用户名: 密码: 验证码:
处理不同C/N废水厌氧工艺的选择及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业废水中常含有大量大分子难降解有机物,因此,单一的好氧生化处理工艺不能取得理想的处理效果。厌氧生物技术具有高效降解大分子难降解有机物、低耗产能的特点,在工业废水处理中得到广泛的应用。但传统的厌氧技术中存在以下三个缺点:厌氧微生物生长缓慢,导致厌氧反应器启动缓慢;高浓度难降解污染物水解酸化速率慢,同时丙酸、丁酸等转化为乙酸过程易环境因素影响,在处理过程中易出现酸性末端产物的过度积累,对产甲烷菌抑制作用强烈时,会出现“酸化”现象,导致厌氧体系崩溃;对于含高氮废水,达不到去除氮素的效果,往往需要在厌氧处理工艺后续加设深度处理除氮,导致废水处理流程较长,投资和运营费用大。本文探索解决厌氧处理过程中这三点缺点的具体控制措施,以处理不同C/N废水为研究对象,探索不同进水C/N比时选取择最佳厌氧工艺实现以下目标:避免厌氧反应器“酸化”,以强化厌氧处理效果,在单一厌氧反应器实中实现同时产甲烷反硝化,即同时实现脱碳除氮双重功能,拓展厌氧处理领域。本实验内容包括:寻找快速启动厌氧反应器的方法;探索处理不同进水C/N废水最佳厌氧工艺的选择及机理研究。
     研究发现低强度超声波能加快启动进程,低强度超声波处理过的颗粒污泥启动IC厌氧反应器历时7天,而对照试验历时10天。低强度的超声波作用提高IC厌氧反应器中COD去除率,具有更高的产气率和最大比产甲烷活性。
     不同C/N比影响发酵类型的研究中发现:初始进水C/N为12、56、156时,形成丁酸型发酵类型,初始进水C/N200时,即进水C/N较高时,易实现乙醇型发酵,有效避免反应器“酸化”,此时有最高的产甲烷率和出水COD去除率;C/N比为56时胞外聚合物达到最大值,不同C/N比颗粒污泥表面特征也发生变化,对污泥的沉降性有一定的影响。对不同的C/N比培养的厌氧颗粒污泥进行扫描电镜观察,微生物群落表面特征也不相同。
     进水C/N低时不易实现乙醇型发酵厌氧工艺,但研究发现,进水C/N较低时,同时产甲烷反硝化工艺可以避免反应器内丙酸的积累,有效避免厌氧反应器“酸化”且同时具有脱碳除氮的功能。采用IC厌氧反应器,成熟厌氧颗粒污泥为接种污泥,驯化其具有同时产甲烷反硝化工功能的研究过程中,在进水碳源为葡萄糖,硝酸钠提供硝态氮,COD/NO_3~-为10的条件时,通过进水碳氮负荷不变,逐步减少水力停留时间来驯化厌氧颗粒污泥,历时30天完成厌氧颗粒污泥的驯化,实现了在单一相IC厌氧反应器中同时产甲烷反硝化。实验过程中,25天时达到稳定状态,出水COD去除率达到95%以上,氮的去除率达到96%;稳定时对出水氨氮进行测定,出水氨氮为2mg/L,发现厌氧过程中发生了DNRA过程;对产生的气体组分进行检测,其中甲烷占53%,氮气占47%。COD/NO_3~-为2、4、8、10、16时,出水COD出现先增高后下降的趋势, COD/NO_3~-为2时属于碳源不足,发生反硝化过程,未发产甲烷过程,产气组分未检测出甲烷;COD/NO_3~-为4时COD去除率仅有84%;COD/NO_3~-为8、10、16时, COD去除率较高,分别为89%、95.1%、94.9%。COD/NO_3~-为4、8、10时都有很好的除氮效果,去除率达到了95%左右, COD/NO_3~-为8、10、16时出水检测到了氨氮,发生了DNRA过程。
     具有同时产甲烷反硝的厌氧颗粒泥对丙酸积累引起的“酸化”有明显的恢复功能。当由丙酸引起的不同酸化程度,依次为基本无“酸化”、轻度“酸化”、中度“酸化”、高度“酸化”时, COD去除率分别达到了91.5%、87.9%、84.89%、81.05%。缓解中度“酸化”时最佳COD/NO_3~-为8。缓解重度“酸化”时最佳COD/NO_3~-为6。
Industrial wastewaters always contain abundant refractory organic polymers and highorganic loads, which make that it is hard to achieve the desired treatment effect by singleaerobic biological treatment process. Anaerobic biotechnology is wide used in the treatmentof industrial wastewaters for its effectively degradation ability when treat high concentratedrefractory organic polymers,and low energy consumption. But traditional anaerobictechniques have the following three disadvantages:slow growth of anaerobic microorganismsresulted in the slow speed of start-up of the anaerobic reactor; hydrolysis acidification rate ofthe wastewater which has high concentration of refractory pollutants was slow,the processthat is propionic cid or butyric acid and so on converted to acetate had been affected byenvironmental factors easlly,because of excessive accumulation of ending acidic products inthis process which could take strong inhibition to the methanogens, leaded the anaerobicsystem to collapse; Anaerobic treatment have low nitrogen removal rate when the influentcontain high concentration nitrogen, often need addition of advanced treatment to removenitrogen after anaerobic treatment process,this resulted in longer wastewater treatment process,and much more investment and operating costs. This paper focuses on solves the threedisadvantages of the anaerobic treatment process, deal with different C/N wastewater as aresearch object, explore what is the best anaerobic process when treated different C/N ratioinfluent to achieve the following objectives: to avoid anaerobic reactor acidification and inorder to strengthen the anaerobic treatment effect;also achieve methanogenesis anddenitrification in a single reactor,in order to expand the anaerobic treatment field. Thisresearch mainly includes the following aspects: looking for some ways of quick start-up ofanaerobic reactor; explore the optimal anaerobic process to treat different C/N influent andstudy the mechanism.
     Low-intensity ultrasound could speed up the start-up process. The start-up of the ICanaerobic reactor by the granular sludge which had been treated by the low-intensityultrasound needed seven days, while the control group needed10days. Low-intensityultrasound increased COD removal efficiency of the IC anaerobic reactor, and made it withhigher gas production rate and the maximum methane-producing activity.
     There are different fermentation types under different C/N ratio,it found that when initialinfluent C/N ratio were12,56or156, acid-type fermentation can be found, when the initialinfluent C/N was200, ethanol-type fermentation can be found,these type fermentation caneffectively avoid the acidification of thedreactor,and there were the highest methane production rate and the effluent COD removal efficiency under ethanol-type fermentation;when the C/N ratio was56, the extracellular polymeric substances achieved maximum,different C/N ratio leaded characteristics of granular sludge surface to change, there had acertain impact on sludge settleability under different C/N ratio. Observed the culture ofanaerobic granular sludge which were under different C/N ratio from scanning electronmicroscope, found some changes taken place about the surface characteristics of microbialcommunities.
     Use IC anaerobic reactor and mature anaerobic granular sludge as seed sludge toacclimate sludge coupled with simultaneous methanogcnesis and denitrincation. glucose ascarbon source and sodium nitrate as nitrogen source of influent, COD/NO_3~-ratio was10, theinfluent carbon and nitrogen load were not changed and to gradually reduce the hydraulicretention time to domesticate anaerobic granular sludge, lasted30days to complete thedomestication, to achieved that IC anaerobic reactor coupled with simultaneousmethanogcnesis and denitrincation. In the experiment, the effluent COD removal efficiencywas more than95%,nitrogen removal efficiency was96%after25days; measured stableeffluent,found ammonia nitrogen which concentration was2mg/L, this anaerobic processbe called DNRA process; to detect the gas component, methane accounted for53%, nitrogenaccounted for47%. When COD/NO_3~-was2,4,8,10or16, the effluent COD removel ratioincreased first and then have a downward trend.When COD/NO_3~-was2, carbon source wasnot enough, the denitrification process had occurrenced, but methanogenesis was not befound, gas component was not detected methane; When COD/NO3–was4, COD removalefficiency was only84%; When COD/NO3–was8,10or16, COD removal rates were89%,95.1%,94.9%.When COD/NO3–was4,8or10,there was good removal efficiency ofnitrogen,acchived95%, When COD/NO3–was8,10or16,the enfluent was detected to theammonia nitrogen, this process was called DNRA process.
     Anaerobic granular sludge with simultaneous denitrification and producing methane hasobviously recovery function on the acidification caused by the propionic acid accumulation.When the acidification degree caused by the propionic acid were basic no acidification, mildacidification, moderate acidification and severe acidification, the COD removal rate of theanaerobic reaction bottle reached91.5%,87.9%,84.89%and81.05%, respectively. Wheneasing moderate and severe acidification, the best COD/NO_3~-values were8and6.
引文
[1]赵文玉,吴振斌.新型厌氧处理反应器的发展及应用[J].四川环境,2002,21(1):32-36
    [2]胡纪萃等.废水厌氧生物处理理论与技术(第一版)[M].北京:中国建筑工业出,2003
    [3] GL. SchroePefr. The Anaerobic Contact Process as APPIied to Packing House Wastes[J].Sewage and Ind Wastes,1995,27(4):460-480
    [4]杨平,方治华.厌氧流化床废水处理技术研究及应用进展[J].环境科学展,1994,2(5):35-44
    [5] Lettinga G,van Velsen AFM. Use of the uPflow sludge blanket reactor concept forbiologicalWastewater treatment,specially for anaerobic treatment[J].BiotechnolBioeng,1980,22:669-734
    [6] Pereboom J H F.Methanogenic Granule development in full scale internal circulationreactors[J].Water Science and Technology,1994,30(8):9-21
    [7] MeCarty P L. Anaerobic digestion[M].Elsevier Biomedical Press,1981,3-21
    [8]张杰,成庆利,李海华,应一梅,韦道领.IC反应器处理低浓度有机废水的启动实验研究[J].可再生能源,2007,25(3):57-60
    [9]葛玫,王红磊,杨平.IC厌氧反应器的研究与应用进展[J].环境与可持发展,2008,(06):13-17
    [10]苏彩丽,余泳昌,韩伟红.IC反应器处理高浓度硫酸盐废水的启动研究[J].环境工程学报,2011,5(03):593-596
    [11]郭永福,储金宇.内循环厌氧反应器(IC)的应用与发展[J].工业安全与环保,2007,33(05):6-9
    [12]裴红洋,蒋京东,刘峰,马三剑.内循环(IC)厌氧反应器在几种高浓度废水中的工程应用及发展[J].环境科学与管理,2007,32(12):120-123
    [13] Hulshoff Pol, L W. Microbiology and chemistry of anaerobic digestion. in: lst Course onAnaerobic and Low Cost Treatment of Wastes and Wastewaters. The Netherlands IACand WAU,1994
    [14] Kato M T, Field J A, Lettinga G. Methanogenesis in granular sludge exposed to oxgen[J].Biotechnol. Bioengin,1993(42):1360-1366
    [15]苏彩丽,余泳昌,韩伟红.IC反应器处理高浓度硫酸盐废水的启动研究[J].环境工程学报,2011,5(03):593-596
    [16] Stouthamer A H. Emerging principles of inorganic nitrogen metabolism in Paracoceesdenitrificans and related bacteria[J]. Antonie van Leeuwenhoek,1997,71(l):33-41
    [17]任南琪,王宝贞,马放.有机废水产酸发酵的生理生态学分析[J].中国沼气,1995,13(1):1-6
    [18] Cohen A, Gemert J M, Zoeremeyer R J,et al.Main Characteristics and StoichiometricAspects of Acidogenesis of Soluble Carbohydrate Containing Wsatewater[J]. ProcBiochem,1984,19(6):228-232
    [19]任南琪,秦智,李建政.不同产酸发酵菌群产氢能力对比分析[J].环境科学,2003,24(2):70-75
    [20]任南琪.产酸发酵细菌演替规律研究—pH≤5条件下ORP的影响[J].哈尔滨建筑大学学报,2001,32:29-34
    [21] Ren N,Chen X L,Zhao D.Control of Fermentation Types in Continuous-Flow AcidogenicReactors:Effects of pH and Redox Potential[J].J.Harbin Institute of Technol,2001,8:116-119.
    [22]陈晓蕾.有机废水产酸发酵顶级群落研究——生态因子pH、Eh的影响[D].哈尔滨:哈尔滨工业大学,1998
    [23]王勇,孙寓娇,任南琪.C/N比对细菌产氢发酵类型及产氢能力的影响[J].太阳能学报,2004,25(3):375-378
    [24]周长波,张振家.啤酒废水处理技术的应用进展[J].环境工程,2003,21(6):19-23
    [25]王林山,吴允,张勇,等.UASB反应器中加入惰性载体促进颗粒污泥生成[J].环境导报,1996,(3):12-15
    [26] Imai T A. Advanced start up of UASB reactors by adding of waterabsorbing Polymer[J].Wat.Sci.Technol,1997,36(6):396-402
    [27] Manoj K.Tiwari,Saumyen Guha,et al.Enhanced granulation by natural ionic Polymeradditives in UASB reactor treating low-strength wastewater[J].Waser Research,2005,39(16):3801-3810
    [28]周律,王宝泉,于浮池.投加颗粒活性炭加快UASB反应器内颗粒化进程的研究[J].中国给水排水,1996,12(5):16-19
    [29] H Q Yu,J H Tay,Herber H P. The role of calcium in sludge granulation during UASBreactor Start-up[J].Water Research,2001,35(4):1052-1060
    [30] Yoda. Granular sludge formation in the anaerobic expanded micro carrier process[J].WatSci Technol,1989,21:109-122
    [31]艾晓玲.硬硅钙石二次粒子在污水处理中的应用初步研究[D].北京:北京科技大学,2003
    [32] Schmidt J E, Ahring B K. Effects of magnesiumon thermophilic acetate-degradinggranules in up flow anaerobic sludge blanket (UASB) reactors [J].Enzyme MieorbTechnol,1993,15(4):304-307
    [33]王长辉.微量元素在厌氧生化处理中的应用[J].福建环境,1999,16(3):24-25
    [34] Alphenaar P A, Visser A, Lettinga G. The effect of liquid upflow velocity and hydraulicretention time on granulation in UASB reactors treating wastewater with a high sulphatecontent[J].Bioresour Technol,1993,43:249-258
    [35] Noyola A, Mereno G. Granulation production from raw waste actived sludge. Water SciTechnol,1994,30:339-345
    [36]覃蝉,黄惠芳.回流搅拌对大型UASB酸化系统恢复运行的影响[J].广一西轻工业,2009,6:88-89
    [37] Blaszczyk R,Gardner D,Kosaric N.Response and recovery of anaero-bic granules fromshock loading[J].Water Research,1994,28(3):675-680
    [38] Lettinga G,Field J,van Lier J,et al.Advanced anaerobic wastewater treatment in the nearfuture[J].Water Science and Technology,1997,35(10):5-12
    [39]覃婵,黄惠芳.回流搅拌对大型UASB酸化系统恢复运行的影响[J].广西轻工业,2009,25(6):88-89
    [40] Orozco A.Pilot and full-scale anaerobic treatment of low-strength wastewater atsub-optimal temperature(15℃)with a hybrid plug flow reactor[C].Proceedings of the8thInternational Conference on Anaerobic Digestion.Japan,1997:183-191
    [41]朱葛夫.厌氧折流板反应器应用技术及微生物群落生态学研究[D].沈阳:哈尔滨工业大学,2007
    [42]徐金兰,王志盈,刘可.ABR系统中酸解过程的污泥特性及分析[J].环境污染治理技术与设备,2004,5(2):47-49
    [43]胡细全,刘大银,蔡鹤生.ABR反应器结构对水力特性的影响[J].中国地质大学学报:地球科学,2004,29(3):369-373
    [44]刘敏,任南琪,王爱杰,等.UASB反应器酸化后的状态及恢复研究[J].中国沼气,2003,21(2):7-10
    [45]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004:19-30
    [46]乔梁.厌氧折流板反应器处理甘薯淀粉废水的研究[D].济南:山东大学,2005
    [47] Quarmby J,Forster C F.An examination of the structure of UASB granules[J].WaterResearch,1995,29(11):2449-2454
    [48]徐金兰.厌氧折流板反应器(ABR)系统的特性及调控研究[D].西安:西安建筑科技大学,2003
    [49]丁青肖.ASBR反应器VFA积累与恢复特性研究[D].西安:西安建筑科技大学,2008.
    [50]王娟.ASBR反应器中挥发性有机酸积累与恢复的研究[D].西安:西安建筑科技大学,2007
    [51杨百忍,佘宗莲,赵来利.ABR反应器中颗粒污泥的培养及其特性研究[J].中国给水排水,2007,23(5):73-77
    [52] Boopathy R,Sievers D M.Performance of a modified anaerobic baf-fled reactor to treatswine waste[J].Transactions of the ASAE,1991,34(6):2573-2578
    [53]苏德林,王建龙,黄永恒等.ABR反应器的碱度变化及调控研究[J].环境科学,2006,27(10):2024-2027
    [54]褚华宁,张仁志,韩恩山等.碱度对UASB处理淀粉废水影响的研究[J].中国环境管理干部学院学报,2005,15(3):101-104
    [55]王立军,郑文华,史绪盛等.IC反应器酸化原因分析及重新启动[J].中国给水排水,2007,23(24):95-97
    [56]刘敏,任南琪,王爱杰,等.UASB反应器酸化后的状态及恢复研究[J].中国沼气,2003,21(2):7-10
    [57]王慧芳,买文宁,赵雅光.IC反应器启动过程中酸化问题的研究[J].河南科学,2008,26(2):219-221
    [58] Uludag-Demirer S.,Demirer G.N.,Frear C.,Chen S.Anaerobic digestion of dairy manurewith enhanced ammonia removal[J]. Jounal of Environmental Management,2008,86(1):193-200
    [59] Noike T., Goo I.S., Matsumoto H., Miyahara T. Development of a new type of anaerobicdigestion process equipped with the function of nitrogen remova[J].Water Science andTechnology,2004(49):173-179
    [60] Frieke K.,Santen H.,Walllnann R.,Huttner A., Dichtl N.Operating Problems in anaerobicdigestion plants resulting from nitrogen in MSW[J]. Waste Management,2007,27(1):30-43
    [61] Hanaki K. PolPrasert C.Contribution of methanogenesis to denitrification with an upflowfilter[J].Control Fed,1989(61):1604-1611
    [62] Hanne V.H, Birgitte K.A.Integrated Removal of Nitrate and Carbon in an upflowAnaerobic Sludge Blanket(UASB)Reactor[J]Operating Performance Water Research,1996,30(6):1451-1458
    [63]阂航.厌氧微生物学[M].杭州:浙江大学出版社,1993
    [64]陈莉莉,左剑恶,楼俞,缪冬源.同时产甲烷反硝化在UASB反应器中的实现[J].中国沼气,2006,24(2):3-7
    [65] ZHANG D.,VERSTRAETE W. The anaerobic treatment of nitrite containing wastewaterusing an Expanded granular sludged bed (EGSB) reactor [J].Enviromental Technology,2001(22):905-913
    [66] Lin Y.F.,Chen K.C.The relationship between denitrification bacteria and methanogenicbacteria in a mixede culture system of acclimated sludge[J].Water Research,1993(27):1749-1759
    [67]迟文涛,赵雪娜,江瀚,王凯军.厌氧同时反硝化产甲烷工艺研究进展[J].中国沼气,2006,24(4):6-8
    [68]应一梅,贾晓凤,刘丽格,许春红.内循环厌氧反应器的启动研究[J].华北水利水电学院学报,2007,28(1):97
    [69]吴静,黄建东,陆正禹,姜洁,苏伟,张仲良,周红明.内循环厌氧反应器的快速启动策略[J].清华大学学报(自然科学版),2010,5(3):400-401
    [70]刘红,闫怡新,王文燕,于勇勇.低强度超声波改善污泥活性[J].环境学,2005,26(4):124
    [71]闫怡新,刘红.低强度超声波强化污水生物处理机制[J].环境科学,1993,27(4):647-648
    [72]沈政嬴.低强度超声波辐射强化偶氮染料酸性橙7(AO7)的生物降解研究[D].厦门大学硕士论文,2005
    [73]刘志杰,谢华,俞毓馨,陆正禹.厌氧污泥胞外多聚物的提取、测定法选择[J].环境科学,1993,15(4):26-27
    [74]宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,1998
    [75]刘红,闫怡新.低强度超声波对低温下污水生物处理的强化效果及工艺设计[J].环境科学,2008,29(3):722
    [76]方亮,张丽丽,蔡伟民.活性污泥胞外多聚物提取方法比较[J].环境科学与技术,2006,29(3):46-47
    [77]林志福,伍健东,周兴求,牛晓君.厌氧颗粒污泥胞外聚合物的影响因素研究[J].环境工程学报,2009,3(7):1313-1314
    [78]丁文川,曾晓岚,龙腾锐,杨霏,江岸.低强度超声波辐射对污泥生物活性的影响机制[J].环境科学学报,2008,28(2):726-727
    [79]张自杰.排水工程[M].天津:中国建筑工业出版社,2000.
    [80]王凯军,贺延龄,江翰,阎中.厌氧悬浮床反应器的膨胀模型研究[J].环境工程学报,2008,2(3):291
    [81]戴传云,王伯初.低功率超声波对微生物发酵的影响[J].重庆大学学报,2003,26(2):15-17
    [82]李白昆,吕炳南,任南琪等.产酸相乙醇型发酵的影响因素研究[J].哈尔滨建筑大学学报,1996,29(5):44-46
    [83]谭钦文,徐中慧.钼酸盐在两相厌氧反应器分相中的应用研究[J].工业水处理,2010,30(3):22-24
    [84] Yu H Q, Fang H H P. Acidogenesis of gelatin2rich wastewater in an upflow anaerobicreactor: in fluence of pH and temperature [J]. Water Res,2003,37:55-66
    [85] Tsuy oshi I, Masao U, Jun L. Advanced start up of UASB reactors by adding of water absorbing polymer [J]. Water Sci-Technol,1997,36:399-406
    [86]成雯.厌氧颗粒污泥对水中染料的吸附和去除研究[D].山东大学硕士论文,2009
    [87]郑蕾,田禹,孙德.pH值对活性污泥胞外聚合物分子结构和表面特征影响研究[J].环境科学,2007,28(7):1508-1509
    [88] Frolund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers fromactivated sludge using a cation exchange resin [J]. Water Research,1996,30(8):1749-1758
    [89] Yu T, Lei Z, Sun D Z. Functions and behaviors of activated sludge extra cellularpolymeric substances (EPS): a promising environmental interest[J].Journal ofEnvironmental Sciences–China,2006,18(3):420-427
    [90] S B Ismail, C J de La Parra, H Temmink, et al. Extracellular polymeric substances (EPS)in upflow anaerobic sludge blanket (UASB) reactors operated under high salinityconditions [J]. Water Research,2010,44(6):1909-1917
    [91]关伟,肖莆,周晓铁,丁春.污泥中胞外聚合物(EPS)的研究进展[J].化学工程师,2009,165(6):36-38
    [92]林志福,伍健东,周兴求,牛晓君.厌氧颗粒污泥胞外聚合物的影响因素研究[J].环境工程学报,2009,3(7):1311-1315
    [93]包常华.污水生物处理过程中胞外聚合物的生成与控制[D].山东建筑大学博士论文,2007
    [94] Hanne VH, Birgitte KA. Integrated Removal of Nitrate and Carbon in an UpflowAnaerobic Sludge Blanket (UASB) Re-actor: Operating Performance[J]. Wat Res,1996,30(6):1451-1458
    [95] M Eiroa, C Kennes, MC Veiga. Formaldehyde and urea re-moval in a denitrifyinggranular sludge blanket reactor[J].Water Research,2004,38:3495-3502
    [96] Ying-Feng Lin,Kuo-Cheng Chen.Denitrification and Meth-anogenesis in aCo-immobilized Mixed Culture System[J].Wat Res,1995,29(1):35-43
    [97] Hanaki K,Polprasert C. Contribution of methanogenesis denitrification with an upflowfilter[J]. Control Fed,1986(1):1604-1611
    [98] Ruiz G, Jeison D, Chamy R·Development of denitrifying and methanogenic activities inUSB reactors for the treatment of wastewater: effect of COD/N ratio[J]. ProcessBiochemistry,2006,41(6):1338-1342
    [99]Tiedje J M·Ecology of denitrification and dissimilatory nitrate reduction to ammoniumZehnder A Biology of Anaerobic Microorganisms [M]. New York: John Wiley&Sons,1988
    [100]Quevedo M, Guynot E, MuxíL.Denitrifying potential of methanogenic sludge [J].Biotechnology Letters,1996,18-20
    [101] Hendriksen H V, Ahring B K·Combined removal of nitrate and carbon in granularsludge: substrate competition and activities [J].Antonie van Leeuwenhoek,1996,69(1):33-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700