用户名: 密码: 验证码:
中国核桃品种的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核桃是重要的经济树种,中国已经拥有了一批优良品种,但是对核桃品种遗传背景的认识尚待深入。本研究结合形态学标记、AFLP分子标记和SSR标记等技术,分析了核桃品种的遗传多样性,构建了供试核桃品种核心种质,可为进一步选育优良品种奠定基础。本研究所取得的主要结果如下:
     (1)利用形态学标记进行分析发现,中国核桃的形态学性状变异比较丰富,供试核桃品种间的欧氏距离最小为0.4946,最大达到了25.2002,平均为6.4246。同时也有一定数量的品种在形态学性状上难以区分;
     (2)以核桃一年生枝条的新鲜韧皮部为试材,采用改良的CTAB法获得了高质量的基因组DNA,进一步筛选出了17对多态性高、电泳谱带清晰、谱带分离状态好的荧光引物组合,应用这些引物组合对供试核桃和泡核桃品种进行扩增,取得了良好的扩增效果,建立的荧光AFLP指纹图谱清晰有效、信息量大,为该法在核桃品种分子遗传研究中的应用奠定了良好基础;
     (3)应用荧光AFLP体系,对中国136个核桃和泡核桃品种进行分析,构建了136个品种的荧光AFLP指纹图谱,检测到了75个品种的314条特有带和1个品种的1条特无带,通过这些特征带能够快速地将相应品种从全部136个供试品种中辨别出来,其余材料可通过差异带进行区分;
     (4)供试核桃品种的AFLP扩增得到了3100条可统计的条带,其中3008条呈多态性,平均多态性带百分率为96.97%。所有供试核桃品种的遗传相似系数范围为0.1397~0.8587,平均为0.5341;等位基因频率平均为0.8358、有效等位基因数平均为1.3091、基因多样度平均为0.2867、Shannon信息指数平均为0.1956,显示中国核桃品种的遗传多样性处于中等水平。基于DICE遗传相似系数构建了136个核桃品种的聚类图,从分子水平上分析了它们的遗传多样性和亲缘关系,揭示了我国核桃品种遗传背景的复杂性,在实际应用中不仅可根据指纹图谱和聚类结果进行亲本选配,还可为核桃品种的鉴定、已知品种的保护、品种间的比较提供依据;
     (5)采用AFLP分子标记与形态学标记偶合的方法构建了供试核桃品种的核心种质,抽样比例为18%,保留了95%以上的遗传多样性,能够较好地代表初始种质;
     (6)利用AFLP数据对核桃和泡核桃种间分类关系进行分析,发现核桃的遗传多样性主要存在于群体内,群体内的变异大于群体间的变异。FCA分析和UPGMA聚类结果与遗传变异分析结果相一致,研究结果支持核桃与泡核桃可能为同一个种;
     (7)采用SSR反应体系对33个核桃及泡核桃品种进行分析,共检测到了117个等位基因,多态位点百分率达到了100%,平均观察杂合度(Ho)与期望杂合度(He)分别为0.3977和0.6152,与AFLP的结果相结合进行分析发现:首先,研究结果支持核桃与泡核桃为同一个种下的不同生态地理型的结论;其次,早实类型与晚实类型的差异未能从基因组DNA酶切片段和SSR上体现出来;第三,大部分川核系列品种与泡核桃品种聚在一起,显示其亲缘关系较为密切;最后,‘北京861’、‘新光’等品种具有优异的经济性状且与其它品种间的遗传距离较远,有利于遗传变异的产生,善加利用将有可能成为优秀的育种材料;
     (8)细胞核核糖体IGS区的DNA序列为典型的双亲遗传,在奇异杂种基因组的细胞核核糖体DNAIGS8-ETS1区中检测到了双亲本的遗传成分(约87.50%~88.89%)和子代特有的新的遗传成分(约11.11%~12.50%)。奇异杂种的遗传形成涉及到了核桃J.regia(核桃组)以及如下6种黑核桃(黑核桃组),即:北加州(函兹)黑核桃Juglans hindssiL.、南加州黑核桃J. californica、亚里桑纳黑核桃J. major、美国东部黑核桃J. nigra、小果黑核桃J. microcarpa以及J. hirsuta。细胞核核糖体DNA IGS8-ETS1区的序列有助于理解杂种形成的遗传基础,进而为选育优良砧木品种、提高核桃优良品种的繁育质量提供理论参考。
Walnut is an important non-timber forest tree species. A great amount of excellent walnutcultivars were selected till now. However, there is still a far way to go for walnut geneticdiversity studies. In this research, genetic diversity analysis was carried out on the basis ofmorphology markers, AFLP, and SSR. An advanced AFLP system was established and appliedto analyse the relationships of differenent walnut cultivars. AFLP fingerprintings of136walnutcultivars were conducted. Genetic structures and distances between the tested cultivars weredetermined both at the morphological level and the molecular level. The research has animportant significance in the enrichment of the walnut variety database, the blindness decreaseof walnut breeding and the effective protection of known walnut cultivars. Meanwhile it canimprove the authorization efficiency and accuracy of new walnut cultivars and lay a goodfoundation for walnut germplasm conservation and molecular marker-assisted breeding. Themain results are as follows:
     1. Morphological variation was found to be giant among different walnut cultivars. Allassessed cultivars generated genetic distance averaged6.4246. Some cultivars were hard todistinguish according to their morphology.
     2. High quality genomic DNA was isolated from fresh phloem of one-year old branchusing an advanced CTAB protocol.17pairs of primer combinations were screened out in theuse of f-AFLP fingerprints conduction. Fingerprints conducted in the study were robust andrepeatable.
     3. The f-AFLP fingerprintings of136assayed walnut cultivars were constructed.75cultivars had specific bands and the others could be distinguished by their differential bands inAFLP fingerprinting through the dichotomous classification method. All tested walnut cultivarscould be distinguished according to their specific bands.
     4. Seventeen EcoR I/Mse I primer combinations selected with clear and good separationbands and high polymorphism were used for the f-AFLP analysis of136walnut cultivars.3008out of3100bands were polymorphic with an average polymorphism of96.97%. The DICEgenetic coefficients among walnut cultivars were ranged from0.5768to0.8587with anaverage of0.5341. The averaged gene frequency was0.8358, Ne averaged1.3091, H averaged0.2867, I averaged0.1956, which impacted a morderate genetic diversity level of walnutCultivars in China. Dendrogram of assayed walnut cultivars based on f-AFLP data wasconstructed by UPGMA method. The relationships and genetic diversity between them werecarried out at the molecular level. The results revealed the complicated genetic background ofthe walnut cultivars in China which could provide the theoretic basis for the parent selection,cultivar identification and property right protection, and the comparison between cultivars.
     5. Twenty out of136walnut cultivars were selected as core collection using a methodcombining f-AFLP and morphology. T-test showed there was no significant difference betweenthe core collection and initial germplasm on0.01level. The core collection could representinitial germplasm.
     6. Clonal cultivars selected from a broad geographic range in China including4types,Juglans regia, Juglans sigillata, Juglans sigillata×Juglans regia, and J. hopeiensis, wereapplied in f-AFLP analysis. Nine EcoR I/Mse I primer combinations produced clear-cut AFLPprofiles. The percentages of polymorphic bands (PPBs), observed number of alleles (Na),effective number of alleles (Ne), Nei's gene diversity (H), and Shannon’s information index (I)were calculated based on AFLP data. As for Juglans regia, Juglans sigillata, and their hybrids,PPBs averaged93.86%,93.94%, and60.46%; Na averaged1.5370,1.6389, and1.2593; Neaveraged1.2582,1.2543, and1.1646; H scored0.1560,0.1556, and0.0951; I averaged0.2402,0.2459, and0.1414, respectively. The overall levels of Na, Ne, H, and I were1.7407,1.2701,0.1667, and0.2640. The total gene diversity (Ht=0.1596) can be distributed into intra-(Hs=0.1356) and inter-(Dst=0.0240) species gene diversity. Proportion of the distributed geneticdiversity among populations (Gst) was0.1505represented that only15%of the total gene diversity was attributed to differences between species. The FCA and the UPGMA analysisbased on cultivar polymorphism AFLP data revealed a really close genetic distance betweenJuglans regia and Juglans sigillata.
     7. SSR markers were applied to analysis of genetic diversity of walnut cultivars. Totally,52alleles were detected generated a PPB of100%. The total value of observed heterozygosity(Ho) and expected heterozygosity (He) within species were0.3977and0.6152. A moderatelevel of genetic diversity was observed. Genetic stucture of assayed cultivars was analysedusing a popgene software.
     8. Paradox is a famous rootstock in the walnut industry for a number of important features,including fast growth and resistance to some diseases. Paradox commonly refers to blackwalnut-Persian walnut hybrid. Nuclear rDNA IGS region, typically bi-parentally inherited,with rapid evolution and broad existence in all eukaryotic genomes, was found to be ofimportance in revealing genetic background of the walnut hybrids. Both parental geneticcomponents (around87.50%to88.89%) and novel genetic components (around11.11%to12.50%) were detected in the nrDNA IGS8-ETS1region of the Paradox genome. Theinheritance was commonly one-parent-dominated in each hybridization event. Our resultsindicated that genetic formation of Paradox hybrids involved in J. regia (sect. Juglans) and thefollowing6black walnut species (sect. Rhysocaryon), i.e., J. hindsii, J. californica, J. major, J.nigra, J. microcarpa and J. hirsuta. The nrDNA IGS8-ETS1region is helpful in understandingthe genetic basis of hybrids.
引文
Akagi, H., Y. Yokozeki, A. Inagaki, et al. Microsatellite DNA markers for rice chromosomes. Theor ApplGenet,1996,93(7):1071–1077
    Akca, Y. and S. Mehmet. The relation ship between dichgamy and Yield-Nut characteristics in Juglans regiaL.Ⅲ International Walnut Congress,2001
    Althoff, D.M., M.A. Gitzendanner, and K.A. Segraves. The utility of amplified fragment lengthpolymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol,2007,56(3):477–484
    Aradhya, M.K., D. Potter, F.Y. Gao, et al. Molecular phylogeny of Juglans (Juglandaceae): a biogeographicperspective. Tree Genet Genomes,2007,3(4):363–378
    Aranzana, M.J., J. Carbo, and P. Arus. Using amplified fragment length poly morphisms (AFLPs) to identifypeach cultivars. J Amer Soc Hort Sci,2003,128(5):672–677
    Ashkenazi, V., E. Chani, U. Lavi, et al. Development of microsatellite markers in potato and their use inphylogenetic and fingerprinting analyses. Genome,2001,44(1):50–62
    Baranek, M., J. Raddova and M. Pidra. Comparative analysis of genetic diversity in Prunus L. as revealed byRAPD and SSR markers. Scientia Hort.,2006,108(3):253–259
    Bayazit, S., K. Kazan, S. Gulbitti, et al. AFLP analysis of genetic diversity in low chill requiring walnut(Juglans regia L.) genotypes from Hatay, Turkey. Scientia Hort.,2007,111(4):394–398
    Beaudry, R.M., J.A. Payne, S.J. Kays. Variation in the respiration of harvested pecans due to genotype andkernel moisture level.HortScience,1985,20(4):752–754
    Beede, R.H. and J.K. Hasey. History of the walnut in California, pp.8–15in Walnut Production Manual,edited by DE Ramos. Division of Agriculture and Natural Resources, Univ. California, Oakland,1998
    Beer, R., F. Kaiser, K. Schmidt, et al. Vegetation history of the walnut forests in Kyrgyzstan(CentralAsia):natural or anthropogenic origin? Quaternary Sci. Rev.,2008,27(5):621–632
    Belkhir, K., V. Castric, and F. Bonhomme. GENETIX4.05, logiciel sous WindowsTM pour la génétique despopulations. www.univ-montp2.fr/genetix/identix_ms.pdf.1Mar.2011
    Bell, C.J. and J.R. Ecker. Assignment of30microsatellite loci to the linkage map of Arabidopsis. Genomics,1994,19(1):137–144
    Bertin, P., D. Gregoire, S. Massart, et al. Genetic diversity among European cultivated spelt revealed bymicrosatellite. Theor Appl Genet,2001,102(1):148–156
    Botstein, D., R.L. White, M. Sckolnick, et al. Construction of a genetic linkage map in m an using restrictionfragm ent length polymorphism. Am. J. Hum. Genetic,1980,32(3):314–331
    Breton, C., C. Pinatel, and F. Médail. Comparison between classical and Bayesian methods to investigate thehistory of olive cultivars using SSR-polymorphisms. Plant Sci.2008,175(4):524–532
    Brini, W., M. Mars, and J.I. Hormaza. Genetic diversity in local Tunisian pears (Pyrus communis L.) studiedwith SSR markers. Scientia Hort.,2008,115(4):337–341
    Brochmann, C. and P.S. Soltis. Recurrent formation and polyphly of Nordic polyploids in Draba(Brassicaceae). Amer.J.Bot.1992,79(6):673–688
    Broeck, V., V. Storme, J.E. Cottrell, et al. Gene flow between cultivated poplars and native black poplar(Populus nigra L.): a case study along the river Meuse on the Dutch-Belgian border. Forest Ecol. andMgt.,2004,197(1–3):307–310
    Broun, P. and S.D. Tanksley. Characterization and genetic mapping of simple repeat sequence in the tomatogenome. Mol Gen Genet,1996,250(1):39–49
    Burbank, L.His Methods and Discoveries and their Practical Application. Vol. II. Luther Burbank Press, NewYork,1914
    Buteler, M.I., R.L. Jarret, and D.R. Labonte. Sequence characterization of microsatellites in diploid andpolyploid Ipomoea. Theor Appl Genet,1999,99(1-2):123–132
    Cantini, C., A.F. Iezzoni, W.F. Lamboy, et al. DNA fingerprinting of tetraploid cherry germplasm usingsimple sequence repeats. J. Amer. Soc. Hort. Sci,2001,126(2):205–209
    Chao, C.T., P.S. Devanand, and J.J. Chen. AFLP analysis of genetic relationships among Calathea speciesand cultivars. Plant Sci.,2005,168(6):1459–1469
    Chase, M., C. Moller, R. kesseli, et al. Distant gene flow in tropical trees. Nature(London),1996,383(6599):398–399
    Chen, K., Y.H. Peng, Y.H. Wang, et al. Genetic relationships among poplar species in section Tacamahaca(Populus L.) from western Sichuan, China. Plant Sci.,2007,172(2):196–203
    Cheng F.S., S.K. Broun, N.F. Weeden. A DNA extraction protocol from various tissues in woody species.Hortscience,1997,32(5):921–922
    Cheng, H.H. and I. Brittenden. Microsatellite markers for genetic mapping in the chicken. Poult Sic,1994,73(4):539–546
    Cipriani, G., M.T. Marrazzo, R. Marconi, et al. Microsatellite markers isolated in olive (Oleaeuropaea L.)are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor ApplGenet,2002,104(2-3):223–228
    Collevatti, R.G., D. Grattapaglia, and J.D. Hay. Evidences for multiple maternal lineages of Caryocarbrasiliense populations in the Brazilian Cerrado based on the analysis of chloroplast DNA sequencesand microsatellite haplotype variation. Mol. Ecol.,2003,12(1):105–115
    Collins, G.G., S.R.H. Symon.Extraction of nuclear DNA from grape vine leaves by a modified procedure.Plant Mol Rptr,1992,10:233–235
    Condit, R. and S.P. Hubbell. Abundance and DNA sequence of two-base repeat region in tropical treegenomes. Genome,1991,34(1):66–71
    Dangl, G.S., Woeste K., M.K. Aradhya, et al. Characterization of14microsatellite markers for geneticanalysis and cultivar identification of walnut. J. Amer. Soc. Hort. Sci,2005,130(3):348–354
    Diaz, R., E. Alonso, and J. Fernadez-Lopez. Genetic and Geographic variation in seed traits of CommonWalnut (Juglans regia L.) among twenty Population from the West of Spain. Acta Hort.(ISHS),2005,705:137–141
    Dice, L.R. Measures of the amount of ecologic association between species. Ecology,1945,26(3):297–302
    Dode, L.A. Contribution à létude du genre Juglans. Bull. de la Societé Dendrologique de France,1909,13(2):140–166
    Doyle, J.J. and J.L. Doyle. Isolation of plant DNA from fresh tissue. Focus,1990,12:13–15
    Fahima, T., M.S. Roder, K. Wendehake, and V.M. Kirzhner, et al. Microsatellite polymorphism in naturalpopulations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet,2002,104(1):17–29
    Fjellstrom, R.G., and D.E. Parfitt. Phylogenetic analysis and evolution of the genus Juglans (Juglandaceae)as determined from nuclear genome RFLPs. Plant Syst. Evol.1995,197(1-4):19–32
    Fjellstrom, R.G., and D.E. Parfitt. Walnut (Juglans spp.) genetic diversity determined by restriction fragmentlength polymorphisms. Genome,1994,37(4):690–700
    Food and Agriculture Organization of the United Nations (FAO).2011. Agricultural production, cropsprimary, Geneva.13Nov.2006.
    Fornari, B., M.E. Malvolti, and D. Taurchini. Isozyme and organellar DNA analysis of genetic diversity innatural/naturalised European and Asiatic walnut (Juglans regia L.) populations. Acta Hort,2001,544:167–178
    Foroni, I., R. Rao, K. Woeste, et al. Characterisation of Juglans regia L. with SSR markers and evaluation ofgenetic relationships among cultivars and the 'Sorrento' landrace. J. Hort. Sci&Biotechnol,2005,80(1):49–53
    Gil-Vega, K., C. Díaz, and A. Nava-Cedillo. AFLP analysis of Agave tequilana varieties. Plant Sci.2006,170(4):904–909
    Giongo, A., A. Ambrosini, L.K. Vargas, et al. Evaluation of genetic diversity of bradyrhizobia strainsnodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Appl. Soil Ecol.,2008,38(3):261–269
    Gonai, T., Manabe T., Inoue E., et al. Overcoming hybrid lethality in a cross between Japanese pear andapple using gamma irradiation and confirmation of hybrid status using flow cytometry and SSRmarkers. Scientia Hort.,2006,109(1):43–47
    Guilford, P., S. Prakash, J. M. Zhu, et al. Microsatellite in Malus×domestica: abundance, polymorphism andcultivar identification. Theor Appl Genet,1997,94(5):249–254
    Gunn, B.F., M.K. Aradhya, J.M. Salick, et al. Genetic variation in walnuts (Juglans regia and J. sigillata;Juglandaceae): Species distinctions, human impacts, and the conservation of agrobiodiversity inYunnan, China. Amer. J. of Bot.,2010,97(4):660–671
    Gunter, L.E., G. Kochert, and D.E. Giannasi Phylogenetic relationships of the Juglandaceae. Plant Syst. Evol.1994,192(1-2):11–29
    Gupta, M., Y.S. Chyi, J. Romero–Severson, et al. Amplification of DNA markers from evolutionarilydwerse genomes using single primers of simple-sequence repeats. Theor Appl Genet,1994,89(7-8):998–1006
    Gustavo, C.A., J.B. Brant, and M.G. Peter. DNA amplification fingerprinting: A strategy for genomeanalysis. Plant Mol. Biol. Rptr.,1991,9(4):294–307.
    Hamada, H. and T. Kakunaga. Potential Z-DNA forming sequences are highly dispersed in the humangenome. Nature,1982,298:396–398
    Heidi, M.M., and C.C. Andrew. Almost forgotten or latest practice? AFLP applications, analyses andadvances. Trend. Plant Sci.2007,12(3):106–117
    Hokanson, C.F., G.P. Gill, L.G. Fraser, et al. Microsatellite(SSR) markers reveal genetic identities, geneticdiversity and relationships in a Malus×domestica borkh. Core subset collection. Theor Appl Genet,1998,97(5-6):671–683
    Howard, W.L. Luther Burbank’s plant contributions. University of California Agricultural ExperimentStation Bulletin, University of California, Berkeley.1945,691
    Huang, J. and M. Sun. A modified AFLP with fluorescence-labelled primers and automated DNA sequencerdetection for efficient fingerprinting analysis in plants. Biotechnology,1999,13(4):277–278
    Huang, W.G., G. Cipriani, M. Morgante, et al. Microsatellite DNA in Actinidia chinensis: isolation,characterization, and homology in related species. Theor Appl Genet,1998,97(8):1269–1278
    Joolka, N.K. and S.K. Sharma. Selection of Superior Persian Walnut (Juglans regia L.) Strains from apopulation of seeding orgin. Acta Hort.(ISHS),2005,696:75–78
    Kafkas, S., H. Ozkan, and M. Sutyemez. DNA polymorphism and assessment of genetic relationships inwalnut genotypes based on AFLP and SAMPL Markers. J. Amer. Soc. Hort. Sci,2005,130(4):585–590
    Kashaninejad, M. A. Mortazavi, A. Safekordi, et al. Some physical properties of Pistachio (Pistacia vera L.)nut and its kernel. J. of Food Eng.2006,72(1):30–38
    Khattak, M.S., A. Suleman, W. Fazli, et al. Genetic Bio-diversity in the Segregating Population ofwalnut(Juglans regia L.) at Kurram Agency, Parachinar. Pakistan J. of Biol. Sci.,2000,3(6):965–966
    Kijas, J.M.H., M.R. Thomas, J.C.S. Fowler, et al. Integration of trinucleotide microsatellites into a linkagemap of Citrus. Theor Appl Genet,1997,94(5):701–706
    Kimura, M., and J.F. Crow. The number of alleles that can be maintained in a finite population. Genetics1964,49(4):725–738
    Koehn, R.K. and T.J. Hilbish. The adaptive importance of genetic variation. AM. Sci,1987,75(2):134–141
    Lamboy, W.F. and C.G. Alpha. Using simple sequence repeats (SSRs) for DNA fingerprinting germplasmaccessions of grape (vitis L.) species. J. Amer. Soc. Hort. Sci,1998,123(2):182–188
    Larkin, M.A., G. Blackshields, N.P. Brown, et al. Clustal W and Clustal X version2.0. Bioinformatics2007,28(13):2947–2948
    Lauri, P.E., F. Delort, E.Germain, et al. Factors affecting Nut weight in Walnut(Juglans regia L.)-an analysisof Genotypes with Contrasing Branching Patterns Ⅲ International Walnut Congress,2001
    Lewontin, R.C. The apportionment of human diversity. Evol. Biol.,1972,6:381–398
    Li, G. and C.F. Quiros. Sequence-related amplified polymorphism (SRAP), a new marker system based on asimple PCR reaction: its application to mapping and gene tagging in Brossica. Theor. Appl. Genet.,2001,103:455–461
    Li, G., M. Gao, B. Yang, et al. Gene for gene alignment between the Brassica and Arabidopsis genomes bydirect transcriptome mapping. Theor. Appl. Genet.,2003,107(1):168–180
    Librado, P. and J. Rozas DnaSP v5: A software for comprehensive analysis of DNA polymorphism data.Bioinformatics,2009,25(11):1451–1452
    Lombard, V., C.P. Baril, P. Dubreuil, et al. Genetic relationships and fingerprinting of rapeseed cultivars byAFLP. Crop Sci.2000,40(5):1417–1425
    Love, J.M., A.M. Knight, M.A. Mcaleer, et al. Towards construction of a high resolution map of the mousegenome using PCR-analyzed microsatellites. Nucl Acids Res,1990,18(14):4123–4130
    Lu, A.M., D.E. Stone, and L.J. Grauke. Juglandaceae. In Flora of China, edited by Wu ZY, Raven PH. Sci.Press, Beijing and Mo. Bot. Gard. Press, St. Louis, MO,1999,277–285
    Malvolti, M.E., S. Fineschi, and M. Pigliucci. Morphological integration and genetic variability inJuglans regia L..J. Hered. Washington,1996,185(5):389–392
    Manning, W.E. The classification within the Juglandaceae. Ann. Mo. Bot. Gard.1978,65(4):1058–1087
    Manos, P.S. and D.E. Stone. Evolution, phylogeny and systematics of the Juglandaceae. Ann. Mo. Bot. Gard.2001;88:231–269
    Martinez, L.E., P.F. Cavagnaro, R.W Masuelli., et al. SSR-based assessment of genetic diversity in SouthAmerican Vitis vinifera varieties. Plant Sci.,2006,170(6):1036–1044
    McDermott, J.M. and B.A. McDonald. Gene Flow in Plant Pathosystems. Ann. Rev. Phytopathol.,1993,31:353–373
    McGranahan, G.H. and P.B. Catlin. Juglans rootstocks. In: Rootstocks for Fruit Crops. Wiley, New York,1987,411–449
    McGranahan, G.H., J. Hansen, D.V. Shaw. Inter-and intra-specific variation in California black walnuts. J.Am. Soc. Hort. Sci.1988;113(5):760–765
    Mian, M.A.R., A.A. Hopkins, and J.C. Zwonitzer. Determination of genetic diversity in tall fescue withAFLP markers. Crop Sci,2002,42(3):944–950
    Morgante, M. and A.M. Olivieri. PCR-amplified microsatellites as markers in plant genetics. Plant J,1993,3(1):175–182
    Mosseler, A., Egger K.N., and G.A. Hughes. Low levels of genetic diversity in red pine confirmed byrandom amplified polymorphic DNA markers. Can J For Res.1992,22(9):1332–1337
    Mueller, U.G. and L.L. Wolfenbarger. AFLP genotyping and fingerprinting. Trends Ecol Evol,1999,14(9):389–394
    Necla, L. Biochemical and physical properties of some walnut genotypes (Juglans regia L.). Nahrung/Food,2003,47(1):28–32
    Nei, M. Analysis of gene diversity in subdivided populations. PNAS,1973,70(12):3321–3323
    Ning, S.P., L.B. Xu, Y. Lu, et al. Genome composition and genetic diversity of Musa germplasm from Chinarevealed by PCR-RFLP and SSR markers. Scientia Hort.,2007,114(4):281–288
    Orel, G. Characterization of11Juglandaceae genotypes based on morphology cpDNA and RAPD.Hortscience,2003,38(2):1178–1183
    Pan, Z., S. Kawabata, N. Sugiyama, et al. Genetic diversity of cultivated resources of pear in north China.Acta Hort,2002,587:187–194
    Plaschke, J.M., W. Ganal, and M.S. Roder. Detection of genetic diversity in closely related bread wheatusing microsatellite markers. Theor Appl Genet,1995,91(6-7):1001–1007
    Poczai, P. and J. Hyv nen. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects.Mol. Biol. Rep.2010,37(4):1897–1912
    Portis, E., I. Nagy, Z. Sasvari, et al. The design of Capsicum spp. SSR assays via analysis of in silico DNAsequence, and their potential utility for genetic mapping. Plant Sci.,2007,172(3):640–648
    Potter, D., F. Gao, G. Aiello, et al. Intersimple sequence repeats markers for fingerprinting and determininggenetic relationships of walnut (Juglans regia) cultivars. J. Amer. Soc. Hort. Sci,2002a,137(3):75–81
    Potter, D., R.Y. Gao, S. Baggett, et al. Defining the sources of Paradox: DNA sequence markers for NorthAmerican walnut (Juglans L.) species and hybrids. Scientia Hort,2002b,94(1-2):157–170
    Rauter, W., W. Workerstorfer. Chloroform content in walnuts after bleaching with hypochlorite. Ernahrung,1993,17(4):228–229
    Rogers, S.O. and A.J. Bendich. Ribosomal RNA genes in plants: variability in copy number and in theintergenic spacer. Plant Mol. Biol.,1987,9(5):509–520
    Rohlf, F.J. NTSYS-pc, Numerical taxonomy and multivariate analysis system. Version2.11F. ExeterPublications, Setauket, New York,1998
    Rongwen, J., M.S. Akkaya, A.A. Bhagwat, et al. The use of microsatellite DNA markers for soybeangenotype identification. Theor. Appl. Genet.,1995,90(1):43–48
    Sanchez-Perez, R., D. Ruiz, F. Dicenta, et al. Application of simple sequence repeat (SSR) markers inapricot breeding: molecular characterization, protection, and genetic relationships. Scientia Hort.,2005,103(3):305–315
    Sanchez-Perez, R., J. Ballester, F. Dicenta, et al. Comparison of SSR polymorphisms using automatedcapillary sequencers, and polyacrylamide and agarose gel electrophoresis: Implications for theassessment of genetic diversity and relatedness in almond. Scientia Hort.,2006,108(3):310–316
    Sharma, S.D. Correlation Between Nut and kernel Characters of Persian Walnut Seeding trees of GarsaValley in Kullu district of Himachal Pradesh. ⅢInternational WAInut Congress,2001
    Sharma, S.D., O.C. Sharma, and D.R. Gautam. Studies on the variability in Nut characters of Seeding treesgrowing in different location of Himachal Pradesh, India. Aeta Hort.(ISHS)2005,705:167–171
    Sharma, S.D..Genetic divergence in seedling trees of Persian walnut(Juglans regia L.)for various metric nutand kernel characters in Himachal Pradesh. Scientia Hort.,2001,88(2):163–171
    Sharopova, N., M.D. Mcmullen, L. Schultz, S. Schroeder, et al. Development and mapping of SSR markersfor maize. Plant Mol Biol,2002,48(5-6):463–481
    Shiran, B., N. Amirbakhtiar, S. Kiani, et al. Molecular characterization and genetic relationship amongalmond cultivars assessed by RAPD and SSR markers. Scientia Hort.,2007,111(3):280–292
    Smith, J.S.C., E.C.L. Chin, H. Shu, et al. An evaluation of the utility of SSR loci as molecular markers inmaize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor. Appl. Genet.,1997,95(1-2):163–173
    Smulders, M.J.M., G. Bredemeijer, W. Rus-kortekaas, et al. Use of short microsatellites from databasesequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions ofother Lycopersicon species. Theor. Appl. Genet.,1997,97(2):264–272
    Solar, A., M. Hudina., and F. Stampar Relationship between tree architecture, Phenological data andGenerative development in Walnut(Juglans regia L.)Ⅲ International WalnutCongress,2001
    Stanford, A.M., R. Harden, and C.R. Parks. Phylogeny and biogeography of Juglans (Juglandaceae) basedon mATK and ITS sequence data. Amer. J. Bot.,2000,87(6):872–882
    Stone, D.E. Biology and evolution of temperate and tropical Juglandaceae. In: Evolution, systematics andfossil history of the Hamamelidae. Vol.2,‘Higher’ Hamamelidae. Systematics Association SpecialVolume40B, edited by Crane PR and Blackmore S, Oxford: Clarendon Press,1989,117–145
    Struss, D. and J. Plieske. The use of microsatellite markers for detection of genetic diversity in barelypopulations. Theor. Appl. Genet.,1998,97(1-2):308–315
    Struss, D., R. Ahmad, and S.M. Southwick. Analysis of sweet cherry (Prunus avium L.) cultivars using SSRand AFLP markers. J. Amer. Soc. Hort. Sci.,2003,128(6):904–909
    Sutyemez, M. Comparison of AFLP Polymorphism in Progeny Derived from Dichogamous andHomogamous Walnut Genotypes. Pakistan J. Biol. Sci.,2006,9(12):2303–2307
    Swofford, D.L. PAUP*: Phylogenetic analysis using parsimony (*and related methods). Version4.0b10.Sunderland, MA: Sinauer Assoc.,2002
    Tautz, D. and M. Ranz. Simple sequences are ubiquitous repetitive components of eukarotic genomes. NuclAcids Res,1984,12(10):4127–4138
    Upadhyay, A., D.S. Mamtha, S. Reddy, et al. AFLP and SSR marker analysis of grape rootstocks in Indiangrape germplasm. Scientia Hort.,2007,112(2):176–183
    Vázquez, G., E. Fontenla, and J. Santos.Antioxidant activity and phenolic content of chestnut (Castaneasativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crops Prod.,2008,28(3):279–285
    Victory, E.R., J.C. Glaubitz, O.E. Rhodes, et al. Genetic homogeneity in Juglans nigra (Juglandaceae) atnuclear microsatellites. Amer. J. Bot,2006,93(1):118–126
    Vos, P., R Hogers., M. Bleeker, M. Reijans, et al. AFLP: a new technique for DNA fingerprinting. Nucl.Acids Res.,1995,23(21):4407–4414
    Vyas, D., S.K. Sharma, D.R. Sharma. Genetic structure of walnut genotype using leaf isozymes as variabilitymeasure. Scientia Hort.,2003,97(2):141–152
    Wang, H., D. Pei, R.S. Gu, et al. Genetic Diversity and Structure of Walnut Populations in Central andSouthwestern China. J. Amer. Soc. Hort. Sci.,2008,133(2):197–203
    Wang, Z., J.L. Weber, G. Zhong, and S. D. Tanksley. Survey of plant short tandem DNA repeats. Theor. Appl.Genet.,1994,88(1):1–6
    Weising, K., R.W.M. Fung, D.J. Keeling, et al. Characterization of microsatellites from Actinidia chinensis.Mol. Breed.,1996,2(2):117–131
    Whittemore, A.T. and D.E. Stone. Juglans. In: Flora of North America: North of Mexico. Vol.3.Manoliophyta, Magnoliidae and Hamamelidae, Flora of North America Editorial Committee. New York:Oxford University Press,1997,425–428
    Williams, J.G.K, A.R. Kubelik, K.J. Livak, et al. DNA polymorphisms amplified by arbitrary primer areuseful as genetic markers. Nucl. Acids Res.,1990,18(22):653l–6535
    Woeste, K., G.H. McGranahan, and R. Bematzky. Randomly amplified polymorphic DNA loci from a walnutbackcross [(Juglans hindsii×J. regia)×J. regia]. J. Amer. Soc. Hort. Sci.,1996,121(3):358–361
    Woeste, K., R. Burns, O.E. Rhodes, et al. Thirty polymorphic nuclear microsatellite loci from black walnut. J.Hered.,2002,93(1):58–60
    Yanagisawa, T., M. Hayashi, A. Hirai, et al. DNA fingerprinting in soybean (Glycine max(L.)morill) witholigo nucleotide probes for simple repetitive sequences. Euphytica,1994,80(1-2):129–136
    Yang, Z.X. and S.Q. Xi. A study on isozymes of peroxidase of10species in Juglans L. Actaphycotaxonomica Sinica,1989,27(1):53–57
    Yeh, F., R.C. Yang, and T. Boyle. POPGENE1.32: A microsoft windows based freeware for populationgenetic analysis. Edmonton: Molecular Biology and Biotechnology Centre, University of Alberta,2000
    Yin, X., P. Stam, C.J. Dourleijn, and M.J. Kropff. AFLP mapping of quantitative trait loci foryield-determining physiological characters in spring barley. Theor. Appl. Genet.,1999,99(1-2):244–253
    Yu, Y.L., S.Q. Zhang, and F. Gao. Comparation of the polyphenol yield and antioxidant activity of peanutshell extract made by different solvent extraction methods. J. Biotechnol.,2008,136(1):S508
    Yuan, X.P., X.H Wei., L. Hua, et al. A Comparative Study of SSR Diversity in Chinese Major Rice VarietiesPlanted in1950s and in the Recent Ten Years (1995-2004). Rice Sci.,2007,14(2):78–84
    Zeneli, G., H. Kola, and M. Dida. Phenotypic variation in native walnut populations of Northern Albania.Scientia Hort.,2005,105(1):91–100
    Zhang, C.Y., X.S. Chen, T.M. He, et al. Genetic Structure of Malus sieversii Population from Xinjiang,China, Revealed by SSR Markers. J. Genet. Genomics,2007,34(10):947–955
    艾呈祥,张力思,魏海蓉,等.部分板栗品种遗传多样性的AFLP分析.园艺学报,2008,35(5):747~752
    鲍露,徐昌杰,江文彬,等.葡萄AFLP技术体系建立及其在超藤与藤稔葡萄品种鉴别中的应用.果树学报,2005,22(4):422~425
    蔡青,范源洪,K. Aitken,等.利用AFLP进行“甘蔗属复合体”系统演化和亲缘关系研究.作物学报,2005,38(5):551~559
    陈华,易干军,徐小彪.应用AFLP标记对江西省猕猴桃种质资源的鉴别及其分类意义.中国生物化学与分子生物学报,2007,23(2):122~129
    陈静,王文江.适于AFLP分析的核桃幼叶DNA提取方法.河北农业大学学报,2004,27(6):44~47
    陈良华,胡庭兴,张帆,等.用AFLP技术分析四川核桃资源的遗传多样性.植物生态学报,2008,32(6):1362~1372
    陈少瑜,杨恩,张雨,等.云南核桃品种遗传多样性的RAPD和ISSR标记研究.河北林果研究,2007,22(1):56~61
    陈霞.不同生态区域环境对大豆蛋白质、脂肪含量的影响.大豆科学,2001,20(4):280~284
    成锁占,杨文衡.根据同工酶对核桃属十个种分类学的研究.园艺学报,1987,14(2):90~96
    程丽莉,苏淑钗,秦岭,等.燕山板栗叶片基因组AFLP反应体系建立.北京林业大学学报,2006,28(6):35~39
    程振家,王怀松,张志斌,等.甜瓜遗传多样性的AFLP分析.西北植物学报,2007,31(2):244~248
    程舟,卢宝荣,王琼,等.红麻种质资源遗传多样性和分子鉴定技术研究-1红麻AFLP-银染技术和种质资源指纹图谱的构建.中国麻业,2003,25(2):53~58
    戴思兰,陈俊愉,李文彬.菊花起源的RAPD分析.植物学报,1998,40(11):1053~1059
    邓务国.物种遗传多态性研究方法的发展.生物学通报,1994,29(1):7~9
    邓煜,谢碧霞.核桃科树种的起源与分布.经济林研究,2006,24(2):35~37
    房经贵,乔玉山,章镇.AFLP在芒果品种鉴定中的应用.广西植物,2001,21(3):281~283
    高绍棠,杨吉安.洛南和扶风核桃优良品种性状与品质分析.西北林学院学报,1989,4(2):66~71
    郝艳宾,肖永强,齐建勋,等.微卫星DNA在核桃属近缘种同源性分析上的应用.北京农学院学报,2006,21(3):1~4
    何方,胡芳名.经济林栽培学(第2版).北京:中国林业出版社,2004
    何玲玲,王新,石中亮,等.醇提板栗壳色素对羟自由基和超氧阴离子自由基的清除作用.安徽农业科学,2006,34(10):2054~2058
    胡宝忠,胡国宣.植物学.北京:中国农业出版社,2002
    黄坚钦,章滨森,王正加,等.中国山核桃属植物种间亲缘关系RAPD分析.西南林学院学报,2003,23(4):1~3,11
    黄守正,胡容峰.花生壳中总黄酮和木犀草素提取工艺研究.安徽化工,2008,34(2):28~30
    黄文坤,郭建英,万方浩,等.AFLP标记在植物遗传多样性研究中的应用.中国农学通报,2006,22(8):50~54
    贾永红,路彦霞.DNA遗传标记及其应用.生物学教学,2006,31(5):8~10
    金黎平,刘杰,H. DeJong,等.二倍体马铃薯分子连锁图谱的构建.园艺学报,2007,34(2):397~402.
    匡可任,路安民.中国植物志.北京:科学出版社,1979
    雷娜,李景富,康力功,等.番茄黄萎病抗病基因Ve的AFLP和SSR分子标记.植物病理学报,2011,41(1):80~84
    雷新涛,王家保,徐雪荣,等.杧果主要品种遗传多态性的AFLP标记研究.园艺学报,2006,33(4):725~730
    李海英,梁志伟,陈冲,等.利用分子标记早期筛选光皮桦核心种质.浙江林业科技,2011,31(3):1~4
    李仕贵,周开达,朱立煌.水稻温敏显性核不育基因的遗传分析和分子标记定位.科学通报,1999,44(9):955~958
    李云雁,罗渊,宋光森,等.乙酸乙酯法分离板栗壳木质素的研究.林业科技,2007,32(4):41~44
    李自超,张洪亮,曹永生,等.中国地方稻种资源初级核心种质取样策略研究.作物学报,2003,29(1):20~24
    梁宁,刁亚瑞,刘公社,等.中国东北羊草自然种群的扩增片段长度多态性研究(英文).草业学报,2007,16(2):124~134
    刘红力,张永丽,高连兴,等.花生脱壳力学特性试验.沈阳农业大学学报,2006,37(6):900~902
    刘理根,陈俊,夏全球.板栗壳活性炭的制备方法.湖北农业科学,2008,47(3):337~339
    刘萍,王子成,尚富德.河南部分牡丹品种遗传多样性的AFLP分析.园艺学报,2006,33(6):1369~1372
    刘庆忠,张力斯,艾呈祥,等.核桃种质资源描述规范和数据标准.北京:中国农业出版社,2007
    刘志勇,王晓玲,倪中福,等.小麦抗叶锈基因Lr9、Lr24的分子标记辅助选择研究.农业生物技术学报,2000,8(1):13~16
    鹿金颖,毛永民,申莲英,等.用AFLP分子标记鉴定冬枣自然授粉实生后代杂种的研究.园艺学报,2005,32(4):680~683
    路安民.论胡桃科植物的地理分布.植物分类学报,1982,20(3):257~274
    马明,杨克强,刘晓菊,等.核桃(Juglans regia)SRAP标记反应体系建立的研究.山东农业大学学报(自然科学版),2007,38(2):189~192
    毛向红,王福宗.河北省核桃栽培现状和发展对策.河北林果研究,1997,12(4):385~189
    梅秀英,姜在民,高绍棠,等.核桃和铁核桃品种(优系)叶形态构造与其抗旱性的研究.西北林学院学报,1998,13(1):16~20
    明军,顾万春.紫丁香天然群体遗传多样性的AFLP分析.园艺学报,2006,33(6):1269~1274
    穆英林,郗荣庭.核桃属部分的小孢子发生与核型研究.武汉植物学研究,1990,8(4):301~309
    宁德鲁,马庆国,张雨,等.云南省核桃品种遗传多样性的FISH-AFLP分析.林业科学研究,2011,24(2):189~193
    庞晓明,邓秀新,胡春根.枳属36份特异种质的AFLP指纹图谱构建与分析.园艺学报,2003,30(4):394~397
    裴颜龙.矮牡丹与紫斑牡丹RADP分析初报.植物分类学报,1995,33(4):350~356
    茹广欣,袁金玲,张朵,等.运用AFLP技术分析筇竹种群遗传多样性.林业科学研究,2010,23(6):850~855
    阮成江,何祯祥,周长芳.植物分子生态学.北京:化工出版社,2005,15~27
    石胜友,梁国鲁,成明昊,等.变叶海棠起源的AFLP分析.园艺学报,2005,32(5):802~806
    石亚中,伍亚华.花生壳综合利用研究现状.花生学报,2008,37(2):41~44
    宋顺华,郑晓鹰.甘蓝品种的AFLP指纹鉴别图谱分析.分子植物育种,2006,4(3):51~54
    宋晓飞,申书兴,张晓伟,等.大白菜叶片刺毛性状AFLP标记的筛选.中国蔬菜,2006,(12):6~8
    田义轲.苹果柱型基因一个SCAR标记的可靠性分析.莱阳农学院学报,2001,18(1):28~31
    汪小全,刘正宇.银杉遗传多样性的RAPD分析.中国科学:C辑,1996,26(5):436~441
    王红霞.核桃遗传多样性分析及核心种质的构建.河北农业大学,2006
    王滑,阎亚波,张俊佩,等.应用ITS序列及SSR标记分析核桃与铁核桃亲缘关系.南京林业大学学报,2009,33(6):35~38
    王滑.西藏核桃种质资源遗传多样性研究.中国林业科学研究院,2010
    王涛,祝军,李光晨.苹果砧木亲源关系AFLP分析.中国农业科学,2001,34(3):256~259
    王同坤,柏素花,董超华,等.燕山板栗种质资源AFLP遗传多样性分析.分子植物育种,2007,5(1):121~127
    王文德,王贵,张俊宽,等.核桃坚果质量等级.GB/T20398~2006
    王永康,田建保,王永勤,等.枣树品种品系的AFLP分析.果树学报,2007,24(2):146~150
    王泽立,王鲁昕,戴景瑞,等.运用近等基因系(NIL)、AFLP、RFLP和SCAR标记对玉米S组育性恢复基因(Rf_3)的研究.遗传学报,2001,28(5):465~470
    王峥峰,王伯荪,李铭光.锥栗种群在鼎湖山三个群落中的遗传分化研究.生态学报,2001,21(8):1308~1313
    王中仁.植物遗传多样性和系统学研究中的等位酶分析.生物多样性,1994,2(2):91~95
    吴锦程,杨向晖,林顺权.枇杷AFLP分析体系的建立与应用.果树学报,2006,23(5):774~778
    吴燕民,裴东,奚声珂.运用RAPD对核桃属种间亲缘关系的研究.园艺学报,2000,27(1):17~22
    郗荣庭,张毅萍.中国核桃.北京:中国林业出版社,1992
    郗荣庭.关于我国核桃起源问题的商榷.中国果树,1981,(4):47~50
    郗荣庭.中国核桃(Juglans regia L.)起源考证.河北农业大学学报,1990,13(1):89~94
    奚声珂.我国胡桃属(Juglans)种质资源与核桃(Juglans regia L.)育种.林业科学,1987,23(3):342~349.
    谢让金,周志钦,邓烈.真正柑橘果树类植物基于AFLP分子标记的分类与进化研究.植物分类学报,2008,46(5):682~691
    谢渊,张小蕾,李毅,等.AFLP技术在天麻遗传变异研究中的初步应用.植物生理学通讯,2007,43(1):141~144
    熊光明,梁国鲁,阎勇,等.适于AFLP分析用的柑橘DNA提取方法.果树学报,2002,19(4):267~268.
    徐涛,刘晓勤.花生壳活性炭研究进展.花生学报,2007,36(3):1~4
    徐纬英,朱湘渝,胡长令,等.用选择方法改良我国核桃品种.林业科学,1963,10(1):18~30
    闫龙,关建平,宗绪晓.木豆种质资源AFLP标记遗传多样性分析.作物学报,2007,33(5):790~798
    阎爱民,陈文新.锦鸡儿根瘤菌的表型多样性分析.生物多样性,1999,7(2):l~8
    杨朝东,张俊卫,熊彩凤,等.AFLP技术对梅花杂交种的快速鉴定.北京林业大学学报,2004,26(S1):45~47
    杨俊霞,郭宝林,张卫红,等.核桃主要经济性状的主成分分析及优良品种选择的研究.河北农业大学学报,2001,35(2):39~42
    杨敏生,H. Herte, V. Schneck.欧洲刺槐种源群体遗传结构和多样性.生态学报,2004,24(12):2700~2706
    杨雪银,齐延兴.板栗破壳力学特性的影响因素研究.郑州轻工业学院学报(自然科学版),2006,21(3):61~64
    杨自湘,奚声珂.胡桃属十种植物的过氧化物同工酶分析.植物分类学报,1989,27(1):53~57
    张德强,张志毅,杨凯.分子标记技术在杨树遗传变异及系统分类中的应用.北京林业大学学报,2001,23(1):76~80
    张桂霞,陈静,王文江,等.AFLP技术及其在果树上的应用研究进展.河北农业大学学报,2003,26(z1):60~63
    张虎平,虎海防,牛建新,等.新疆核桃早实特性及RAPD分析.西北植物学报,2005,25(11):2157~2162
    张君诚,宋育红,朱勇,等.长柄石杉居群遗传多样性和遗传结构AFLP分析.应用与环境生物学报,2011,17(1):18~23
    张娜,杨文香,闫红飞,等.小麦抗叶锈病基因Lr45的AFLP分子标记.中国农业科学,2005,38(7):1364~1368
    张荣荣,李小昱,王为.基于揉搓方法的板栗破壳性能的试验研究.农业工程学报,2007,23(5):177~179
    张毅萍.中国核桃地理分布的探讨.经济林研究,1987,(S1):111~120
    张雨,方文亮,杨扬,等.核桃杂交Fl代坚果品质主要性状遗传分析.西南农业学报,2004,17(S1):461~466
    张志华,高仪.核桃坚果呼吸特性研究.园艺学报,1994,21(3):209~212
    张宗文.红花品种资源的同工酶遗传多样性及分类研究.植物遗传资源科学,2000,1(4):6~13
    赵爱春,鲁成,李斌,等.家蚕AFLP分子连锁图谱的构建及绿茧基因定位.遗传学报,2004,31(8):787~794
    赵悦平,赵书岗,王红霞,等.核桃坚果壳结构与核仁商品品质的关系.林业科学,2007,43(12):81~85
    郑勇奇.常规林木育种研究现状与发展趋势.世界林业研究,2001,14(3):1~17
    郑志峰,邹局春,花勃,等.核桃壳化学组分的研究.西南林学院学报,2006,26(2):33~36
    周延清.遗传标记的发展.生物学通报,2000,35(5):17~18
    朱根发,李冬梅,郭振飞.大花蕙兰遗传多样性及亲缘关系的AFLP分析.园艺学报,2007,34(2):417~424
    朱颜,周国利,吴玉厚,等.遗传标记的研究进展和应用.延边大学农学学报,2004,26(1):64~69
    邹喻萍,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001,60~107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700