用户名: 密码: 验证码:
刺五加体细胞胚发生机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物体细胞胚胎发生是指植物体细胞在特定条件下未经性细胞融合而发育成胚状体的形态发生过程。它在快速繁殖、人工种子、种质保存、基因工程等领域具有广阔的应用前景和巨大的经济价值。体细胞胚发生是细胞全能性的具体体现,重演了合子胚形态发生的过程,为此深入地研究体细胞胚发生与发育的机制对于揭示细胞分化、发育、形态发生、分子生物学等机制有重要意义。
     本论文以刺五加体细胞胚发生为研究内容,对刺五加体细胞胚发生形态观察、生理生化进行了研究;利用质壁分离处理刺五加合子胚诱导体细胞胚发生,对胼胝质的动态变化与体细胞胚发生的关系进行研究;同时,以刺五加体细胞胚早期发育三个时期为试材,采用Solexa高通量测序技术对刺五加体细胞胚的转录组进行了分析,在此基础上,对三个时期进行了数字基因表达谱分析,对差异表达基因进行功能分析及分类,并筛选与刺五加早期体细胞胚发生相关基因,探讨刺五加的体细胞胚早期发生机制,为进一步研究刺五加体细胞胚发生提供分子资源。主要结果如下:
     1.刺五加体细胞胚发生经历球形胚、心形胚、鱼雷胚、子叶胚,最后发育成体胚苗,测定了刺五加胚性愈伤组织、球形胚、鱼雷胚、子叶胚、体胚苗中的可溶性糖、淀粉、可溶性蛋白含量,同时,对超氧化物歧化酶、过氧化物酶活性进行测定。刺五加胚性愈伤组织中可溶性糖含量最高,随着体细胞胚的发育,含量逐渐降低;淀粉在整个发育时期有2个高峰,球形胚和子叶胚时期;随着体细胞胚的发育,可溶性蛋白含量呈上升趋势,由胚性愈伤组织到球形胚时期上升速度较快;从胚性愈伤组织到成熟体胚苗发育过程中,SOD活性逐渐升高;胚性愈伤组织中POD活性最高,其活性表现出先下降后上升的趋势。这些物质的变化可能与体细胞胚的分化、发育相关。
     2.质壁分离处理产生的胼胝质与体细胞胚发生呈正相关。
     ①质壁分离处理刺五加合子胚诱导体细胞胚的最佳试剂是1.0M甘露醇,其最佳处理时间是12小时。
     ②质壁分离处理过程中和体细胞胚发生过程中,胼胝质含量都有很大的变化。质壁分离处理12小时的外植体材料中,胼胝质含量较高,体细胞胚的发生数目最多。处理外植体材料中的胼胝质在体细胞胚发生过程中先下降,然后随着体细胞胚发生而升高。
     ③利用激光共聚焦显微镜观察胼胝质沉积情况,质壁分离处理刺五加合子胚时,胼胝质主要沉积在细胞膜周围。质壁分离处理诱导体细胞胚发生过程中,胼胝质在不同组织沉积有较大的差别,在表皮和维管组织中有大量的沉积,而在其它组织中沉积很少。
     ④胚性愈伤组织中可观察到大量胼胝质的沉积,而非胚性愈伤组织中观察不到胼胝质的沉积。
     ⑤胼胝质抑制剂(2-DDG)的加入,降低了体细胞胚的诱导率和每个外植体产生的体细胞胚数,体细胞胚发生率仅为11.5%。
     3.刺五加早期体细胞胚转录组测序总共进行58,327,688次读数,最后共获得75,803个Unigene。这些Unigene被COC、GO、KEGG进行注释。数字基因表达谱表明刺五加不同发育阶段(EC, YEC, GE)基因表达差异情况。每个样本获得5.6M以上的tags,获得了不同发育阶段差异表达的基因,对差异表达基因进行GO和Pathway分析,筛选到一些与刺五加早期体细胞胚发生相关基因。
Plant somatic embryogenesis means the process of morphogenesis of somatic cell developing into embryoid without sexual cell fusion under given conditions. It has broad application prospect and huge economic values in rapid propagation, artificial seeds, germplasm conservation, plant genetic engineering and other fields. Somatic embryogenesis is not only a concrete manifestation of totipotence of cells, but also a reappearance process of the zygotic embryo morphogenesis, so the study on somatic embryogenesis and developmental mechanisms has a very important significance for revealing the molecular biology mechanisms of cell differentiation, cell development and morphogenesis.
     In this study, the somatic embryogenesis of Eleutherococcus senticosus was studied on the basis of the morphological observation, physiological and biochemical characteristics test. The relationship between dynamic changes of callose and somatic embryogenesis was analyzed through plasmolyzing the zygotic embryos of Eleutherococcus senticosus to induce somatic embryogenesis; meanwhile, through Solexa high-throughput sequencing technology, transcriptome of somatic embryo, which are in three periods of early development of Eleutherococcus senticosus, were analyzed. Further more, the digital gene expression profiles of those materials were analyzed, including function analysis and classification of differentially expressed genes, as well as screening genes related to early somatic embryogenesis of Eleutherococcus senticosus. The purpose is to explore mechanism of early somatic embryogenesis, which will provide molecular resources for further study on somatic embryogenesis of Eleutherococcus senticosus. The main results as follows:
     1. The somatic embryogenesis of Eleutherococcus senticosus includes five phases: globular, heart-shaped, torpedo, cotyledon embryo and finally somatic embryo seedling. Soluble sugars, starch, soluble protein content, superoxide dismutase, peroxidase activity in embryonic calli, globular, torpedo, cotyledon embryos, and seedlings were measured. The content of soluble sugar was the highest in embryonic calli and gradually reduced with developing of somatic embryos; there are two peaks of starch content during the whole development:in globular and cotyledon embryo period. Soluble protein content increased along the development of somatic embryos, with higher speed when somatic embryos developing from embryonic calli to globular embryos; SOD activity increased gradually from embryonic calli to somatic embryos seedlings; The POD activity was the highest in embryonic calli, which showed tend of down first and up later. The changes of these substances might be related with the differentiation and development of somatic embryos.
     2. There was positive correlation between somatic embryogenesis and callose produced after plasmolysis treatment.
     ①The best reagent is1.0M mannitol and the optimum treatment time was12hours for zygotic embryos of Eleutherococcus senticosus treated by plasmolysis.
     ②The callose content changed a lot during plasmolysis treatment and somatic embryogenesis, with the trends of decrease first and then increase with somatic embryogenesis. Callose content was higher and the number of somatic embryos was the biggest after12hours treatment of plasmolysis.
     ③Confocal laser scanning microscope was used to observe callose deposition, which showed great difference in different tissues during somatic embryogenesis after being treated by plasmolysis. There were a large number of callose deposition in the epidermis and vascular tissue mainly around the cytomembrane, while very little in other tissues.
     ④A number of callose deposition can be observed in embryonic calli, but not in non-embryonic calli.
     ⑤Adding of2-DDG decreased the induction of somatic embryos and the numbers of somatic embryos produced by each explants, while incidence rate of somatic embryo was only11.5%.
     3.58,327,688sequencing reads were obtained by transcriptome sequencing of Eleutherococcus senticosus, which were eventually assembled into75,803unigenes. In order to understand these gene functions, they were annotated with Clusters of Orthologous Groups (COG), gene orthology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Digital gene expression (DGE) profile showed differences of gene expression at different development stages (EC, YEC, and GE). The differentially expressed genes were analyzed by GO and Pathway. More than5.6million tags per sample were obtained and a large number of differentially expressed genes at different stages of somatic embryogenesis were identified, which included some genes related with early somatic embryogenesis.
引文
[1]黄学林,李莜菊.高等植物组织离体培养的形态建成及其调控.北京:科学出版社,1995.4.
    [2]Yarbrough JA. Anatomical and developmental studies of the foliar embryos of Bryophyllum calycinum. Amer J Bot.1932,9:443-453.
    [3]Jimenez VM. Regulation of in vitro somatic embryogenesis with emphasis onto the role of endogenous hormones. Rev Brasi de Fisio Vegl.2001,13:196-223.
    [4]Williams EG, Maheshwaran G. Somatic embryogenesis:factors influencing coordinate behaviour of cells as an embryogenic group. Ann Bot.1986,57:443-462.
    [5]崔凯荣,戴若兰(主编).植物体细胞胚发生的分子生物学.科学出版社,2000,8.
    [6]周俊彦.植物体细胞胚在组织培养中产生的胚状体Ⅰ.植物体细胞的胚状体发生.植物生理学报.1981,7(4):389-397.
    [7]Davidonis GH, Hamilton RH. Plant regeneration from callus of cotton (Gossypium hirsulum L.). Plant Science Letters.1983,32:89-93.
    [8]Williams B, Tsang A. A maize gene expressed during embryogenesis is abscisic-acid inducible and highly conserved. Plant Mol Biol.1991,16:916-923.
    [9]王萍,王罡,季静,曾凡亭,黄彬城,曹江,吴颖.大豆体细胞胚胎发生与农杆菌介导的遗传转化.遗传.2004,26(5):695-700.
    [10]崔凯荣,裴新梧,秦琳,王君健,王亚馥.ABA对枸杞体细胞胚发生的调节作用.实验生物学报.1998,31(2):195-201.
    [11]Ravishankar Rai V, Mccomb Jen. Direct somatic embryogenesis from mature embryos of sandalwood. Plant Cell Tissue and Organ Culture.2002,69:65-70.
    [12]于志水,张志毅,李云,胡崇福,王胜东.杨树体细胞胚胎发生研究概况.东北林业大学学报.2005,33(1):60-63.
    [13]郏艳虹,熊庆娥.草莓胚状体形态发生的研究.四川农业大学学报.2003,3:263-266.
    [14]由香玲,曲冠证.五加科植物体细胞胚发生研究.科学出版社.2011:4-5.
    [15]谢德意,金双侠,郭小平,张献龙.棉花胚性愈伤组织的转化及转基因体细胞胚的有效萌发与成苗技术研究.2007,33(5):751-756.
    [16]Antony C, Ignacimuthu S. Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet(Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant.2008,44:427-435.
    [17]Gaj M D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul.2004, 43:27-47.
    [18]Leljak-Levanic D, Naana B, Jelaska M S. Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep.2004,23:120-127.
    [19]Lo Schiavo F, Pitto L, Giuliano G, Torti G, Nuit-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M. DNA methylation of embryogenic carrot cell culture and its variation as caused by mutation differentiation hormones and hypomethyalating. Theory Apply Genet.1989,77:325-331.
    [20]Yoon H W, Kim M C, Shin P G, Kim J S, Kim C Y, Lee S Y, Hwang I, Bahk J D, Hong J C, Han C, Cho M J. Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus. Mol Gen Genet.,1997,255:359-371.
    [21]Loschiavo F, Filippini F, Cozzani F, Vallone D, Terzi M. Modulation of Auxin-Binding Proteins in Cell Suspensions:Differential Responses of Carrot Embryo CultUres. Plant Physiol.1991,97(1):60-64.
    [22]Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y. Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. Plant Physiol.2005,162:47-54.
    [23]Xiao W, Custard K D, Brown R C, Lemmon B E, Harada J J, Goldberg R B, Fischer R L DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell. 2006,18:805-814.
    [24]Thibaud-Nissen F, Shealy R T, Khanna A, Vodkin LO. Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol.2003,132:118-136.
    [25]Sharma S K, Millam S, Hedley P E, McNicol J, Bryan G J. Molecular regulation of somatic embryogenesis in potato:an auxin led perspective. Plant Mol Biol.2008,68:185-201.
    [26]Kamada H, Kobayashi T, Kiyosue T, Hrada H. Stress-induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Biol.1989,25:1163-1166.
    [27]Kiyosue T, kamada H, Harad H. Induction of somatic embryogenesis by salt stress in carrot. Plant Tissue Culture Lett.1989,6:162-164.
    [28]Kamada H, Ishikawa K, Saga H, Harada H. Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Culture Lett.1993,10:38-44.
    [29]Kiyosue T, Takano K, Kamada H, Harad H. Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot.1990,68:2301-2303.
    [30]Ikeda-lwai M, Umehara M, Satoh S, Kamada H. Stress-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. The Plant Journal,2003,34:107-114.
    [31]Lou H, Kako S. Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Sci. Hortic.1995,64:1-20.
    [32]Lou H, Kako S. Somatic embryogenesis and plant regeneration in cucumber. Hort Science. 1994,29:906-909.
    [33]You X, Yi JS, Choi YE. Cellular changes of zygotic embryos of Eleutherococcus senticosus by plasmolyzing pretreatment result in high frequency single cell-derived somatic embryogenesis. Protoplasma.2006,227:105-112.
    [34]Alkhateeb AA. Somatic embryogenesis in Date Palm(Phoenix dactylifera L.) cv. Sukary in response to sucrose and polyethyleneglycol. Biotechnology,2006,5:466-470.
    [35]Kyom, Harada H. Studies on conditions for cell division and embryogenesis in isolated pollen culture of Nicotiana rustica. Plant Physiol.1985,79:90-94.
    [36]Pechan PM. Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep.1989,8:387-390.
    [37]Nolan K E, Rose R J. Plant regeneration from cultured Medicago truncatula with particular reference to abscisic acid and light treatments. J. Bot.1998,46:15-160.
    [38]Nishiw Aki M, Fujion K, Koda Y, Masu Da K, Kikut AY. Somatic embryogenesis in duced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta.2000,211:756-759.
    [39]Kosue T, Yam Aug Chishionzaki K, Shiozakiki K, Higashi K, Satoh S, Kamada H, H arada H. Isolation and characterization of a cDNA that encodes EC P31, an embryogenic cell protein from carrot. Plant Mol Biol.1992,19:239-249.
    [40]Kikuch I A, Sanuki N, Higashi K, Koshiba T, Kamada H. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta,2006,223:637-645.
    [41]Verma DP, Hong Z. Plant callose synthase complex. Plant Mol Biol.2001,47:693-701.
    [42]Dong J Z, Dunstan D I. Endochitinase and beta-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta.1997,201:189-194.
    [43]Wendt dos Santos A L, Steier N, Guerra M P, Zoglauer K, Moerschbacher B M. Somatic embryogenesis in Araucaria angustifolia. Plant Biol (Stuttg).2008,52:195-199.
    [44]Helleboid S, Couillerot J P, Hilbert J L, Vasseur J. Effects of adifluoro methylarginine on embryogenesis, polyamine content and protein patterns in a Cichorium hybrid. Planta. 1995,196:571-576.
    [45]Helleboid S, Hendriks T, Bauw G, InzeD, Vasseur J, Hilbert J-L. Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J Exp Bot.2000, 51:1189-1200.
    [46]Van Hengel A J, van Kammen A, De Vries S C. A relationship between seed development, Arabinogalactan-protein (AGPs) and the AGP mediated promotion of somatic embryogenesis. Plant Physiol.2002,114:637-644.
    [47]Chlan C A, Bourgeois P B. Class I chitinases in cotton (Gossypium hirsutum): characterization, expression and purification. Plant Sci.2001,161:143-154.
    [48]Petruzzelli L, Kunz C, Waldvogel R, Meins F J, Leubner-Metzger G. Distinct ethylene and tissue specific regulation of beta-1,3-glucanases and chitinases during pea seed germination. Planta.1999,209:195-201.
    [49]Barany I, Testillano P S, Mityko J, Risueno M C. The switch of the microspore program in Capsicum involves HSP70 expression and leads to the production of haploid plants. Int. J.Dev.Biol.2001,45:39-40.
    [50]Van Hengel A, Guzzo F, Van Kammen A B, De Vries S C. Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol.1998,117:43-53.
    [51]De Jong A J, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries S C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell.1992, 4(4):425-433.
    [52]Dyachok J V, Wiweger M, Kenne L, Von Arnold S. Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol. 2002,128:523-533.
    [53]Kitamiya E, Suzuki S, Sano T, Nagata T. Isolation of two genes that were induced upon initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep.2000,19:551-557.
    [54]Fowler M R, Ong LM, Russinova E, Atanassov A I, Scott N W, Slater A, Elliott M C. Early changes in gene expression during direct somatic embryogenesis in alfalf are veiled by RAP-PCR. J Exp Bot.1998,49:249-253.
    [55]Dong J, Dunstan D I. Expression of abundant mRNAs during somatic embryogenesis of white spruce. Planta.2000,199:459-466.
    [56]张蕾.日本落叶松×华北落叶松体细胞胚胎发生的生化机制和分子机理研究.中国林业科学研究院博士论文.2008,33.
    [57]乔琦,肖娅萍.防风体细胞胚发生发育中的淀粉体和多糖动态.西北植物学报.2007,27(2):0388-0391.
    [58]Lippert D, Zhuang J, Ralph S, Ellis D, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas C J, Bohlmann J. Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics.2005,5(2):461-473.
    [59]崔凯荣,任红旭,邢更妹,王亚馥.枸杞组织培养中抗氧化酶活性与体细胞胚发生相关性的研究.兰州大学学报:自然科学版.1998,34(3):93-99.
    [60]鲁旭东.石刁柏UC800体细胞胚发生系统的建立及其生理生化机理研究.湖南农业大学博士论文.2004,42.
    [61]P. Che, T.M. Love, B.R. Frame, K. Wang, A.L. Carriqiquiry, S.H. Howell, Gene expression pattern during somatic embryo development and germination in maize Hi Ⅱ callus cultures, Plant Mol Biol.2006,62:1-14.
    [62]吴琼,孙超,陈士林,罗红梅,李滢,孙永珍,牛云云.转录组学在药用植物研究中的应用.世界科学技术.2010,12(3):457-462.
    [63]Jagadeeswaran G, Zheng Y, Sumathipala N, Jiang H, Arrese EL, Soulages JL, Zhang W, Sunkar R. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved anel microRNAs and microRNA-stars during silkworm development. BMC Genomics.2010,11:52.
    [64]Zhang H, Yang JH, Zheng YS, Zhang P, Chen X, Wu J, Xu L, Luo XQ, Ke ZY, Zhou H, Qu LH, Chen YQ. Genome-wide analysis of small RNA and novel MicroRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach. PLoS One.2009,4(9):e6849.
    [65]Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res.2009,37:W68-76.
    [66]Wallerman O, Motallebipour M, Enroth S, Patra K, Bysani MS, Komorowski J, Wadelius C. Molecular interactions between HNF4a, FOXA2 and GABP identified at regulatory DNA elements through ChIP2 sequencing. Nucleic Acids Res.2009,37:7498-7508.
    [67]Zhang Z D, Rozowsky J, Snyder M, Chang J, GersteinM. Modeling ChIP sequencing in silico with applications. PLoS Comput Biol.2008;4:e1000158.
    [68]李滢,孙超,罗红梅,牛云云,陈士林.基于高通量测序454 GS FLX的丹参转录组学研究.药学学报,2010,45(4):524-529.
    [69]Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S. De novo sequencing and analysis of American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics.2010, 11:262.
    [70]Li Y, Luo HM, Sun C, Song J Y, Sun YZ, Wu Q, Wang N, Yao H, Steinmetz A, Chen SL. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics.2010,11:268.
    [71]Wu Q, Song J, Sun Y, Suo F, Li C, Luo H, Liu Y, Li Y, Zhang X, Yao H, Li X, Hu S, Sun C. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Physiol Plantarum.2010,138:134-149.
    [72]李庆勇,付玉杰,吕欣,张莹,祖元刚.超声法提取刺五加中丁香苷的研究.植物研究.2003,23(2):182-184.
    [73]祝宁,卓丽环,臧润国.刺五加会成为濒危种吗?生物多样性.1998,6(4):253-259.
    [74]Gui Y, Guo Z, Ke S, Skirvin RH. Somatic embryogenesis and plant regeneration in Eleutherococcus senticosus. Plant Cell Rep.1991,9:514-516.
    [75]Choi YE, Kim JW, Yoon ES. High frequency of plant production via somatic callus or cell suspension cultures in Eleutheroeoceus sentieosus. Ann.of Bot.1999,83:309-314.
    [76]Choi YE, Yang DC, Yoon ES. Rapid propagation of Eleutherococcus senticosus via direct somatic embryogenesis from explants of germinating zygotic embryos. Plant Cell Tiss Org Cult.1999,58:93-97.
    [77]Choi YE, Jeong JH. Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Rep.2002,20:1112-1116.
    [78]Choi YE, Lee KS, Kim EY, Kim YS, Han JY, Kim HS, Jeong JH, Ko SK. Mass Production of Siberian ginseng plantlets through large-scale tank culture of somatic embyos. Plant Cell Rep.2002,21:24-28.
    [79]Han JY, Choi YE. Mass production of Eleutheroeoceus sentieosus plants through in vitro cell culture. Kor J.Plant Biotechnology.2003,30:167-172.
    [80]Choi Y E, Katsumi M, Sano H. Triiodobenzoic acid an auxin polar transport inhibitor, suppresses somatic embryo formation and postembryonic shoot/root development in Eleutherococcus senticosus. Plant Sci.2001,160:1183-1190.
    [81]邢朝斌.刺五加叶柄的体细胞胚胎发生研究.中草药.2009,8:1302-1305.
    [82]Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE. Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry.2005,66:869-877.
    [83]Shohael AM, Ali MB, Hahn EJ, Paek KY. Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor. Plant Cell Tiss Org Cult.2007,89:121-129.
    [84]You XL, Yi JS, Choi YE. Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma.2006,227:105-112.
    [85]Chakrabarty D, Yu KW, Paek KY. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus). Plant Sci.2003,165:61-68.
    [86]盛德策,李凤兰,刘忠.植物体细胞胚发生的细胞生物学研究进展.西北植物学报.2008,28(1):0204-0215.
    [87]Halperin W. Embryos from somatic plant cells. Symposium intemational journal of Biochemistry cell biology,1970,1(9):169-191.
    [88]汪丽虹,王星,崔凯荣,焦成谨,王亚馥.石刁柏及党参体细胞胚发生中的淀粉代谢动态.植物学通报.1996,13(1):41-45.
    [89]邢更生,崔凯荣,戴若兰,李彬,山仑.小麦胚性细胞发生中的淀粉代谢动态的量化研究.兰州大学学报(自然科学版).1998,4(1):128-132.
    [90]邱全胜,敬兰花,杨成德,贾敬芬.小麦体细胞胚胎发生过程中核酸和可溶性蛋白质的变化.西北植物学报.1992,12(4):253-258.
    [91]St Clair DK, Oberley TD, Muse K E, St Clair WH. Expression of manganese superoxide sismutase promotes cellular differentiation. Free Radicals in Biology and Medicine.1994, 16(1):275-282.
    [92]Hirano Y, Pannatier E G, Zimmermann S, Brunner I. Induction of callose in roots of Norway spruce seedlings after short-term exposure to aluminum. Tree Physiol.2004,24, 1279-1283.
    [93]Jaffe MJ, Leopold AC. Callose deposition during gravitropism of Zea mays and Pisum sativum and tis inhibition by 2-deoxy-glucose. Planta.1984,161:20-26.
    [94]Kiyosue T, kamada H, Harad H. Induction of somatic embryogenesis by salt stress in carrot. Plant Tissue Culture Lett.1989,6:162-164.
    [95]Kamada H, Ishikawa K, Saga H, Harada H. Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Culture Lett.1993,10:38-44.
    [96]Ikeda-lwai M, Umehara M, Satoh S, Kamada H. Stress-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. The Plant Journal.2003,34:107-114.
    [97]Dubois T, Guedira M, Dubois J, Vasseur J. Direct somatic embryogenesis in leaves of Cichorium. A histological and S.E.M study of early stages. Protoplasma.1991,162:120-127.
    [98]Dubois T, Guedira M, Dubois J, Vasseur J. Direct somatic embryogenesis in roots of Cichorium:is callose an early marker? Annals of Botany,1990,65:539-545.
    [99]Pedroso MC, Pais MS. Factors controlling somatic embryogenesis. Plant Cell Tissue and Organ Culture.1995,43:147-154.
    [100]Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferriere N, Nicole M. Ultrastructural changes in Cocunut calli-associated with the acquisition of embryogenic competence. Ann. Bot.2001,88:9-21.
    [101]郝建华,强胜.被子植物有性和无融合生殖过程中胼胝质壁的动态变化及其生物学意义.植物生理学通讯.2006,42:141-146.
    [102]Helleboid S, Chapman A, Hendriks T, Inze D, Vasseur J, Hilbert JL. Cloning of β-1,3-glucanases expressed during Cichorium somatic embryogenesis. Plant Molicular Biology. 2000,42:377-386.
    [103]Buchner P, Rochat C, Wuilleme S, Boutin JP. Characterization of a tissue-specific and devekopmentally regulated β-1,3-glucanase gene in pea(Pisum sativum). Plant Molecular Biology.2002,49:171-186.
    [104]Abercrombie J M, O'Mearam B C, Moffett A R, Williams J H. Developmental evolution of flowering plant pollen tube cell walls:Callose synthase (CalS) gene expression patterns. EvoDevo.2011,2:1-14.
    [105]Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma D P. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J.2005,42,315-328.
    [106]Hofmann J, Youssef-Banora M, de Almeida-Engler J, Grundler F M. The role of callose deposition along plasmodesmata in nematode feeding sites. Mol Plant Microb. Interact. 2010,23:549-557.
    [107]Cueva A, Concia L, Cella R. Molecular characterization of a Cyrtochilum loxense Somatic Embryogenesis Receptor-like Kinase (SERK) gene expressed during somatic embryogenesis. Plant Cell Rep.2012,31(6):1129-1139.
    [108]Feher A, Pasternak TP, Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult.2003,74:201-228.
    [109]Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ. Pluripotent versus totipotent plant stem cells:dependence versus autonomy? Trends Plant Sci.2007,12(6):245-252.
    [110]Garrocho-Villegas V, de Jesus-Olivera MT, Quintanar ES. Maize somatic embryogenesis: recent features to improve plant regeneration. Methods Mol Biol.2012,877:173-182.
    [111]Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta.2006,223(4):637-45.
    [112]Cangahuala-Inocente GC, Villarino A, Seixas D, Dumas-Gaudot E, Terenzi H, Guerra MP. Differential proteomic analysis of developmental stages of Acca sellowiana somatic embryos. Acta Physiol Plant.2009,31:501-514.
    [113]Shougong Zh, Jian Zh,Suying H, Wenhua Y, Wanfeng L, Huali W, Xinmin L, Liwang Q. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophy Res Commun. 2010,398:355-360.
    [114]Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta.2012,236(2):647-657.
    [115]Junker A, Monke G, Rutten T, Keilwagen J, Seifert M, Thi TM, Renou JP, Balzergue S, Viehover P, Hahnel U, Ludwig-Muller J, Altschmied L, Conrad U, Weisshaar B, Baumlein H. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J.2012,71(3):427-42.
    [116]Legrand S, Hendriks T, Hilbert JL, Quillet MC. Characterization of expressed sequence tags obtained by SSH during somatic embryogenesis in Cichorium intybus L. BMC Plant Biol.2007,7:27.
    [117]Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol.2006,60:167-183.
    [118]Su N, He K, Jiao Y, Chen C, Zhou J, Li L, Bai S, Li X, Deng XW. Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Mol Biol.2007,63:337-349.
    [119]Singla B, Tyagi AK, Khurana JP, Khurana P. Analysis of expression profile of selected genes expressed during auxininduced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol.2007,65:677-692.
    [120]Stasolla C, Bozhkov PV, Chu TM, Van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, Von Arnold S, Sederoff RR. Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol.2004,24:1073-1085.
    [121]Aquea F, Arce-Johnson P. Identification of genes expressed during early somatic embryogenesis in Pinus radiate. Plant Physiol Biochem.2008,46:559-568.
    [122]Hamann T, Mayer U, Jiirgens G. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development.1999,126:1387-1395.
    [123]Lin HC, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, Tranbarger TJ. Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis:evidence for conserved gene functions in early development. Plant Mol Biol. 2009,70:173-192.
    [124]Wu XM, Li FG, Zhang CJ, Liu CL, Zhang XY. Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. J Plant Physiol.2009,166:1275-1283.
    [125]Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods.2008, 5(1):16-18.
    [126]Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol.,2009, 25:195-203.
    [127]Wenping H, Yuan Z, Jie S, Lijun Z, Zhezhi W. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics.2011,98(4):272-279.
    [128]Iseli C, Jongeneel CV, Bucher P. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol.1999,138-148.
    [129]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat biotechnol. 2011,29(7):644-652.
    [130]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics.21(18):3674-3676.
    [131]Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J. WEGO:a web tool for plotting GO annotations. Nucleic Acids Res.2006 34:W293-297.
    [132]'t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res.2008,36(21):e141.
    [133]Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA. Next-generation tag sequencing for cancer gene expression profiling. Genome Res.2009,19(10):1825-1835.
    [134]Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997,7(10):986-95.
    [135]Correia S, Vinhas R, Manadas B, Lourenco AS, Verissimo P, Canhoto JM. Comparative proteomic analysis of auxin-induced embryogenic and nonembryogenic tissues of the solanaceous tree Cyphomandra betacea (Tamarillo). J Proteome Res.2012,11(3):1666-1675.
    [136]Dowlatabadi R, Weljie AM, Thorpe TA, Yeung EC, Vogel HJ. Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiology and Biochem.2009,47:343-350.
    [137]Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteuffel R.Calreticulin expression in plant cells:developmental regulation, tissue specificity and intracellular distribution. Planta.1998,206:504-514.
    138] Barizza E, Lo Schiavo F, Terzi M, Filippini F. Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS Lett.1999, 447:191-194.
    [139]Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell.2002,14 SupplrS 185-205.
    [140]Rolland F, Winderickx J, Thevelein JM. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci.2001,26(5):310-317.
    [141]Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta.2012,18,19(2):120-128.
    [142]Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP. The Mg-chelatase H subunit of arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell.2010,22(6):1909-1935.
    [143]Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity Plant Physiology.2009,150(4):1648-1655.
    [144]Jiang W, Yu D. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol.,2009,9:96.
    [145]Zhou X, Jiang Y, Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Molecules and Cells.2011,31(4):303-313.
    [146]Li S, Fu Q, Chen L, Huang W, Yu D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta.2011,233(6):1237-1252.
    [147]Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J.2010,63(3):417-429.
    [148]Yuping Q, Diqiu Y. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany.2009,65(1):35-47.
    [149]Mangelsen E, Wanke D, Kilian J, Sundberg E, Harter K, Jansson C.Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. Plant physiol.2010,153(1):14-33.
    [150]Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ.Rushton D L, Tripathi P, Rabara R C, et al. WRKY transcription factors:Key components in abscisic acid signalling. Plant Biotechnology J.2012,10(1):2-11.
    [151]Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. Roles of Arabidopsis WRKY 18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol.2010,10(l):281.
    [152]Hong SW, Jon JH, Kwak JM, Nam HG Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol.1997,113:1203-1212.
    [153]Schmid E D L, Guzzo F,Toonen M A J, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development. 1997,124:2049-2062.
    [154]Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L. Diverse signals converge at MAPK cascades in plant. Plant Physiology and Biochemistry.2006,44(5/6):274-283.
    [155]Zenoni S, Reale L, Tornielli G B, Lanfaloni L, Porceddu A, Ferrarini A, Moretti C, Zamboni A, Speghini A,Ferranti F, Pezzottia M. Down regulation of the Petunia hybrida a-expansin gene PhEXPl reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell.2004,16:295-308.
    [156]Mackinnon I M, Sturcova A, Sugimoto-Shirasu K, His I, McCann M C, Jarvis M C. Cell-wall structure and anisotropy in procuste, a cellulose synthase mutant of Arabidopsis thaliana. Planta.2006,224(2):438-448.
    [157]Grudkowska M, Zagdanska B. Multifunctional role of plant cysteine proteinases. Acta Biochemical Polonica.2004,51(3):609-624.
    [158]秦佳,杨金莹,伊淑莹,刘箭.热激蛋白对细胞凋亡的调节作用.生命科学.2007,19(2):159-163.
    [159]Chugh A, Khurana P. Gene expression during somatic embryogenesis-recent advances. Curr. Sci.2002,83:715-730.
    [160]Ma J, He Y, Hu Z, Xu W, Xia J, Guo C, Lin S, Cao L, Chen C, Wu C, Zhang J. Characterization and expression analysis of AcSERK2, a somatic embryogenesis and stress resistance related gene in pineapple. Gene.2012,500(1):115-123.
    [161]Gaj MD, Zhang S, Harada JJ, Lemaux PG. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta.2005,222(6):977-988.
    [162]Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol.2003,133(2):653-663.
    [163]Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang XD, Vandenbosch KA, Rose RJ. The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol.2008,46(4):1622-1636.
    [164]Cheng ZJ, Zhu SS, Gao XQ, Zhang XS. Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis. Plant Cell Rep.2010,29(8):927-933.
    [165]Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell.2002,14(8):1737-1749.
    [166]Galland R, Blervacq AS, Blassiau C, Smagghe B, Decottignies JP, Hilbert JL. Glutathione-S-Transferase is Detected During Somatic Embryogenesis in Chicory. Plant Signal Behav.2007,2(5):343-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700