用户名: 密码: 验证码:
Sonic Hedgehog信号通路对高糖诱导的肾小管上皮细胞凋亡及白藜芦醇干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:随着经济的快速发展,我国民众的生活方式有了极大的变化,糖尿病发病率逐年升高。最新研究结果显示我国总体糖尿病患病率已达9.7%,其中6.5%~42%的患者伴有肾脏病。而糖尿病肾病(diabeticnephropathy, DN)作为糖尿病最严重的并发症之一,已成为我国引发终末期肾衰竭的第二位病因。患者一旦进入终末期肾衰竭,将不得不依靠血液透析、腹膜透析或肾移植来维持生命,给国家和个人带来沉重的经济负担。因此如何有效防治糖尿病肾病是广大肾脏病学者面临的挑战,也是研究的热点问题。
     既往有关糖尿病肾病的研究多集中于肾小球病变,但晚近研究表明糖尿病所致肾小管间质病变也是糖尿病肾脏病变的重要病理基础,与糖尿病肾病的进展和肾功能损害密切相关。大量研究证实,糖尿病肾小管损伤包括肾小管上皮细胞高转运、细胞的肥大以及凋亡等。细胞凋亡可导致肾小管回吸收和排秘功能失调,促进肾小管上皮细胞萎缩和肾间质纤维化。因此深入了解高糖导致的肾小管上皮细胞凋亡的机制,对探究糖尿病患者肾功能的保护具有重要意义。
     哺乳动物体内有3中同源Hh基因,为Sonic hedgehog (SHH),Indianhedgehog (IHH)和Desert hedgehog (DHH),分别编码相应的蛋白,与器官的形成、组织的发育、细胞的分化和增殖以及损伤后的修复密切相关,并在肿瘤的发生、组织的纤维化等过程中也发挥了重要作用。研究发现,缺血再灌注肾损伤中,Shh信号通路与肾功能损害密切相关,并且该信号通路可以诱导梗阻性肾病大鼠肾小管上皮细胞转分化。提示Hh信号通路不仅在控制胚胎发育,而且在胚胎发育完成后依然调控着细胞的生长、增殖和分化过程,参与了体内多种生物学行为。
     虽然对糖尿病并发症的研究越来越深入,但是尚无防治糖尿病肾病的有效手段。目前主要是血管紧张素转换酶抑制剂和/或血管紧张素受体拮抗剂的应用,以及控制血糖、调整血脂等综合治疗。白藜芦醇(Resveratrol)化学名称为芪三酚,广泛存在于葡萄科、百合科、寥科等70种植物中,在我国的传统中药虎杖和何首乌等中也发现有其存在。该药具有抑制血小板聚集、调节脂代谢、抗菌、抗癌、抗衰老等作用,能够通过抗氧化应激保护db/db鼠的肾脏。体外实验也表明白藜芦醇能抑制肾脏系膜细胞的增殖,影响细胞周期的分布,但其对糖尿病肾病肾脏保护的确切机制仍不明确。
     本研究拟通过临床观察、细胞培养和动物实验,全面分析Shh及其信号通路相关蛋白Ptch (Patched)、Smo(Smoothened)、Gli2(Glioma-associatedoncogenes2)在高糖状态下肾组织中的表达变化,以及该信号通路与肾小管上皮细胞凋亡的关系。利用siRNA转染技术,测定在体外干扰高糖环境培养的人肾小管上皮细胞系(HK-2细胞)转录合成Shh后,肾小管上皮细胞发生凋亡的情况。并给予含有重组Shh蛋白的培养基培养HK-2细胞,进一步明确Shh信号通路在调控细胞凋亡中发挥的作用。通过对STZ诱导的糖尿病小鼠和高糖环境中培养的HK-2细胞给予白藜芦醇进行干预,从转录和分子水平观察白藜芦醇对Shh信号通路的影响及其发挥肾脏保护作用的可能途径,为进一步阐明糖尿病状态下肾小管上皮细胞凋亡发生的分子学机制及防治提供实验性依据。
     方法:
     第一部分:从我院肾内科2010年6月至2012年6月住院患者中选择符合1999年WHO2型糖尿病诊断标准并经肾活检病理检查确诊为糖尿病肾病的12例患者为研究对象,另外5例正常肾组织(选自我院泌尿外科肾癌患者手术切除的肾脏病灶远周部分)作为正常对照组,进行免疫组织化学染色,半定量分析各组肾组织标本中Shh信号通路相关蛋白Shh、Ptch1、Smo、Gli2的表达;TUNEL检测肾小管上皮细胞的凋亡。
     第二部分:体外培养人肾小管上皮细胞系(HK-2细胞),分为3组,低糖组、高糖组和甘露醇组。同步化12小时后给予相应的刺激,于刺激后12h、24h、48h、72h,消化收集各组细胞,75%乙醇固定,送流式检测凋亡细胞百分比。
     体外培养的HK-2细胞,以细胞凋亡最明显的时间为干预时间,以低糖和高糖组为对照,分别应用重组人Shh蛋白、白藜芦醇干预或者进行Shh siRNA转染,同步化12小时后给予相应的刺激,届时收集各组细胞,提取细胞总蛋白、总RNA,应用western blot测定各组细胞Shh、Ptch1、Smo、Gli2、p53、Bax和cleaved caspase3蛋白的表达,real time PCR检测Shh、Gli2mRNA的表达。同时消化离心细胞,75%乙醇固定,送流式检测凋亡细胞百分比。另外铺六孔板,共聚焦显微镜检测Shh、Ptch1、Smo、Gli2在细胞中的表达,TUNEL观察细胞凋亡情况。
     第三部分:建立单侧肾切除+链脲佐菌素诱导的CD-1小鼠(体重20g±2g)1型糖尿病模型,设立单纯单侧肾切除组(对照组,n=24)、单侧肾切除+糖尿病组(模型组,n=24),单侧肾切除+糖尿病+白藜芦醇干预组(干预组,n=24)实验共24周,分别于第8、12和24周末收集各组小鼠血、尿和肾组织标本,测定血糖(blood glucose, BG)、血肌酐(serum creatinine,Scr)、血清总胆固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)、尿蛋白(urinary protein, UP),并计算肾重/体重比值(kidney weight/body weightratio, KW/BW)。肾组织行苏木素-伊红(ematoxylin-eosin, HE)染色和过碘酸-希夫(periodic acid-schiff, PAS)染色,普通光镜下观察肾组织病理学改变。应用免疫组织化学染色检测肾组织Shh、Ptch1、Smo、Gli2的表达;westernblot检测Shh、Ptch1、Smo、Gli2以及凋亡相关蛋白p53、Bax、cleaved caspase3的表达;real time PCR测定肾组织Shh、Gli2mRNA的表达;TUNAL观察肾小管上皮细胞的凋亡。
     结果:
     第一部分:正常肾组织中有Shh、Ptch1、Smo及Gli2的表达,以肾小管为主,肾小球几乎无表达。在糖尿病肾病患者肾组织切片中,上述4种蛋白表达较正常组减弱,差异有统计学意义(p<0.05)。肾组织石蜡切片TUNEL检测,糖尿病肾病组肾小管上皮细胞凋亡数量明显高于对照组,差异有统计学意义(p<0.05)。
     第二部分:在高糖刺激48小时,HK-2细胞凋亡达高峰,凋亡细胞百分比较其他3个时间点,即12h、24h、72h明显升高,差异有统计学意义(p<0.05)。Western blot结果显示,48小时高糖组Shh、Ptch1、Smo和Gli2蛋白表达均较低糖组、甘露醇组明显降低,差异有统计学意义(p<0.05);p53、Bax、cleaved caspase3表达则明显高于低糖组和甘露醇组,差异有统计学意义(p<0.05);高糖组Shh、Gli2mRNA表达也明显下降,低于低糖组和甘露醇组,差异有统计学意义(p<0.05)。
     HK-2细胞转染Shh siRNA后培养48h,高糖转染Shh siRNA组(HG+siShh组)细胞凋亡率最高,与低糖组、高糖组、高糖转染无关对照组(HG+siCon组)相比,差异有统计学意义(p<0.05);Shh、Ptch1、Smo和Gli2表达较其他各组降低,p53、Bax、cleaved caspase3表达较其他各组升高明显,Shh、Gli2mRNA表达低于其他各组,差异有统计学意义(p<0.05)。高糖组和HG+siCon组之间上述各指标无明显统计学差异(p>0.05)。
     高糖培养的HK-2细胞加入重组人Shh蛋白刺激48h后,细胞凋亡发生率较高糖组明显降低,差异有统计学意义(p<0.05);Shh、Ptch1、Smo和Gli2表达较高糖组升高,p53、Bax、cleaved caspase3表达明显低于高糖组,差异有统计学意义(p<0.05); Gli2mRNA表达也明显高于高糖组,差异有统计学意义(p<0.05)。
     对HK-2细胞给予高糖联合白藜芦醇刺激48h,细胞凋亡较高糖组减少,p53、Bax、cleaved caspase3表达明显降低,差异有统计学意义(p<0.05); Shh、Ptch1、Smo、Gli2及Shh、Gli2mRNA表达也明显上调,高于高糖组,差异有统计学意义(p<0.05)。
     第三部分:小鼠注射STZ后3天左右即出现多饮、多食、多尿等糖尿病症状;第8周末,模型组小鼠肾小管间质有少量淋巴单核细胞浸润。随着病程进展,12周末和24周末小鼠肾组织病变加重,小管间质淋巴单核细胞浸润增多,小管上皮细胞出现绒毛脱落,小管扩张,肾小球系膜区增宽等,而对照组无明显病变,干预组病变介于对照组和模型组之间。与对照组相比,模型组和干预组小鼠在8周、12周,24周末时血糖明显增高,差异有统计学意义(p<0.05);但三组小鼠血胆固醇和甘油三酯无统计学差异(p>0.05);12周、24周末时,模型组和干预组出现肾重/体重比增加,以及血肌酐和蛋白尿的升高,与对照组比较,差异有统计学意义(p<0.05)。自12周末起,模型组小鼠肾组织匀浆Shh、Ptch1、Smo、Gli2表达下降,Shh、Gli2mRNA表达减弱,与对照组相比,差异有统计学意义(p<0.05);自8周末起,模型组小鼠肾组织匀浆p53、Bax、cleaved caspase3表达明显增强,与对照组相比,差异有统计学意义(p<0.05);干预组上述指标介于对照组和模型组之间,三组间差异有统计学意义(p<0.05)。TUNEL结果证实,模型组在12周、24周末肾小管上皮细胞凋亡数目增加,干预组细胞凋亡减少,但仍多于对照组,三组间结果差异有统计学意义(p<0.05)。
     结论:
     1本研究结果显示,Shh在成年人或小鼠肾脏内有基础表达,主要分布于肾小管上皮细胞。但在糖尿病肾病状态下Shh及其信号通路相关蛋白Ptch1、Smo、Gli2在肾小管上皮细胞中表达明显减弱。
     2体外实验证实,以siRNA干扰HK-2细胞中Shh基因的合成能够抑制Shh信号的传递,抑制核转录因子Gli2的表达,从而使其下游靶基因的转录表达减弱,进一步上调凋亡相关基因p53、Bax的表达,诱导caspase3的活化,发挥促进细胞凋亡的作用,提示Shh信号通路参与了高糖诱导的肾小管上皮细胞凋亡,此过程与凋亡基因的p53、Bax有关。
     3在体外给予重组Shh刺激HK-2细胞后,可明显活化Shh信号通路,促进Gli2基因及其蛋白的表达,抑制凋亡相关基因p53、Bax的表达,干扰caspase3的活化,发挥抑制细胞凋亡的作用。提示上调Shh信号通路能够抑制高糖诱导的肾小管上皮细胞的凋亡。
     4体外和体内的研究表明,白藜芦醇可以从基因水平和蛋白水平调节Shh及其下游Ptch1、Smo、Gli2的表达,进而抑制p53、Bax和caspase3的表达,从而减轻高糖诱导的肾小管上皮细胞的凋亡,具有肾脏保护作用,可能是临床防治糖尿病肾病的一个新方法。
Objective: With the rapid development of economy, human’s lifestyleshave some dramatic changes and the incidence of diabetes is increasing.Current data shows that the incidence of diabetes gets to9.7%and6.5%~42%of diabetics accompanies with diabetic nephropathy. Therefore, diabeticnephropathy has become the second reason for end-stage renal failure in China.Once in the end-stage renal failure stage, patients will have to depend onhemodialysis, peritoneal dialysis or kidney transplantation to sustainlife.Those treatment cost should provide a huge economic burden to societyand family. Thus, it is the effective prevention and treatment of diabeticnephropathy that is a topic issue and a huge challenge in the world.
     In past studies about diabetic nephropathy, most of which ever focusedon glomerular pathological changes. The renal tubulointerstitial lesions whichderive from diabetic nephropathy are not only pathological basis of renaldisease, but also closely related to renal damage and the progress of diabeticnephropathy. In many studies, it had been confirmed that apoptosis of renaltubular epithelial cells happened in early stage of diabetic nephropathy, whichinduced dysfunction function of reabsorption and excretion and ultimatelylead to tubular atrophy and interstitial fibrosis. Thus, it is significant tounderstand the high glucose induced apoptosis of renal tubular epithelial cellsin order to protect renal function in patients with diabetes.
     There were three homologous Hh gene in Mammals, and encoded Sonichedgehog (Shh), Indian hedgehog (IHH) and Desert hedgehog (DHH),respectively. They did not only closely relate to organic formation, tissuedevelopment, cell differentiation and proliferation and repair after injury, butplay an important role in the process of tumorigenesis and tissue fibrosis.Recent studies showed that Shh signaling pathway related to damage of the renal function in ischemia reperfusion renal injury, and it also inducedepithelial-to-mesenchymal transition (EMT) in obstructive nephropathy.Hence, Hh signaling pathway involved in a variety of biological behavior invivo, such as controlling of embryonic development, regulated cell growth,proliferation and differentiation process after embryos had completed thedevelopment.
     Although, there are more and more pathogenesis and therapeuticmethod study for diabetic nephropathy, but effectively therapeutic method fordiabetic nephropathy haven’t been founded by now. Resveratrol is known as astilbene phenols and widely present in70species of plants, such as grapes,Liliaceae, Polygonaceae. It was also found in Chinese traditional medicine,such as Polygonum cuspidatum, Polygonum and so on. Resveratrol couldinhibit platelet aggregation, regulate the role of lipid metabolism,anti-bacterial, anti-cancer, anti-aging, and it also can protect db-/db-mousekidney through anti-oxidative stress. It is showed that resveratrol can inhibitmesangialcell proliferation, influence cell cycle in vitro. However, themechanisms which protect the kidney of diabetic nephropathy is still unclear.In this study, whether Shh signaling pathway involved in apoptosis of renaltubular epithelial cell which induced by high glucose were explored, then theprotein expression of Shh signaling pathway in renal tissue of diabetic statehad been observed in vivo and vitro. To further investigate the effects of shhsignaling pathway on apoptosis in high glucose induced HK-2cells, wesuppress or enhance shh by transfected Shh siRNA or incubated HK-2cellswith recombinant human Shh protein. Finally, in order to clarify whetherresveratrol protect the kidney via the shh signalling pathway, we culturedHK-2cells with high glucose and resveratrol,established diabetic mice by STZ,then analyzed the change of shh signalling pathway.
     Methods:
     Part1:12diabetic nephropathy patients in line with the diagnosticcriteria for type2diabetes of American Diabetes Academy in1999wereconfirmed by renal biopsy from the department of nephrology in3rd hospital of Hebei Medical Universty (HBMU) from June2006to June2007.5healthcases were received from the normal tissues around the resected renal tumorsof hospitalized patients in3rd hospital of HBMU. The expression of Shh,Ptch1, Smo and Gli2in renal tissue of every group was semi-quantitativelyanalysed by immunohistochemical staining. The apoptosis of renal tubularepithelial cells were detected by TUNEL staining. The expression of Shh,Ptch1, Smo and Gli2in renal tissue of every group were detected byimmunohistochemical staining and the apoptosis of renal tubular epithelialcells were detected by TUNEL staining were analysed by semi-quantitatively.
     Part2: HK-2cells were grown in in non-glucose DMEM mixed withDMEM F12containing10%FBS, penicillin (100U/ml), streptomycin (100μg/ml) at37°C and5%CO2. The cells were divided into3groups, a lowglucose group (5.8mmol/L glucose, LG), a high glucose group (30mmol/Lglucose, HG), and low glucose mixed with mannitol group (5.8mmol/Lglucose mixed with24.2mM mannitol, M) after synchronizated in12hours,then the cells were collected at12h,24h,48h and72h for the determination ofthe percentage of apoptotic cells with flow cytometry.
     Next, Western blot was used to detect the expression of Shh, Ptch1, Smo,Gli2, p53, Bax, and cleaved caspase3protein expression level, and real timePCR was used to detect the mRNA expression level of Shh, Gli2in HK-2cells,which incubated with high glucose and recombinant human Shh protein, orresveratrol, or transfected Shh siRNA after the time of apoptosis significantly.Meanwhile, the percentage of cells apoptosis was detected by flow cytometryand the expression of Shh, Ptch1, Smo and Gli2were detected byimmunofluorescence. All of the data was analysed by SPSS15.0statisticssoftware, P value<0.05was considered as statistical significance.
     Part3: The male CD-1mice(weight about20+/-2g) were divided intothree groups: a simple unilateral renal resection group (control group, n=24), asimple unilateral renal resection and injection of streptozotocin induceddiabetes group (model group, n=24), and a simple unilateral renal resectionand injection of streptozotocin induced diabetes treated with resveratrol group(treatment group, n=24). The animals of model and treatment groupswere received a single intravenous dose of130mg/kg streptozotocin in citratebuffer to induce diabetes. NC group were received the same dose of citratebuffer. Hyperglycemia (>16.7mmol/L) was confirmed3days after STZadministration.
     The animals were sacrificed at8week,12week and24week. The urineand blood samples were collected, and kidney tissues were harvested at8,12,24weekend. Kidney tissues were fixed in4%paraformaldehyde andembedded in paraffin for light microscopy and immunohistochemistry. Theparaformaldehyde-fixed and paraffin-embedded kidney tissues were cut intosections of4μm thick for stained with matoxylin-eosin (HE), periodicacid-schiff (PAS), immunohistochemistry and TUNEL staining. HE and PASstaining were used to observe the pathological changes.Immunohistochemistry was used to analyze the renal expression of Shh, Ptch1,Smo and Gli2. BG, serum creatinine (Scr), serum total cholesterol (TC),triglyceride (TG), urine protein (Ucr), and hypertrophy index (the ratio ofkidney weight: body weight) were evaluated in every group. The apoptosis ofrenal tubular epithelial cells were stained by TUNEL. The protein level of Shh,Ptch1, Smo, Gli2, P53, Bax, cleaved caspase-3were detected by western blotand the level of mRNA for Shh and Gli2were detected by real time PCR. Allthe data were analysed by SPSS15.0statistics software, P value<0.05wasconsidered to have statistical significance.
     Result:
     Part1: Compare to normal tissue, the expression of shh, Ptch1, Smo andGli2decreased and apoptosis increased in diabetic nephropathy. There was asignificant difference between normal and diabetic nephropathy group (p<0.05).
     Part2: In vitro, the apoptosis of HK-2cells reached a peak in48hoursafter incubated with high glucose compare to12h,24h and72h (p<0.05).Western blot analyzed the expression of protein level found that Shh, Ptch1,Smo, Gli2were declined and p53、Bax、cleaved caspase3were rised when high glucose induced for48h (p<0.05) as well as mRNA of Shh and Gli2alsoincreased (p<0.05).
     After cells were transfected with Shh siRNA, the percentage of apoptosisin HK-2cells was higher than non-transfection group, and the levels of Shh,Ptch1, Smo, Gli2protein were higher, which have statistical significance whencompared with HG group.The expression of p53, Bax and cleaved caspase3were higher in transfection group than non-transfecting (p<0.05).
     Stimulated HK-2cells with recombinant human Shh protein, theapoptosis rate decreased, and p53, Bax and cleaved caspase3expression wassignificantly lower than HG group (p<0.05). But the protein levels of Shh,Ptch1, Smo, Gli2and mRNA level of Gli2were significantly up-regulated (p<0.05).
     When stimulated HK-2cells with resveratrol, result in the apoptosis rateand p53, Bax and cleaved caspase3expression were lower than HG group (p<0.05), and the protein levels of Shh, Ptch1, Smo, Gli2and mRNA levels ofShh, Gli2were significantly up-regulated (p<0.05).
     Part3: Polydipsia, polyphagia and polyuria of diabetic symptoms wereappeared after the mice were injected with STZ for about3days. There were asmall amount of lymphoid mononuclear cell infiltration in tubulointerstitialafter injected STZ for8weeks, and it was found that a large amount oflymphoid mononuclear cell infiltration in the tubules, tubular epithelial cellsof the fluff off, tubular dilatation when STZ injected for12weeks and24weeks. However, there were no significantly lesions in glomerular mesangialcompared to control group and model group.
     At week-12, Scr and KW/BW ratio are the lowest in the control group,the highest in the model group, followed by treatment group, there aresignificant differences among the three groups (p<0.05). Compared withmodel group, the levels of Shh, Ptch1, Smo and Gli2and mRNA of Shh andGli2were upregualted and p53, Bax and cleaved caspase3weredownregulated in treatment group (p<0.05). The apoptosis of renal tubularepithelial cells in treatment group was higher than control group, but lower than model group (p<0.05).
     Conclusions:
     1There was basic expression of Shh signaling pathway in normal humanrenal tissues, but Shh signaling pathway was inhibited in renal tubularepithelial cells of diabete.
     2In HK-2, interfered Shh gene expression by siRNA, which can inducethe activation of caspase3and increase the expression of p53and Bax, andpromote apoptosis. It is suggested that Shh signaling pathway might involvedin the apoptosis of HK-2cells, which reduced by high glucose.
     3The expression of p53, Bax and caspase3were decreased when addedrecombinant human Shh protein to activate Shh pathway in HK-2, it is showedthat Shh can inhibit apoptosis of tubular cells which were stimulated with highglucose. Which provide a new idea for prevention and treatment of diabeticnephropathy.
     4The date shown that resveratrol can adjusted Shh, Ptch1, Smo and Gli2expression by gene and protein levels, and then regulated p53, Bax andcaspase3expression, thereby inhibiting high glucose-induced apoptosis ofrenal tubular epithelial cells. Therefore, resveratrol may be a novel materialfor the prevention and treatment of diabetic nephropathy.
引文
1Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men andwomen in China[J]. N Engl J Med,2010,362(12):1090-101
    2Iseki K.[Epidemiology of CKD in Japan][J]. Nihon Rinsho,2008,66(9):1650-6
    3张伟明,钱家麒.上海市透析登记及其结果分析[J].中国血液净化,2012,(05):233-236
    4Chow F, Ozols E, Nikolic-Paterson DJ, et al. Macrophages in mouse type
    2diabetic nephropathy: correlation with diabetic state and progressiverenal injury[J]. Kidney Int,2004,65(1):116-28
    5Verzola D, Gandolfo MT, Ferrario F, et al. Apoptosis in the kidneys ofpatients with type II diabetic nephropathy[J]. Kidney Int,2007,72(10):1262-72
    6Kumar D, Robertson S, Burns KD. Evidence of apoptosis in humandiabetic kidney[J]. Mol Cell Biochem,2004,259(1-2):67-70
    7Vallon V. The proximal tubule in the pathophysiology of the diabetickidney[J]. Am J Physiol Regul Integr Comp Physiol,2011,300(5):R1009-22
    8Echelard Y, Epstein DJ, St-Jacques B, et al. Sonic hedgehog, a member ofa family of putative signaling molecules, is implicated in the regulationof CNS polarity[J]. Cell,1993,75(7):1417-30
    9Pasca dMM, Hebrok M. Hedgehog signalling in cancer formation andmaintenance[J]. Nat Rev Cancer,2003,3(12):903-11
    10Ruiz iAA, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours,embryos and stem cells[J]. Nat Rev Cancer,2002,2(5):361-72
    11Giunti S, Barit D, Cooper ME. Mechanisms of diabetic nephropathy: roleof hypertension[J]. Hypertension,2006,48(4):519-26
    12Woo D. Apoptosis and loss of renal tissue in polycystic kidneydiseases[J]. N Engl J Med,1995,333(1):18-25
    13Ingham PW. Transducing Hedgehog: the story so far[J]. EMBO J,1998,17(13):3505-11
    14Villavicencio EH, Walterhouse DO, Iannaccone PM. The sonichedgehog-patched-gli pathway in human development and disease[J].Am J Hum Genet,2000,67(5):1047-54
    15Taipale J, Cooper MK, Maiti T, et al. Patched acts catalytically tosuppress the activity of Smoothened[J]. Nature,2002,418(6900):892-7
    16Benzacken B, Siffroi JP, Le BC, et al. Different proximal and distalrearrangements of chromosome7q associated with holoprosencephaly[J].J Med Genet,1997,34(11):899-903
    17Kim PC, Mo R, Hui CC. Murine models of VACTERL syndrome: Roleof sonic hedgehog signaling pathway[J]. J Pediatr Surg,2001,36(2):381-4
    18Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferationand differentiation of mesenchymal cellsin the mouse metanephrickidney[J]. Development,2002,129(22):5301-12
    19Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of ciliain development and disease[J]. Hum Mol Genet,2003,12Spec No1:R27-35
    20Johnston JJ, Olivos-Glander I, Killoran C, et al. Molecular and clinicalanalyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes:robust phenotype prediction from the type and position of GLI3mutations[J]. Am J Hum Genet,2005,76(4):609-22
    21Cain JE, Rosenblum ND. Control of mammalian kidney development bythe Hedgehog signaling pathway[J]. Pediatr Nephrol,2011,26(9):1365-71
    22Ding H, Zhou D, Hao S, et al. Sonic hedgehog signaling mediatesepithelial-mesenchymal communication and promotes renal fibrosis[J]. JAm Soc Nephrol,2012,23(5):801-13
    23Fabian SL, Penchev RR, St-Jacques B, et al. Hedgehog-Gli pathwayactivation during kidney fibrosis[J]. Am J Pathol,2012,180(4):1441-53
    1Phillips AO, Steadman R. Diabetic nephropathy: the central role ofrenal proximal tubular cells in tubulointerstitial injury[J]. HistolHistopathol,2002,17(1):247-52
    2Saxen L, Sariola H, Lehtonen E. Sequential cell and tissue interactionsgoverning organogenesis of the kidney[J]. Anat Embryol (Berl),1986,175(1):1-6
    3Valentini RP, Brookhiser WT, Park J, et al. Post-translationalprocessing and renal expression of mouse Indian hedgehog[J]. J BiolChem,1997,272(13):8466-73
    4Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferationand differentiation of mesenchymal cellsin the mouse metanephrickidney[J]. Development,2002,129(22):5301-12
    5Hu MC, Mo R, Bhella S, et al. GLI3-dependent transcriptionalrepression of Gli1, Gli2and kidney patterning genes disrupts renalmorphogenesis[J]. Development,2006,133(3):569-78
    6Jenkins D, Winyard PJ, Woolf AS. Immunohistochemical analysis ofSonic hedgehog signalling in normal human urinary tractdevelopment[J]. J Anat,2007,211(5):620-9
    7Cain JE, Islam E, Haxho F, et al. GLI3repressor controls nephronnumber via regulation of Wnt11and Ret in ureteric tip cells[J]. PLOSONE,2009,4(10):e7313
    8Cutcliffe C, Kersey D, Huang CC, et al. Clear cell sarcoma of thekidney: up-regulation of neural markers with activation of the sonichedgehog and Akt pathways[J]. Clin Cancer Res,2005,11(22):7986-94
    9Dormoy V, Danilin S, Lindner V, et al. The sonic hedgehog signalingpathway is reactivated in human renal cell carcinoma and playsorchestral role in tumor growth[J]. Mol Cancer,2009,8:123
    10Schnidar H, Eberl M, Klingler S, et al. Epidermal growth factorreceptor signaling synergizes with Hedgehog/GLI in oncogenictransformation via activation of the MEK/ERK/JUN pathway[J].Cancer Res,2009,69(4):1284-92
    11Dormoy V, Jacqmin D, Lang H, et al. From development to cancer:lessons from the kidney to uncover new therapeutic targets[J].Anticancer Res,2012,32(9):3609-17
    12Stewart GA, Hoyne GF, Ahmad SA, et al. Expression of thedevelopmental Sonic hedgehog (Shh) signalling pathway isup-regulated in chronic lung fibrosis and the Shh receptor patched1ispresent in circulating T lymphocytes[J]. J Pathol,2003,199(4):488-95
    13Omenetti A, Porrello A, Jung Y, et al. Hedgehog signaling regulatesepithelial-mesenchymal transition during biliary fibrosis in rodents andhumans[J]. J Clin Invest,2008,118(10):3331-42
    14Ding H, Zhou D, Hao S, et al. Sonic hedgehog signaling mediatesepithelial-mesenchymal communication and promotes renal fibrosis[J].J Am Soc Nephrol,2012,23(5):801-13
    15Fabian SL, Penchev RR, St-Jacques B, et al. Hedgehog-Gli pathwayactivation during kidney fibrosis[J]. Am J Pathol,2012,180(4):1441-53
    16Pola R, Ling LE, Silver M, et al. The morphogen Sonic hedgehog is anindirect angiogenic agent upregulating two families of angiogenicgrowth factors[J]. Nat Med,2001,7(6):706-11
    17Vokes SA, Ji H, McCuine S, et al. Genomic characterization ofGli-activator targets in sonic hedgehog-mediated neural patterning[J].Development,2007,134(10):1977-89
    18Singh RR, Kim JE, Davuluri Y, et al. Hedgehog signaling pathway isactivated in diffuse large B-cell lymphoma and contributes to tumorcell survival and proliferation[J]. Leukemia,2010,24(5):1025-36
    19McCall TD, Pedone CA, Fults DW. Apoptosis suppression by somaticcell transfer of Bcl-2promotes Sonic hedgehog-dependentmedulloblastoma formation in mice[J]. Cancer Res,2007,67(11):5179-85
    20Thomas ZI, Gibson W, Sexton JZ, et al. Targeting GLI1expression inhuman inflammatory breast cancer cells enhances apoptosis andattenuates migration[J]. Br J Cancer,2011,104(10):1575-86
    21Farooqi AA, Mukhtar S, Riaz AM, et al. Wnt and SHH in prostatecancer: trouble mongers occupy the TRAIL towards apoptosis[J]. CellProlif,2011,44(6):508-15
    22Ma X, Sheng T, Zhang Y, et al. Hedgehog signaling is activated insubsets of esophageal cancers[J]. Int J Cancer,2006,118(1):139-48
    23Palsamy P, Subramanian S. Resveratrol protects diabetic kidney byattenuating hyperglycemia-mediated oxidative stress and renalinflammatory cytokines via Nrf2-Keap1signaling[J]. Biochim BiophysActa,2011,1812(7):719-31
    24Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmicreticulum stress-induced apoptosis[J]. EMBO Rep,2006,7(9):880-5
    25Cheng DW, Jiang Y, Shalev A, et al. An analysis of high glucose andglucosamine-induced gene expression and oxidative stress in renalmesangial cells[J]. Arch Physiol Biochem,2006,112(4-5):189-218
    26Vousden KH, Lane DP. p53in health and disease[J]. Nat Rev Mol CellBiol,2007,8(4):275-83
    27Jebelli JD, Hooper C, Garden GA, et al. Emerging roles of p53in glialcell function in health and disease[J]. Glia,2012,60(4):515-25
    28Li HL, Huang XP, Zhou XH, et al. Correlation of seven biologicalfactors (Hsp90a, p53, MDM2, Bcl-2, Bax, Cytochrome C, and Cleavedcaspase3) with clinical outcomes of ALK+anaplastic large-celllymphoma[J]. Biomed Environ Sci,2011,24(6):630-41
    29Wei Q, Dong G, Chen JK, et al. Bax and Bak have critical roles inischemic acute kidney injury in global and proximal tubule-specificknockout mouse models.LID-10.1038/ki.2013.68[doi][J]. Kidney Int,2013,
    30Verzola D, Bertolotto MB, Villaggio B, et al. Taurine preventsapoptosis induced by high ambient glucose in human tubule renalcells[J]. J Investig Med,2002,50(6):443-51
    31Grobner S, Adkins I, Schulz S, et al. Catalytically active Yersinia outerprotein P induces cleavage of RIP and caspase-8at the level of theDISC independently of death receptors in dendritic cells[J].Apoptosis,2007,12(10):1813-25
    32Boehning D, Patterson RL, Sedaghat L, et al. Cytochrome c binds toinositol (1,4,5) trisphosphate receptors, amplifying calcium-dependentapoptosis[J]. Nat Cell Biol,2003,5(12):1051-61
    33Huang S, He J, Zhang X, et al. Activation of the hedgehog pathway inhuman hepatocellular carcinomas[J]. Carcinogenesis,2006,27(7):1334-40
    34O'Toole SA, Machalek DA, Shearer RF, et al. Hedgehogoverexpression is associated with stromal interactions and predicts forpoor outcome in breast cancer[J]. Cancer Res,2011,71(11):4002-14
    35Fan L, Pepicelli CV, Dibble CC, et al. Hedgehog signaling promotesprostate xenograft tumor growth[J]. Endocrinology,2004,145(8):3961-70
    36Prykhozhij SV. In the absence of Sonic hedgehog, p53inducesapoptosis and inhibits retinal cell proliferation, cell-cycle exit anddifferentiation in zebrafish[J]. PLOS ONE,2010,5(10):e13549
    37Abe Y, Oda-Sato E, Tobiume K, et al. Hedgehog signaling overridesp53-mediated tumor suppression by activating Mdm2[J]. Proc NatlAcad Sci U S A,2008,105(12):4838-43
    38Granados-Soto V. Pleiotropic effects of resveratrol[J]. Drug NewsPerspect,2003,16(5):299-307
    39Kitada M, Kume S, Imaizumi N, et al. Resveratrol improves oxidativestress and protects against diabetic nephropathy through normalizationof Mn-SOD dysfunction in AMPK/SIRT1-independent pathway[J].Diabetes,2011,60(2):634-43
    1Wang D, Xu Y, Liu W. Tissue distribution and excretion of resveratrol inrat after oral administration of Polygonum cuspidatum extract (PCE)[J].Phytomedicine,2008,15(10):859-66
    2Uenobe F, Nakamura S, Miyazawa M. Antimutagenic effect ofresveratrol against Trp-P-1[J]. Mutat Res,1997,373(2):197-200
    3Bertelli AA, Ferrara F, Diana G, et al. Resveratrol, a natural stilbene ingrapes and wine, enhances intraphagocytosis in human promonocytes: aco-factor in antiinflammatory and anticancer chemopreventive activity[J].Int J Tissue React,1999,21(4):93-104
    4Leonard SS, Xia C, Jiang BH, et al. Resveratrol scavenges reactiveoxygen species and effects radical-induced cellular responses[J].Biochem Biophys Res Commun,2003,309(4):1017-26
    5Aggarwal BB, Bhardwaj A, Aggarwal RS, et al. Role of resveratrol inprevention and therapy of cancer: preclinical and clinical studies[J].Anticancer Res,2004,24(5A):2783-840
    6Olas B, Wachowicz B. Resveratrol, a phenolic antioxidant with effects onblood platelet functions[J]. Platelets,2005,16(5):251-60
    7Das S, Das DK. Resveratrol: a therapeutic promise for cardiovasculardiseases[J]. Recent Pat Cardiovasc Drug Discov,2007,2(2):133-8
    8Soylemez S, Gurdal H, Sepici A, et al. The effect of long-term resveratroltreatment on relaxation to estrogen in aortae from male and female rats:role of nitric oxide and superoxide[J]. Vascul Pharmacol,2008,49(2-3):97-105
    9Palsamy P, Subramanian S. Resveratrol protects diabetic kidney byattenuating hyperglycemia-mediated oxidative stress and renalinflammatory cytokines via Nrf2-Keap1signaling[J]. Biochim BiophysActa,2011,1812(7):719-31
    10Chen KH, Hung CC, Hsu HH, et al. Resveratrol ameliorates earlydiabetic nephropathy associated with suppression of augmentedTGF-beta/smad and ERK1/2signaling in streptozotocin-induced diabeticrats[J]. Chem Biol Interact,2011,190(1):45-53
    11Holthoff JH, Wang Z, Seely KA, et al. Resveratrol improves renalmicrocirculation, protects the tubular epithelium, and prolongs survival ina mouse model of sepsis-induced acute kidney injury[J]. Kidney Int,2012,81(4):370-8
    12Li J, Qu X, Ricardo SD, et al. Resveratrol inhibits renal fibrosis in theobstructed kidney: potential role in deacetylation of Smad3[J]. Am JPathol,2010,177(3):1065-71
    13Oktem G, Uysal A, Oral O, et al. Resveratrol attenuatesdoxorubicin-induced cellular damage by modulating nitric oxide andapoptosis[J]. Exp Toxicol Pathol,2012,64(5):471-9
    14Bloomgarden ZT. Diabetic nephropathy[J]. Diabetes Care,2005,28(3):745-51
    15Felehgari V, Rahimi Z, Mozafari H, et al. ACE gene polymorphism andserum ACE activity in Iranians type II diabetic patients withmacroalbuminuria[J]. Mol Cell Biochem,2011,346(1-2):23-30
    16Molitch ME, DeFronzo RA, Franz MJ, et al. Nephropathy in diabetes[J].Diabetes Care,2004,27Suppl1:S79-83
    17Gross JL, de Azevedo MJ, Silveiro SP, et al. Diabetic nephropathy:diagnosis, prevention, and treatment[J]. Diabetes Care,2005,28(1):164-76
    18Radbill B, Murphy B, LeRoith D. Rationale and strategies for earlydetection and management of diabetic kidney disease[J]. Mayo Clin Proc,2008,83(12):1373-81
    19Cortinovis M, Cattaneo D, Perico N, et al. Investigational drugs fordiabetic nephropathy[J]. Expert Opin Investig Drugs,2008,17(10):1487-500
    20Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuriain diabetic glomerulopathy[J]. Curr Diabetes Rev,2008,4(1):39-45
    21Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogeneticmechanisms of diabetic nephropathy[J]. Annu Rev Pathol,2011,6:395-423
    22Dorup J, Morsing P, Rasch R. Tubule-tubule and tubule-arteriole contactsin rat kidney distal nephrons. A morphologic study based oncomputer-assisted three-dimensional reconstructions[J]. Lab Invest,1992,67(6):761-9
    23Seyer-Hansen K, Hansen J, Gundersen HJ. Renal hypertrophy inexperimental diabetes. A morphometric study[J]. Diabetologia,1980,18(6):501-5
    24Vallon V, Thomson SC. Renal function in diabetic disease models: thetubular system in the pathophysiology of the diabetic kidney[J]. AnnuRev Physiol,2012,74:351-75
    25Thomson SC, Deng A, Bao D, et al. Ornithine decarboxylase, kidney size,and the tubular hypothesis of glomerular hyperfiltration in experimentaldiabetes[J]. J Clin Invest,2001,107(2):217-24
    26Vallon V, Huang DY, Deng A, et al. Salt-sensitivity of proximalreabsorption alters macula densa salt and explains the paradoxical effectof dietary salt on glomerular filtration rate in diabetes mellitus[J]. J AmSoc Nephrol,2002,13(7):1865-71
    27Palm F, Cederberg J, Hansell P, et al. Reactive oxygen species causediabetes-induced decrease in renal oxygen tension[J]. Diabetologia,2003,46(8):1153-60
    28Singh DK, Winocour P, Farrington K. Mechanisms of disease: thehypoxic tubular hypothesis of diabetic nephropathy[J]. Nat Clin PractNephrol,2008,4(4):216-26
    29Lim JC, Lim SK, Han HJ, et al. Cannabinoid receptor1mediatespalmitic acid-induced apoptosis via endoplasmic reticulum stress inhuman renal proximal tubular cells[J]. J Cell Physiol,2010,225(3):654-63
    30Wagener FA, Dekker D, Berden JH, et al. The role of reactive oxygenspecies in apoptosis of the diabetic kidney[J]. Apoptosis,2009,14(12):1451-8
    31Sun L, Xiao L, Nie J, et al. p66Shc mediates high-glucose andangiotensin II-induced oxidative stress renal tubular injury viamitochondrial-dependent apoptotic pathway[J]. Am J Physiol RenalPhysiol,2010,299(5):F1014-25
    32Velagapudi C, Bhandari BS, Abboud-Werner S, et al. The tuberin/mTORpathway promotes apoptosis of tubular epithelial cells in diabetes[J]. JAm Soc Nephrol,2011,22(2):262-73
    33Brezniceanu ML, Lau CJ, Godin N, et al. Reactive oxygen speciespromote caspase-12expression and tubular apoptosis in diabeticnephropathy[J]. J Am Soc Nephrol,2010,21(6):943-54
    34Tikoo K, Tripathi DN, Kabra DG, et al. Intermittent fasting prevents theprogression of type I diabetic nephropathy in rats and changes theexpression of Sir2and p53[J]. FEBS Lett,2007,581(5):1071-8
    35Singh RR, Kim JE, Davuluri Y, et al. Hedgehog signaling pathway isactivated in diffuse large B-cell lymphoma and contributes to tumor cellsurvival and proliferation[J]. Leukemia,2010,24(5):1025-36
    36Thomas ZI, Gibson W, Sexton JZ, et al. Targeting GLI1expression inhuman inflammatory breast cancer cells enhances apoptosis andattenuates migration[J]. Br J Cancer,2011,104(10):1575-86
    37Farooqi AA, Mukhtar S, Riaz AM, et al. Wnt and SHH in prostate cancer:trouble mongers occupy the TRAIL towards apoptosis[J]. Cell Prolif,2011,44(6):508-15
    38Du P, Ye L, Li H, et al. The tumour suppressive role of metastasissuppressor-1, MTSS1, in human kidney cancer, a possible connectionwith the SHH pathway[J]. J Exp Ther Oncol,2012,10(2):91-9
    39Yonish-Rouach E, Resnitzky D, Lotem J, et al. Wild-type p53inducesapoptosis of myeloid leukaemic cells that is inhibited by interleukin-6[J].Nature,1991,352(6333):345-7
    40Kastan MB, Zhan Q, el-Deiry WS, et al. A mammalian cell cyclecheckpoint pathway utilizing p53and GADD45is defective inataxia-telangiectasia[J]. Cell,1992,71(4):587-97
    41Malek R, Matta J, Taylor N, et al. The p53inhibitor MDM2facilitatesSonic Hedgehog-mediated tumorigenesis and influences cerebellarfoliation[J]. PLOS ONE,2011,6(3):e17884
    42Bigelow RL, Chari NS, Unden AB, et al. Transcriptional regulation ofbcl-2mediated by the sonic hedgehog signaling pathway through gli-1[J].J Biol Chem,2004,279(2):1197-205
    43Lin HY, Shih A, Davis FB, et al. Resveratrol induced serinephosphorylation of p53causes apoptosis in a mutant p53prostate cancercell line[J]. J Urol,2002,168(2):748-55
    44Shih A, Zhang S, Cao HJ, et al. Inhibitory effect of epidermal growthfactor on resveratrol-induced apoptosis in prostate cancer cells ismediated by protein kinase C-alpha[J]. Mol Cancer Ther,2004,3(11):1355-64
    45Zhang S, Cao HJ, Davis FB, et al. Oestrogen inhibits resveratrol-inducedpost-translational modification of p53and apoptosis in breast cancercells[J]. Br J Cancer,2004,91(1):178-85
    46Lin HY, Tang HY, Keating T, et al. Resveratrol is pro-apoptotic andthyroid hormone is anti-apoptotic in glioma cells: both actions areintegrin and ERK mediated[J]. Carcinogenesis,2008,29(1):62-9
    47Lin HY, Sun M, Tang HY, et al. Resveratrol causes COX-2-andp53-dependent apoptosis in head and neck squamous cell cancer cells[J].J Cell Biochem,2008,104(6):2131-42
    48Lin C, Crawford DR, Lin S, et al. Inducible COX-2-dependent apoptosisin human ovarian cancer cells[J]. Carcinogenesis,2011,32(1):19-26
    49Lin HY, Tang HY, Davis FB, et al. Resveratrol and apoptosis[J]. Ann N YAcad Sci,2011,1215:79-88
    50Kitada M, Kume S, Imaizumi N, et al. Resveratrol improves oxidativestress and protects against diabetic nephropathy through normalization ofMn-SOD dysfunction in AMPK/SIRT1-independent pathway[J].Diabetes,2011,60(2):634-43
    51Tikoo K, Singh K, Kabra D, et al. Change in histone H3phosphorylation,MAP kinase p38, SIR2and p53expression by resveratrol in preventingstreptozotocin induced type I diabetic nephropathy[J]. Free Radic Res,2008,42(4):397-404
    1Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogeneticmechanisms of diabetic nephropathy[J]. Annu Rev Pathol,2011,6:395-423
    2Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuriain diabetic glomerulopathy[J]. Curr Diabetes Rev,2008,4(1):39-45
    3Ditzel J, Lervang HH, Brochner-Mortensen J. Renal sodium metabolismin relation to hypertension in diabetes[J]. Diabete Metab,1989,15(5Pt2):292-5
    4Mbanya JC, Thomas TH, Taylor R, et al. Increased proximal tubularsodium reabsorption in hypertensive patients with type2diabetes[J].Diabet Med,1989,6(7):614-20
    5Vervoort G, Veldman B, Berden JH, et al. Glomerular hyperfiltration intype1diabetes mellitus results from primary changes in proximal tubularsodium handling without changes in volume expansion[J]. Eur J ClinInvest,2005,35(5):330-6
    6Hannedouche TP, Delgado AG, Gnionsahe DA, et al. Renalhemodynamics and segmental tubular reabsorption in early type1diabetes[J]. Kidney Int,1990,37(4):1126-33
    7Pruijm M, Wuerzner G, Maillard M, et al. Glomerular hyperfiltration andincreased proximal sodium reabsorption in subjects with type2diabetesor impaired fasting glucose in a population of the African region[J].Nephrol Dial Transplant,2010,25(7):2225-31
    8Thomson SC, Deng A, Bao D, et al. Ornithine decarboxylase, kidney size,and the tubular hypothesis of glomerular hyperfiltration in experimentaldiabetes[J]. J Clin Invest,2001,107(2):217-24
    9Vallon V, Huang DY, Deng A, et al. Salt-sensitivity of proximalreabsorption alters macula densa salt and explains the paradoxical effectof dietary salt on glomerular filtration rate in diabetes mellitus[J]. J AmSoc Nephrol,2002,13(7):1865-71
    10Vallon V, Thomson SC. Renal function in diabetic disease models: thetubular system in the pathophysiology of the diabetic kidney[J]. AnnuRev Physiol,2012,74:351-75
    11Vallon V. The proximal tubule in the pathophysiology of the diabetickidney[J]. Am J Physiol Regul Integr Comp Physiol,2011,300(5):R1009-22
    12Huang HC, Preisig PA. G1kinases and transforming growth factor-betasignaling are associated with a growth pattern switch in diabetes-inducedrenal growth[J]. Kidney Int,2000,58(1):162-72
    13Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renalhypertrophy[J]. Kidney Int,1999,56(2):393-405
    14Chiarelli F, Gaspari S, Marcovecchio ML. Role of growth factors indiabetic kidney disease[J]. Horm Metab Res,2009,41(8):585-93
    15Feliers D, Kasinath BS. Mechanism of VEGF expression by high glucosein proximal tubule epithelial cells[J]. Mol Cell Endocrinol,2010,314(1):136-42
    16Marrero MB, Banes-Berceli AK, Stern DM, et al. Role of the JAK/STATsignaling pathway in diabetic nephropathy[J]. Am J Physiol RenalPhysiol,2006,290(4):F762-8
    17Hernandez-Vargas P, Lopez-Franco O, Sanjuan G, et al. Suppressors ofcytokine signaling regulate angiotensin II-activated Janus kinase-signaltransducers and activators of transcription pathway in renal cells[J]. J AmSoc Nephrol,2005,16(6):1673-83
    18Amiri F, Shaw S, Wang X, et al. Angiotensin II activation of theJAK/STAT pathway in mesangial cells is altered by high glucose[J].Kidney Int,2002,61(5):1605-16
    19Ortiz-Munoz G, Lopez-Parra V, Lopez-Franco O, et al. Suppressors ofcytokine signaling abrogate diabetic nephropathy[J]. J Am Soc Nephrol,2010,21(5):763-72
    20Satriano J, Vallon V. Primary kidney growth and its consequences at theonset of diabetes mellitus[J]. Amino Acids,2006,31(1):1-9
    21Pedersen SB, Flyvbjerg A, Richelsen B. Inhibition of renal ornithinedecarboxylase activity prevents kidney hypertrophy in experimentaldiabetes[J]. Am J Physiol,1993,264(2Pt1):C453-6
    22Deng A, Munger KA, Valdivielso JM, et al. Increased expression ofornithine decarboxylase in distal tubules of early diabetic rat kidneys: arepolyamines paracrine hypertrophic factors?[J]. Diabetes,2003,52(5):1235-9
    23Brownlee M. Biochemistry and molecular cell biology of diabeticcomplications[J]. Nature,2001,414(6865):813-20
    24Goestemeyer AK, Marks J, Srai SK, et al. GLUT2protein at the ratproximal tubule brush border membrane correlates with protein kinase C(PKC)-betal and plasma glucose concentration[J]. Diabetologia,2007,50(10):2209-17
    25Pfaff IL, Vallon V. Protein kinase C beta isoenzymes in diabetic kidneysand their relation to nephroprotective actions of the ACE inhibitorlisinopril[J]. Kidney Blood Press Res,2002,25(5):329-40
    26Wu D, Peng F, Zhang B, et al. PKC-beta1mediates glucose-induced Aktactivation and TGF-beta1upregulation in mesangial cells[J]. J Am SocNephrol,2009,20(3):554-66
    27Meier M, Park JK, Overheu D, et al. Deletion of protein kinase C-betaisoform in vivo reduces renal hypertrophy but not albuminuria in thestreptozotocin-induced diabetic mouse model[J]. Diabetes,2007,56(2):346-54
    28Blantz RC, Tucker BJ, Gushwa L, et al. Mechanism of diuresis followingacute modest hyperglycemia in the rat[J]. Am J Physiol,1983,244(2):F185-94
    29Lee MJ, Feliers D, Mariappan MM, et al. A role for AMP-activatedprotein kinase in diabetes-induced renal hypertrophy[J]. Am J PhysiolRenal Physiol,2007,292(2):F617-27
    30Lieberthal W, Levine JS. The role of the mammalian target of rapamycin(mTOR) in renal disease[J]. J Am Soc Nephrol,2009,20(12):2493-502
    31Han DC, Hoffman BB, Hong SW, et al. Therapy with antisenseTGF-beta1oligodeoxynucleotides reduces kidney weight and matrixmRNAs in diabetic mice[J]. Am J Physiol Renal Physiol,2000,278(4):F628-34
    32Chen S, Hoffman BB, Lee JS, et al. Cultured tubule cells fromTGF-beta1null mice exhibit impaired hypertrophy and fibronectinexpression in high glucose[J]. Kidney Int,2004,65(4):1191-204
    33Wang X, Shaw S, Amiri F, et al. Inhibition of the Jak/STAT signalingpathway prevents the high glucose-induced increase in tgf-beta andfibronectin synthesis in mesangial cells[J]. Diabetes,2002,51(12):3505-9
    34Noh H, King GL. The role of protein kinase C activation in diabeticnephropathy[J]. Kidney Int Suppl,2007,(106):S49-53
    35Fujita H, Omori S, Ishikura K, et al. ERK and p38mediatehigh-glucose-induced hypertrophy and TGF-beta expression in renaltubular cells[J]. Am J Physiol Renal Physiol,2004,286(1):F120-6
    36Wolf G, Schroeder R, Ziyadeh FN, et al. High glucose stimulatesexpression of p27Kip1in cultured mouse mesangial cells: relationshipto hypertrophy[J]. Am J Physiol,1997,273(3Pt2):F348-56
    37Satriano J, Mansoury H, Deng A, et al. Transition of kidney tubule cellsto a senescent phenotype in early experimental diabetes[J]. Am JPhysiol Cell Physiol,2010,299(2):C374-80
    38Al-Douahji M, Brugarolas J, Brown PA, et al. The cyclin kinase inhibitorp21WAF1/CIP1is required for glomerular hypertrophy in experimentaldiabetic nephropathy[J]. Kidney Int,1999,56(5):1691-9
    39Huang JS, Chuang LY, Guh JY, et al. Antioxidants attenuate highglucose-induced hypertrophic growth in renal tubular epithelial cells[J].Am J Physiol Renal Physiol,2007,293(4):F1072-82
    40Franch HA. Pathways of proteolysis affecting renal cell growth[J]. CurrOpin Nephrol Hypertens,2002,11(4):445-50
    41Kumar AM, Gupta RK, Spitzer A. Intracellular sodium in proximaltubules of diabetic rats. Role of glucose[J]. Kidney Int,1988,33(4):792-7
    42Ku DD, Sellers BM, Meezan E. Development of renal hypertrophy andincreased renal Na,K-ATPase in streptozotocin-diabetic rats[J].Endocrinology,1986,119(2):672-9
    43Efendiev R, Bertorello AM, Pedemonte CH. PKC-beta and PKC-zetamediate opposing effects on proximal tubule Na+,K+-ATPase activity[J].FEBS Lett,1999,456(1):45-8
    44Ren JL, Pan JS, Lu YP, et al. Inflammatory signaling and cellularsenescence[J]. Cell Signal,2009,21(3):378-83
    45Verzola D, Gandolfo MT, Gaetani G, et al. Accelerated senescence in thekidneys of patients with type2diabetic nephropathy[J]. Am J PhysiolRenal Physiol,2008,295(5):F1563-73
    46Palm F, Cederberg J, Hansell P, et al. Reactive oxygen species causediabetes-induced decrease in renal oxygen tension[J]. Diabetologia,2003,46(8):1153-60
    47Singh DK, Winocour P, Farrington K. Mechanisms of disease: thehypoxic tubular hypothesis of diabetic nephropathy[J]. Nat Clin PractNephrol,2008,4(4):216-26
    48Juncos R, Garvin JL. Superoxide enhances Na-K-2Cl cotransporteractivity in the thick ascending limb[J]. Am J Physiol Renal Physiol,2005,288(5):F982-7
    49Rosenberger C, Khamaisi M, Abassi Z, et al. Adaptation to hypoxia in thediabetic rat kidney[J]. Kidney Int,2008,73(1):34-42
    50Katavetin P, Miyata T, Inagi R, et al. High glucose blunts vascularendothelial growth factor response to hypoxia via the oxidativestress-regulated hypoxia-inducible factor/hypoxia-responsible elementpathway[J]. J Am Soc Nephrol,2006,17(5):1405-13
    51Taneda S, Honda K, Tomidokoro K, et al. Eicosapentaenoic acid restoresdiabetic tubular injury through regulating oxidative stress andmitochondrial apoptosis[J]. Am J Physiol Renal Physiol,2010,299(6):F1451-61
    52Brezniceanu ML, Liu F, Wei CC, et al. Catalase overexpressionattenuates angiotensinogen expression and apoptosis in diabetic mice[J].Kidney Int,2007,71(9):912-23
    53Brezniceanu ML, Liu F, Wei CC, et al. Attenuation of interstitial fibrosisand tubular apoptosis in db/db transgenic mice overexpressing catalase inrenal proximal tubular cells[J]. Diabetes,2008,57(2):451-9
    54Sedeek M, Callera G, Montezano A, et al. Critical role of Nox4-basedNADPH oxidase in glucose-induced oxidative stress in the kidney:implications in type2diabetic nephropathy[J]. Am J Physiol RenalPhysiol,2010,299(6):F1348-58
    55Neria F, Castilla MA, Sanchez RF, et al. Inhibition of JAK2protects renalendothelial and epithelial cells from oxidative stress and cyclosporin Atoxicity[J]. Kidney Int,2009,75(2):227-34
    56Wagener FA, Dekker D, Berden JH, et al. The role of reactive oxygenspecies in apoptosis of the diabetic kidney[J]. Apoptosis,2009,14(12):1451-8
    57Sun L, Xiao L, Nie J, et al. p66Shc mediates high-glucose andangiotensin II-induced oxidative stress renal tubular injury viamitochondrial-dependent apoptotic pathway[J]. Am J Physiol RenalPhysiol,2010,299(5):F1014-25
    58Velagapudi C, Bhandari BS, Abboud-Werner S, et al. The tuberin/mTORpathway promotes apoptosis of tubular epithelial cells in diabetes[J]. JAm Soc Nephrol,2011,22(2):262-73
    59Ruster C, Wolf G. The role of chemokines and chemokine receptors indiabetic nephropathy[J]. Front Biosci,2008,13:944-55
    60Navarro-Gonzalez JF, Mora-Fernandez C, de Fuentes M M, et al.Inflammatory molecules and pathways in the pathogenesis of diabeticnephropathy[J]. Nat Rev Nephrol,2011,7(6):327-40
    61Hirschberg R, Wang S. Proteinuria and growth factors in the developmentof tubulointerstitial injury and scarring in kidney disease[J]. Curr OpinNephrol Hypertens,2005,14(1):43-52
    62Chow FY, Nikolic-Paterson DJ, Ozols E, et al. Monocyte chemoattractantprotein-1promotes the development of diabetic renal injury instreptozotocin-treated mice[J]. Kidney Int,2006,69(1):73-80
    63Miyauchi K, Takiyama Y, Honjyo J, et al. Upregulated IL-18expressionin type2diabetic subjects with nephropathy: TGF-beta1enhanced IL-18expression in human renal proximal tubular epithelial cells[J]. DiabetesRes Clin Pract,2009,83(2):190-9
    64Phillips AO, Steadman R. Diabetic nephropathy: the central role of renalproximal tubular cells in tubulointerstitial injury[J]. Histol Histopathol,2002,17(1):247-52
    65Okamura DM, Himmelfarb J. Tipping the redox balance of oxidativestress in fibrogenic pathways in chronic kidney disease[J]. PediatrNephrol,2009,24(12):2309-19
    66Shah SV, Baliga R, Rajapurkar M, et al. Oxidants in chronic kidneydisease[J]. J Am Soc Nephrol,2007,18(1):16-28
    67Hsieh TJ, Chen R, Zhang SL, et al. Upregulation of osteopontin geneexpression in diabetic rat proximal tubular cells revealed by microarrayprofiling[J]. Kidney Int,2006,69(6):1005-15
    68Merline R, Lazaroski S, Babelova A, et al. Decorin deficiency in diabeticmice: aggravation of nephropathy due to overexpression of profibroticfactors, enhanced apoptosis and mononuclear cell infiltration[J]. JPhysiol Pharmacol,2009,60Suppl4:5-13
    69Jones SC, Saunders HJ, Pollock CA. High glucose increases growth andcollagen synthesis in cultured human tubulointerstitial cells[J]. DiabetMed,1999,16(11):932-8
    70Alpers CE, Hudkins KL, Floege J, et al. Human renal cortical interstitialcells with some features of smooth muscle cells participate intubulointerstitial and crescentic glomerular injury[J]. J Am Soc Nephrol,1994,5(2):201-9
    71Jones SG, Morrisey K, Williams JD, et al. TGF-beta1stimulates therelease of pre-formed bFGF from renal proximal tubular cells[J]. KidneyInt,1999,56(1):83-91
    72Johnson DW, Saunders HJ, Brew BK, et al. Human renal fibroblastsmodulate proximal tubule cell growth and transport via the IGF-I axis[J].Kidney Int,1997,52(6):1486-96
    73Liu Y. New insights into epithelial-mesenchymal transition in kidneyfibrosis[J]. J Am Soc Nephrol,2010,21(2):212-22
    74Wang S, Denichilo M, Brubaker C, et al. Connective tissue growth factorin tubulointerstitial injury of diabetic nephropathy[J]. Kidney Int,2001,60(1):96-105
    75Guha M, Xu ZG, Tung D, et al. Specific down-regulation of connectivetissue growth factor attenuates progression of nephropathy in mousemodels of type1and type2diabetes[J]. FASEB J,2007,21(12):3355-68
    76Gilbert RE, Huang Q, Thai K, et al. Histone deacetylase inhibitionattenuates diabetes-associated kidney growth: potential role forepigenetic modification of the epidermal growth factor receptor[J].Kidney Int,2011,79(12):1312-21
    77Noh H, Oh EY, Seo JY, et al. Histone deacetylase-2is a key regulator ofdiabetes-and transforming growth factor-beta1-induced renal injury[J].Am J Physiol Renal Physiol,2009,297(3):F729-39
    1Jiang J, Hui CC. Hedgehog signaling in development and cancer[J]. DevCell,2008,15(6):801-12
    2Kalderon D. The mechanism of hedgehog signal transduction[J].Biochem Soc Trans,2005,33(Pt6):1509-12
    3Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the humanhomolog of Drosophila patched in the nevoid basal cell carcinomasyndrome[J]. Cell,1996,85(6):841-51
    4Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, acandidate gene for the basal cell nevus syndrome[J]. Science (80-),1996,272(5268):1668-71
    5Smyth I, Narang MA, Evans T, et al. Isolation and characterization ofhuman patched2(PTCH2), a putative tumour suppressor gene inbasalcell carcinoma and medulloblastoma on chromosome1p32[J]. Hum MolGenet,1999,8(2):291-7
    6Nusslein-Volhard C, Wieschaus E. Mutations affecting segment numberand polarity in Drosophila[J]. Nature,1980,287(5785):795-801
    7Lee JJ, von KDP, Parks S, et al. Secretion and localized transcriptionsuggest a role in positional signaling for products of the segmentationgene hedgehog[J]. Cell,1992,71(1):33-50
    8Mohler J, Vani K. Molecular organization and embryonic expression ofthe hedgehog gene involved in cell-cell communication in segmentalpatterning of Drosophila[J]. Development,1992,115(4):957-71
    9Tabata T, Eaton S, Kornberg TB. The Drosophila hedgehog gene isexpressed specifically in posterior compartment cells and is a target ofengrailed regulation[J]. Genes Dev,1992,6(12B):2635-45
    10Roelink H, Augsburger A, Heemskerk J, et al. Floor plate and motorneuron induction by vhh-1, a vertebrate homolog of hedgehog expressedby the notochord[J]. Cell,1994,76(4):761-75
    11Marigo V, Roberts DJ, Lee SM, et al. Cloning, expression, andchromosomal location of SHH and IHH: two human homologues of theDrosophila segment polarity gene hedgehog[J]. Genomics,1995,28(1):44-51
    12Echelard Y, Epstein DJ, St-Jacques B, et al. Sonic hedgehog, a member ofa family of putative signaling molecules, is implicated in the regulationof CNS polarity[J]. Cell,1993,75(7):1417-30
    13Cohen MM Jr. The hedgehog signaling network[J]. Am J Med Genet A,2003,123A(1):5-28
    14Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transductionnetwork[J]. Sci Signal,2012,5(246):re6
    15Kornberg TB. Barcoding Hedgehog for intracellular transport[J]. SciSignal,2011,4(200):pe44
    16Varjosalo M, Taipale J. Hedgehog: functions and mechanisms[J]. GenesDev,2008,22(18):2454-72
    17Yao HH, Whoriskey W, Capel B. Desert Hedgehog/Patched1signalingspecifies fetal Leydig cell fate in testis organogenesis[J]. Genes Dev,2002,16(11):1433-40
    18Wijgerde M, Ooms M, Hoogerbrugge JW, et al. Hedgehog signaling inmouse ovary: Indian hedgehog and desert hedgehog from granulosa cellsinduce target gene expression in developing theca cells[J]. Endocrinology,2005,146(8):3558-66
    19Dyer MA, Farrington SM, Mohn D, et al. Indian hedgehog activateshematopoiesis and vasculogenesis and can respecify prospectiveneurectodermal cell fate in the mouse embryo[J]. Development,2001,128(10):1717-30
    20den Brink GR v. Hedgehog signaling in development and homeostasis ofthe gastrointestinal tract[J]. Physiol Rev,2007,87(4):1343-75
    21Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilagedifferentiation by Indian hedgehog and PTH-related protein[J]. Science(80-),1996,273(5275):613-22
    22St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehogsignaling regulates proliferation and differentiation of chondrocytes andis essential for bone formation[J]. Genes Dev,1999,13(16):2072-86
    23Sampath K, Cheng AM, Frisch A, et al. Functional differences amongXenopus nodal-related genes in left-right axis determination[J].Development,1997,124(17):3293-302
    24Pagan-Westphal SM, Tabin CJ. The transfer of left-right positionalinformation during chick embryogenesis[J]. Cell,1998,93(1):25-35
    25Schilling TF, Concordet JP, Ingham PW. Regulation of left-rightasymmetries in the zebrafish by Shh and BMP4[J]. Dev Biol,1999,210(2):277-87
    26Watanabe Y, Nakamura H. Control of chick tectum territory alongdorsoventral axis by Sonic hedgehog[J]. Development,2000,127(5):1131-40
    27Meyer NP, Roelink H. The amino-terminal region of Gli3antagonizes theShh response and acts in dorsoventral fate specification in the developingspinal cord[J]. Dev Biol,2003,257(2):343-55
    28Chen MH, Wilson CW, Chuang PT. SnapShot: hedgehog signalingpathway[J]. Cell,2007,130(2):386
    29Ingham PW. Transducing Hedgehog: the story so far[J]. EMBO J,1998,17(13):3505-11
    30Murone M, Luoh SM, Stone D, et al. Gli regulation by the opposingactivities of fused and suppressor of fused[J]. Nat Cell Biol,2000,2(5):310-2
    31Ruiz iAA, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours,embryos and stem cells[J]. Nat Rev Cancer,2002,2(5):361-72
    32Jacob J, Briscoe J. Gli proteins and the control of spinal-cordpatterning[J]. EMBO Rep,2003,4(8):761-5
    33Ruiz iAA, Mas C, Stecca B. The Gli code: an information nexusregulating cell fate, stemness and cancer[J]. Trends Cell Biol,2007,17(9):438-47
    34Villavicencio EH, Walterhouse DO, Iannaccone PM. The sonichedgehog-patched-gli pathway in human development and disease[J].Am J Hum Genet,2000,67(5):1047-54
    35Taipale J, Cooper MK, Maiti T, et al. Patched acts catalytically tosuppress the activity of Smoothened[J]. Nature,2002,418(6900):892-7
    36Astorga J, Carlsson P. Hedgehog induction of murine vasculogenesis ismediated by Foxf1and Bmp4[J]. Development,2007,134(20):3753-61
    37Laufer E, Nelson CE, Johnson RL, et al. Sonic hedgehog and Fgf-4actthrough a signaling cascade and feedback loop to integrate growth andpatterning of the developing limb bud[J]. Cell,1994,79(6):993-1003
    38Pola R, Ling LE, Silver M, et al. The morphogen Sonic hedgehog is anindirect angiogenic agent upregulating two families of angiogenic growthfactors[J]. Nat Med,2001,7(6):706-11
    39Gustafsson MK, Pan H, Pinney DF, et al. Myf5is a direct target oflong-range Shh signaling and Gli regulation for muscle specification[J].Genes Dev,2002,16(1):114-26
    40Vokes SA, Ji H, McCuine S, et al. Genomic characterization ofGli-activator targets in sonic hedgehog-mediated neural patterning[J].Development,2007,134(10):1977-89
    41Saxen L, Sariola H, Lehtonen E. Sequential cell and tissue interactionsgoverning organogenesis of the kidney[J]. Anat Embryol (Berl),1986,175(1):1-6
    42Hu MC, Mo R, Bhella S, et al. GLI3-dependent transcriptional repressionof Gli1, Gli2and kidney patterning genes disrupts renalmorphogenesis[J]. Development,2006,133(3):569-78
    43Valentini RP, Brookhiser WT, Park J, et al. Post-translational processingand renal expression of mouse Indian hedgehog[J]. J Biol Chem,1997,272(13):8466-73
    44Jenkins D, Winyard PJ, Woolf AS. Immunohistochemical analysis ofSonic hedgehog signalling in normal human urinary tract development[J].J Anat,2007,211(5):620-9
    45Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferationand differentiation of mesenchymal cellsin the mouse metanephrickidney[J]. Development,2002,129(22):5301-12
    46Cain JE, Islam E, Haxho F, et al. GLI3repressor controls nephronnumber via regulation of Wnt11and Ret in ureteric tip cells[J]. PLOSONE,2009,4(10):e7313
    47Pasca dMM, Hebrok M. Hedgehog signalling in cancer formation andmaintenance[J]. Nat Rev Cancer,2003,3(12):903-11
    48Muenke M, Beachy PA. Genetics of ventral forebrain development andholoprosencephaly[J]. Curr Opin Genet Dev,2000,10(3):262-9
    49Hill RE, Heaney SJ, Lettice LA. Sonic hedgehog: restricted expressionand limb dysmorphologies[J]. J Anat,2003,202(1):13-20
    50McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinicalsignificance of hedgehog signaling[J]. Curr Top Dev Biol,2003,53:1-114
    51Zhang L, Chen XM, Sun ZJ, et al. Epithelial expression of SHH signalingpathway in odontogenic tumors[J]. Oral Oncol,2006,42(4):398-408
    52Kim PC, Mo R, Hui CC. Murine models of VACTERL syndrome: Roleof sonic hedgehog signaling pathway[J]. J Pediatr Surg,2001,36(2):381-4
    53Dubourg C, Lazaro L, Pasquier L, et al. Molecular screening of SHH,ZIC2, SIX3, and TGIF genes in patients with features ofholoprosencephaly spectrum: Mutation review and genotype-phenotypecorrelations[J]. Hum Mutat,2004,24(1):43-51
    54Benzacken B, Siffroi JP, Le BC, et al. Different proximal and distalrearrangements of chromosome7q associated with holoprosencephaly[J].J Med Genet,1997,34(11):899-903
    55Lurie IW, Ilyina HG, Podleschuk LV, et al. Chromosome7abnormalitiesin parents of children with holoprosencephaly and hydronephrosis[J]. AmJ Med Genet,1990,35(2):286-8
    56Weber S, Landwehr C, Renkert M, et al. Mapping candidate regions andgenes for congenital anomalies of the kidneys and urinary tract (CAKUT)by array-based comparative genomic hybridization[J]. Nephrol DialTransplant,2011,26(1):136-43
    57Cain JE, Rosenblum ND. Control of mammalian kidney development bythe Hedgehog signaling pathway[J]. Pediatr Nephrol,2011,26(9):1365-71
    58Johnston JJ, Olivos-Glander I, Killoran C, et al. Molecular and clinicalanalyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes:robust phenotype prediction from the type and position of GLI3mutations[J]. Am J Hum Genet,2005,76(4):609-22
    59Bose J, Grotewold L, Ruther U. Pallister-Hall syndrome phenotype inmice mutant for Gli3[J]. Hum Mol Genet,2002,11(9):1129-35
    60Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouserequires intraflagellar transport proteins[J]. Nature,2003,426(6962):83-7
    61Pan J, Wang Q, Snell WJ. Cilium-generated signaling and cilia-relateddisorders[J]. Lab Invest,2005,85(4):452-63
    62Kyttala M, Tallila J, Salonen R, et al. MKS1, encoding a component ofthe flagellar apparatus basal body proteome, is mutated in Meckelsyndrome[J]. Nat Genet,2006,38(2):155-7
    63Saeki H, Kondo S, Morita T, et al. Immotile cilia syndrome associatedwith polycystic kidney[J]. J Urol,1984,132(6):1165-6
    64Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of ciliain development and disease[J]. Hum Mol Genet,2003,12Spec No1:R27-35
    65Corbit KC, Aanstad P, Singla V, et al. Vertebrate Smoothened functions atthe primary cilium[J]. Nature,2005,437(7061):1018-21
    66Tran PV, Haycraft CJ, Besschetnova TY, et al. THM1negativelymodulates mouse sonic hedgehog signal transduction and affectsretrograde intraflagellar transport in cilia[J]. Nat Genet,2008,40(4):403-10
    67Chan SK, Riley PR, Price KL, et al. Corticosteroid-induced kidneydysmorphogenesis is associated with deregulated expression of knowncystogenic molecules, as well as Indian hedgehog[J]. Am J Physiol RenalPhysiol,2010,298(2):F346-56
    68Li B, Rauhauser AA, Dai J, et al. Increased hedgehog signaling inpostnatal kidney results in aberrant activation of nephron developmentalprograms[J]. Hum Mol Genet,2011,20(21):4155-66
    69Attanasio M, Uhlenhaut NH, Sousa VH, et al. Loss of GLIS2causesnephronophthisis in humans and mice by increased apoptosis andfibrosis[J]. Nat Genet,2007,39(8):1018-24
    70Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement forhedgehog signalling in cancer[J]. Nature,2008,455(7211):406-10
    71Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restrictedto the stromal compartment during pancreatic carcinogenesis[J]. ProcNatl Acad Sci U S A,2009,106(11):4254-9
    72Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehogsignaling enhances delivery of chemotherapy in a mouse model ofpancreatic cancer[J]. Science (80-),2009,324(5933):1457-61
    73Dormoy V, Danilin S, Lindner V, et al. The sonic hedgehog signalingpathway is reactivated in human renal cell carcinoma and plays orchestralrole in tumor growth[J]. Mol Cancer,2009,8:123
    74Dormoy V, Jacqmin D, Lang H, et al. From development to cancer:lessons from the kidney to uncover new therapeutic targets[J]. AnticancerRes,2012,32(9):3609-17
    75Cutcliffe C, Kersey D, Huang CC, et al. Clear cell sarcoma of the kidney:up-regulation of neural markers with activation of the sonic hedgehogand Akt pathways[J]. Clin Cancer Res,2005,11(22):7986-94
    76Schnidar H, Eberl M, Klingler S, et al. Epidermal growth factor receptorsignaling synergizes with Hedgehog/GLI in oncogenic transformation viaactivation of the MEK/ERK/JUN pathway[J]. Cancer Res,2009,69(4):1284-92
    77Fabian SL, Penchev RR, St-Jacques B, et al. Hedgehog-Gli pathwayactivation during kidney fibrosis[J]. Am J Pathol,2012,180(4):1441-53
    78Stewart GA, Hoyne GF, Ahmad SA, et al. Expression of thedevelopmental Sonic hedgehog (Shh) signalling pathway is up-regulatedin chronic lung fibrosis and the Shh receptor patched1is present incirculating T lymphocytes[J]. J Pathol,2003,199(4):488-95
    79Omenetti A, Porrello A, Jung Y, et al. Hedgehog signaling regulatesepithelial-mesenchymal transition during biliary fibrosis in rodents andhumans[J]. J Clin Invest,2008,118(10):3331-42
    80Omenetti A, Bass LM, Anders RA, et al. Hedgehog activity,epithelial-mesenchymal transitions, and biliary dysmorphogenesis inbiliary atresia[J]. Hepatology,2011,53(4):1246-58
    81Ding H, Zhou D, Hao S, et al. Sonic hedgehog signaling mediatesepithelial-mesenchymal communication and promotes renal fibrosis[J]. JAm Soc Nephrol,2012,23(5):801-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700