in rainbow trout hepatocytes: involvement of oxidative stress. Aquat Toxicol.2004,69(3):247-58
    [128]Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS. ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J.2005,19(6):597-8
    [129]Wang CC, Fang KM, Yang CS, Tzeng SF. Reactive oxygen species-induced cell death of rat primary astrocytes through mitochondria-mediated mechanism. J Cell Biochem.2009,107(5):933-43
    [130]Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003,278(36):33714-23
    [131]Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res.2004,37(1):55-70
    [132]Yao K, Ye P, Zhang L, Tan J, Tang X, Zhang Y. Epigallocatechin gallate protects against oxidative stress-induced mitochondria-dependent apoptosis in human lens epithelial cells. Mol Vis.2008,14(1):217-23
    [133]Li WJ, Nie SP, Chen Y, Xie MY, He M, Yu Q, Yan Y. Ganoderma atrum polysaccharide protects cardiomyocytes against anoxia/reoxygenation-induced oxidative stress by mitochondrial pathway. J Cell Biochem.2010,110(1):191-200
    [134]Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield DA. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci.2005, 233(1-2):145-62
    [135]Dagda RK, Merrill RA, Cribbs JT, Chen Y, Hell JW, Usachev YM, Strack S. The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem.2008,283(52):36241-8
    [136]Long J, Gao H, Sun L, Liu J, Zhao-Wilson X. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson's disease model. Rejuvenation Res.2009,12(5):321-31
    [137]Papa L, Rockwell P. Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition. Apoptosis.2008,13(4): 588-99
    [138]Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci.1998,18(2):687-97
    [139]Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM, Almasan A. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ.2003,10(3):323-34
    [140]Sugawara T, Lewen A, Gasche Y, Yu F, Chan PH. Overexpression of SOD 1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. FASEB J.2002,16(14):1997-9
    [141]Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B. Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation:role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J.2003,371(1):151-64
    [142]Takahashi A, Masuda A, Sun M, Centonze VE, Herman B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull.2004,62(6): 497-504
    [143]Morrow G, Samson M, Michaud S, Tanguay RM. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J.2004,18(3):598-9
    [144]Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology.2002,122(2):366-75
    [145]Dolai S, Yadav RK, Pal S, Adak S. Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage. Eukaryot Cell.2009,8(11):1721-31
    [146]Sugawara T, Noshita N, Lewen A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci.2002,22(1):209-17
    [147]Wang JY, Wen LL, Huang YN, Chen YT, Ku MC. Dual effects of antioxidants in neurodegeneration:direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des.2006, 12(27):3521-33
    [148]Shan X, Chi L, Ke Y, Luo C, Qian S, Gozal D, Liu R. Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage. Neurobiol Dis.2007,28(2):206-15
    [149]Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz A. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem.2005,280(20):19911-24
    [150]Jones DC, Prabhakaran K, Li L, Gunasekar PG, Shou Y, Borowitz JL, Isom GE. Cyanide enhancement of dopamine-induced apoptosis in mesencephalic cells involves mitochondrial dysfunction and oxidative stress. Neurotoxicology.2003, 24(3):333-42
    [151]Papa L, Gomes E, Rockwell P. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis.2007,12(8):1389-405
    [152]Pong K, Doctrow SR, Huffman K, Adinolfi CA, Baudry M. Attenuation of staurosporine-induced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons. Exp Neurol.2001,171(1):84-97
    [153]Wang GW, Klein JB, Kang YJ. Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther.2001,298(2):461-8
    [154]Bai J, Cederbaum AI. Mitochondrial catalase and oxidative injury. Biol Signals Recept.2001,10(3-4):189-99
    [155]Monte SM, Chiche J, von dem Bussche A, Sanyal S, Lahousse SA, Janssens SP, Bloch KD. Nitric oxide synthase-3 overexpression causes apoptosis and impairs neuronal mitochondrial function:relevance to Alzheimer's-type neurodegeneration. Lab Invest.2003,83(2):287-98
    [156]Kitazawa M, Wagner JR, Kirby ML, Anantharam V, Kanthasamy AG. Oxidative stress and mitochondrial-mediated apoptosis in dopaminergic cells exposed to methylcyclopentadienyl manganese tricarbonyl. J Pharmacol Exp Ther.2002,302(1): 26-35
    [157]Chen L, Rio DC, Haddad GG, Ma E. Regulatory role of dADAR in ROS metabolism in Drosophila CNS. Brain Res Mol Brain Res.2004,131(1-2):93-100.
    [158]Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci.2002,959(12):368-83
    [159]KC S, Carcamo JM, Golde DW. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glutl) and confers mitochondrial protection against oxidative injury. FASEB J.2005,19(12):1657-67
    [160]Liu H, Wang T, Huang K. Cholestane-3beta,5alpha,6beta-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria. Chem Biol Interact.2009,179(2-3):81-7
    [1]Zarkovic K.4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med. 2003,24(4-5):293-303
    [2]Mattson MP. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci.2004,1012: 37-50
    [3]Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem.2010,345(1-2):91-104
    [4]Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem.2001,8(7):721-38
    [5]Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med.2005,38(7):960-8
    [6]Shibata N, Nagai R, Miyata S, Jono T, Horiuchi S, Hirano A, Kato S, Sasaki S, Asayama K, Kobayashi M. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Acta Neuropathol.2000,100(3):275-84
    [7]Bowling AC, Beal MF. Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci.1995,56(14):1151-71
    [8]Pedersen WA, Chan SL, Mattson MP. A mechanism for the neuroprotective effect of apolipoprotein E:isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal. J Neurochem.2000,74(4):1426-33
    [9]Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett.2002,319(1): 25-8
    [10]Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield DA. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci.2005, 233(1-2):145-62
    [11]Abdul HM, Butterfield DA. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. Free Radic Biol Med.2007,42(3):371-84
    [12]Di Matteo V, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord.2003,2(2):95-107
    [13]Kanazawa I. How do neurons die in neurodegenerative diseases? Trends Mol Med. 2001,7(8):339-44
    [14]Lipton SA, Gu Z, Nakamura T. Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol.2007,82:1-27
    [15]Vigh L, Smith RG, Soos J, Engelhardt JI, Appel SH, Siklos L. Sublethal dose of 4-hydroxynonenal reduces intracellular calcium in surviving motor neurons in vivo. Acta Neuropathol.2005,109(6):567-75
    [16]Schwab C, DeMaggio AJ, Ghoshal N, Binder LI, Kuret J, McGeer PL. Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases. Neurobiol Aging.2000,21(4):503-10
    [17]Kato S, Kato M, Abe Y, Matsumura T, Nishino T, Aoki M, Itoyama Y, Asayama K, Awaya A, Hirano A, Ohama E. Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS):immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD 1-mutated ALS animal models. Acta Neuropathol.2005,110(2):101-12
    [18]Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafato S, Puleo E, Pennisi G, Mancuso C, Butterfield DA, Stella AG. Redox regulation of cellular stress response in aging and neurodegenerative disorders:role of vitagenes. Neurochem Res.2007,32(4-5):757-73
    [19]Sultana R, Butterfield DA. Oxidatively modified GST and MRP 1 in Alzheimer's disease brain:implications for accumulation of reactive lipid peroxidation products. Neurochem Res.2004,29(12):2215-20
    [20]Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem.1997,68(5):2092-7
    [21]Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol.2009,44(10):625-33
    [22]Shibata N, Kawaguchi M, Uchida K, Kakita A, Takahashi H, Nakano R, Fujimura H, Sakoda S, Ihara Y, Nobukuni K, Takehisa Y, Kuroda S, Kokubo Y, Kuzuhara S, Honma T, Mochizuki Y, Mizutani T, Yamada S, Toi S, Sasaki S, Iwata M, Hirano A, Yamamoto T, Kato Y, Sawada T, Kobayashi M. Protein-bound crotonaldehyde accumulates in the spinal cord of superoxide dismutase-1 mutation-associated familial amyotrophic lateral sclerosis and its transgenic mouse model. Neuropathology.2007,27(1):49-61
    [23]Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L. Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J Biol Chem.2005,280(12):11648-55
    [24]Mather K, Watts FZ, Carroll M, Whitehead P, Swash M, Cairn N, Burke J. Antibody to an abnormal protein in amyotrophic lateral sclerosis identifies Lewy body-like inclusions in ALS and Lewy bodies in Parkinson's disease. Neurosci Lett.1993, 160(1):13-6
    [25]Monte SM, Sohn YK, Ganju N, Wands JR. P53-and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest.1998,78(4):401-11
    [26]Price DL, Cork LC, Struble RG, Kitt CA, Walker LC, Powers RE, Whitehouse PJ, Griffin JW. Dysfunction and death of neurons in human degenerative neurological diseases and in animal models. Ciba Found Symp.1987,126:30-48
    [27]Boll MC, Alcaraz-Zubeldia M, Montes S, Rios C. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem Res.2008,33(9): 1717-23
    [28]Maser E. Neuroprotective role for carbonyl reductase? Biochem Biophys Res Commun.2006,340(4):1019-22
    [29]Montine KS, Kim PJ, Olson SJ, Markesbery WR, Montine TJ.4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J Neuropathol Exp Neurol. 1997,56(8):866-71
    [30]Tabner BJ, Turnbull S, El-Agnaf O, Allsop D. Production of reactive oxygen species from aggregating proteins implicated in Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. Curr Top Med Chem.2001,1(6):507-17
    [31]Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MP. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci. 1997,17(13):5089-100
    [32]Butterfield DA, Castegna A, Drake J, Scapagnini G, Calabrese V. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci.2002, 5(4):229-39
    [33]Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol.1998,44(5):819-24
    [34]Calabrese V, Guagliano E, Sapienza M, Mancuso C, Butterfield DA, Stella AM. Redox regulation of cellular stress response in neurodegenerative disorders. Ital J Biochem.2006,55(3-4):263-82
    [35]Wang JY, Wen LL, Huang YN, Chen YT, Ku MC. Dual effects of antioxidants in neurodegeneration:direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des.2006, 12(27):3521-33
    [36]Aksenova MV, Aksenov MY, Payne RM, Trojanowski JQ, Schmidt ML, Carney JM, Butterfield DA, Markesbery WR. Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. Dement Geriatr Cogn Disord.1999,10(2):158-65
    [37]Calingasan NY, Uchida K, Gibson GE. Protein-bound acrolein:a novel marker of oxidative stress in Alzheimer's disease. J Neurochem.1999 Feb;72(2):751-6.
    [38]Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol.2008,21(1):172-88
    [39]Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging.2002,23(5):719-35
    [40]Dhib-Jalbut S, Arnold DL, Cleveland DW, Fisher M, Friedlander RM, Mouradian MM, Przedborski S, Trapp BD, Wyss-Coray T, Yong VW. Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol.2006,176(1-2):198-215
    [41]Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G. RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol.2009,118(1):151-66
    [42]Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother.2004,58(1):39-46
    [43]Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, Hof PR. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders:a comparative immunohistochemical analysis. Brain Res.1994,650(1): 20-31
    [44]Albers DS, Beal MF. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl.2000,59:133-54
    [45]Waldmeier PC. Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry.2003,27(2):303-21
    [46]Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients:a potential biomarker of disease burden. Neurology.2004,62(10):1758-65
    [47]Lovell MA, Markesbery WR. Amyloid beta peptide,4-hydroxynonenal and apoptosis. Curr Alzheimer Res.2006,3(4):359-64
    [48]Facheris M, Beretta S, Ferrarese C. Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders:tools for diagnosis and therapy. J Alzheimers Dis.2004,6(2):177-84
    [49]Zhang M, Shoeb M, Goswamy J, Liu P, Xiao TL, Hogan D, Campbell GA, Ansari NH. Overexpression of aldehyde dehydrogenase A1 reduces oxidation-induced toxicity in SH-SY5Y neuroblastoma cells. J Neurosci Res.2010,88(3):686-94
    [50]Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem.2004, 279(13):13256-64
    [51]Trojanowski JQ, Goedert M, Iwatsubo T, Lee VM. Fatal attractions:abnormal protein aggregation and neuron death in Parkinson's disease and Lewy body dementia. Cell Death Differ.1998,5(10):832-7
    [52]Markesbery WR, Carney JM. Oxidative alterations in Alzheimer's disease. Brain Pathol.1999,9(1):133-46
    [53]van Muiswinkel FL, Kuiperij HB. The Nrf2-ARE Signalling pathway:promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord.2005,4(3):267-81
    [54]Schuessel K, Frey C, Jourdan C, Keil U, Weber CC, Muller-Spahn F, Muller WE, Eckert A. Aging sensitizes toward ROS formation and lipid peroxidation in PS 1146 transgenic mice. Free Radic Biol Med.2006,40(5):850-62
    [55]Reed TT, Pierce WM, Markesbery WR, Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease:Insights into the role of lipid peroxidation in the progression of AD. Brain Res.2009,1274:66-76
    [56]Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr Neurosci.2002,5(5):291-309
    [57]Adibhatla RM, Hatcher JF. Altered lipid metabolism in brain injury and disorders. Subcell Biochem.2008,49:241-68
    [58]McKracken E, Graham DI, Nilsen M, Stewart J, Nicoll JA, Horsburgh K. 4-Hydroxynonenal immunoreactivity is increased in human hippocampus after global ischemia. Brain Pathol.2001,11(4):414-21
    [59]Halliwell B. Role of free radicals in the neurodegenerative diseases:therapeutic implications for antioxidant treatment. Drugs Aging.2001,18(9):685-716
    [60]Cork LC, Kitt CA, Struble RG, Griffin JW, Price DL. Animal models of degenerative neurological disease. Prog Clin Biol Res.1987,229:241-69
    [61]Sompol P, Ittarat W, Tangpong J, Chen Y, Doubinskaia I, Batinic-Haberle I, Abdul HM, Butterfield DA, St Clair DK. A neuronal model of Alzheimer's disease:an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience.2008,153(1):120-30
    [62]Tatton WG, Chalmers-Redman RM, Ju WY, Wadia J, Tatton NA. Apoptosis in neurodegenerative disorders:potential for therapy by modifying gene transcription. J Neural Transm Suppl.1997,49:245-68
    [63]Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Giuffrida Stella AM, Galli F, Butterfield DA. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress:a nutritional approach. Amino Acids.2003,25(3-4):437-44
    [64]Perluigi M, Joshi G, Sultana R, Calabrese V, De Marco C, Coccia R, Butterfield DA. In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid beta-peptide (1-42)-induced oxidative stress. Neuroscience.2006,138(4):1161-70
    [65]Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases:an overview. J Chromatogr B Analyt Technol Biomed Life Sci.2005,827(1):65-75
    [66]Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science.2002,296(5575):1991-5
    [67]Sas K, Robotka H, Toldi J, Vecsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci.2007,257(1-2):221-39
    [68]Keller JN, Hanni KB, Markesbery WR.4-hydroxynonenal increases neuronal susceptibility to oxidative stress. J Neurosci Res.1999,58(6):823-30
    [69]McGeer PL, McGeer EG. Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord.1998, 12 Suppl 2:S1-6
    [70]Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A.1996,93(7):2696-701
    [71]Cho ES, Jang YJ, Kang NJ, Hwang MK, Kim YT, Lee KW, Lee HJ. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC 12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med.2009,46(10):1319-27
    [72]Lovell MA, Ehmann WD, Mattson MP, Markesbery WR. Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer's disease. Neurobiol Aging.1997, 18(5):457-61
    [73]Everse J, Coates PW. Neurodegeneration and peroxidases. Neurobiol Aging.2009, 30(7):1011-25
    [74]Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM, Klein JB, Calabrese V, Butterfield DA. Redox proteomics analysis of oxidatively modified proteins in G93-SOD1 transgenic mice. Free Radic Biol Med.2005,39(4): 453-62
    [75]Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doom JA. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Neurotoxicology. 2007,28(1):76-82
    [76]Kosuge Y, Koen Y, Ishige K, Minami K, Urasawa H, Saito H, Ito Y. S-allyl-L-cysteine selectively protects cultured rat hippocampal neurons from amyloid beta-protein-and tunicamycin-induced neuronal death. Neuroscience.2003, 122(4):885-95
    [77]Johnson MD, Xiang H, London S, Kinoshita Y, Knudson M, Mayberg M, Korsmeyer SJ, Morrison RS. Evidence for involvement of Bax and p53, but not caspases, in radiation-induced cell death of cultured postnatal hippocampal neurons. J Neurosci Res.1998,54(6):721-33
    [78]Zhu MY, Wang WP, Bissette G. Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience.2006,141(4):2019-27
    [79]Semkova I, Schilling M, Henrich-Noack P, Rami A, Krieglstein J. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF. Brain Res.1996,717(1-2):44-54
    [80]Zundorf G, Kahlert S, Bunik VI, Reiser G. alpha-Ketoglutarate dehydrogenase contributes to production of reactive oxygen species in glutamate-stimulated hippocampal neurons in situ. Neuroscience.2009,158(2):610-6
    [81]Kim DM, Ryu SW, Choi C. Long-term treatment of farnesyltransferase inhibitor FTI-277 induces neurotoxicity of hippocampal neurons from rat embryo in a ROS-dependent manner. Biochem Biophys Res Commun.2010,403(1):91-6
    [82]Yin ST, Tang ML, Deng HM, Xing TR, Chen JT, Wang HL, Ruan DY. Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol.2009,379(6):551-64
    [83]Li C, Xing T, Tang M, Yong W, Yan D, Deng H, Wang H, Wang M, Chen J, Ruan D. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+-induced neuronal death in cultured hippocampal neurons. Toxicol Appl Pharmacol.2008,229(3):351-61.
    [84]Cho SO, Ban JY, Kim JY, Jeong HY, Lee IS, Song KS, Bae K, Seong YH. Aralia cordata protects against amyloid beta protein induced neurotoxicity in cultured neurons and has antidementia activities in mice. J Pharmacol Sci.2009,111(1): 22-32
    [85]Mark RJ, Keller JN, Kruman I, Mattson MP. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res.1997,756(1-2):205-14
    [86]Zhang Y, Bhavnani BR. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. BMC Neurosci.2005,6(1):13-14
    [87]Sheline CT, Wei L. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience.2006,140(1): 235-46
    [88]Cheng Y, Yu LC. Galanin protects amyloid-beta-induced neurotoxicity on primary cultured hippocampal neurons of rats. J Alzheimers Dis.2010,20(4):1143-57
    [89]Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi J, Jiang B. Catalpol protects primary cultured cortical neurons induced by Abeta(1-42) through a mitochondrial-dependent caspase pathway. Neurochem Int.2009,55(8):741-6
    [90]Ma H, Yu L, Byra EA, Hu N, Kitagawa K, Nakayama KI, Kawamoto T, Ren J. Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression:role of protein phosphatases. J Mol Cell Cardiol.2010,49(2):322-9
    [91]Castella P, Wagner JA, Caudy M. Regulation of hippocampal neuronal differentiation by the basic helix-loop-helix transcription factors HES-1 and MASH-1. J Neurosci Res.1999,56(3):229-40
    [92]Chen YJ, Huang XB, Li ZX, Yin LL, Chen WQ, Li L. Tenuigenin protects cultured hippocampal neurons against methylglyoxal-induced neurotoxicity. Eur J Pharmacol. 2010,645(1-3):1-8
    [93]Hernandez-Fonseca K, Massieu L. Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res.2005,82(2):196-205
    [94]Wang JY, Shum AY, Ho YJ, Wang JY. Oxidative neurotoxicity in rat cerebral cortex neurons:synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3. J Neurosci Res.2003,72(4): 508-19
    [95]King M, Nafar F, Clarke J, Mearow K. The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of beta-amyloid peptide. J Neurosci Res. 2009,87(14):3161-75
    [96]Ban JY, Cho SO, Choi SH, Ju HS, Kim JY, Bae K, Song KS, Seong YH. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J Pharmacol Sci.2008,106(1):68-77
    [97]Papa L, Gomes E, Rockwell P. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis.2007,12(8):1389-405
    [98]Shetty AK, Turner DA. Neurite outgrowth from progeny of epidermal growth factor-responsive hippocampal stem cells is significantly less robust than from fetal hippocampal cells following grafting onto organotypic hippocampal slice cultures: effect of brain-derived neurotrophic factor. J Neurobiol.1999,38(3):391-413
    [99]Doser TA, Turdi S, Thomas DP, Epstein PN, Li SY, Ren J. Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction. Circulation.2009,119(14): 1941-9
    [100]Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci.2001, 70(5):603-14
    [101]Doser TA, Turdi S, Thomas DP, Epstein PN, Li SY, Ren J. Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction. Circulation.2009, 119(14):1941-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700