用户名: 密码: 验证码:
面向精益生产的传送带式流水线生产调度关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产调度是生产管理中的一个核心问题,其实质是合理地利用有限的资源来完成生产任务分配,以达到一个或多个性能指标的组合优化问题。研究生产调度问题对实施调度的具体生产对象具有很强的依赖性,必须针对性地考虑生产背景。同时,调度过程的指导思想以及调度相关信息的获取都是调度得以实现的基本前提。
     流水线调度(Flow shop)是受到广泛关注的研究问题,基于传送带的流水线生产是制造行业的一种典型生产模式。与传统的流水线作业方式不同,传送带式流水线的线上工件加工速度始终统一,加工时间不仅与工件自身有关,还受到线上其他工件加工时间的影响。由于其特殊的物理结构以及生产过程中的大量约束,加之现代生产条件下众多的不确定因素,导致其较一般的流水线调度问题更为复杂。目前,针对此类流水线的研究特别是关于生产调度的研究相对较少,阻碍了生产系统性能的改善和效率的提高。另一方面,精益生产是一种面向多品种、小批量生产的现代生产管理思想,以其为指导研究生产调度问题,在调度的目标、信息需求以及约束条件等方面都将产生巨大变化。
     本文以传送带式流水线为研究对象,引入精益生产管理思想研究生产调度问题。首先研究理想生产信息环境下的传送带式流水线的调度问题,然后重点从实际调度过程中生产信息获取的不确定性,以及生产过程中出现的不确定因素这两个方面来研究生产调度问题。针对生产信息获取的不确定性问题,根据实际调度过程中对生产信息的需求,研究了RFID与条码相结合的自动标识技术,为实施精益生产和传送带式流水线生产调度提供生产信息保障;在该标识技术基础之上,讨论了其信息采集的不稳定性对生产调度的影响,进而研究了生产信息非理想情况下的传送带式流水线调度模型。针对生产过程中出现的不确定性因素,考虑到生产过程中由于设备故障或订单变动等因素带来的影响,分别从静态和动态两个角度对传送带式流水线上的重调度问题进行了研究。最后,针对现有算法在求解此类调度问题时编码和迭代方式方面存在的缺陷,研究了基于极坐标概率编码的改进人工鱼群算法。
     论文主要内容包括:
     ①分析了面向精益生产的传送带式流水线生产调度的特点,提出理想条件下的传送带式流水线生产调度模型。
     研究传送带式流水线的物理结构和生产模式,分析精益生产中准时制和“零等待”等思想对调度模型的影响,指出现有调度模型不能准确描述此类流水线的实际情况。提出了面向精益生产方式的传送带式流水线调度模型,考虑流水线中线上工件加工速度统一、不同工件之间存在调整间隔和一条流水线上同类工件连续加工等特点,引入并行调度问题,建立了并行传送带式流水线调度模型。
     ②针对实际生产调度对生产信息的需求,以传送带式流水线为研究对象,提出结合RFID与条码技术的对象标识与信息采集技术。
     分析生产信息对实施面向精益生产的传送带式流水线生产调度的重要性,提出一种基于RFID与条码相结合的对象标识与信息采集框架,按照种类和信息支持程度的需求,将生产过程中的零部件和工件按照不同的标识粒度进行管理;从物理层和数据层两个方面进行研究,建立一种RFID与条码结合的对象标识和信息采集技术,为保证生产信息的可靠性和准确性提供支持。
     ③在标识技术应用的背景下,研究考虑生产信息不稳定情况下的生产调度问题,提出一种信息非理想情况下,面向精益生产的传送带式流水线调度模型,并根据并行调度思想,建立并行调度模型。
     针对RFID与条码相结合的对象标识与信息采集技术在传送带式流水线上应用过程中,出现的信息采集时间偏移和漏读的情况,结合传送带运行速度的限制,提出一种考虑信息非理想情况下的单流水线生产调度模型,以及并行流水线调度模型。
     ④在求解传送带式流水线调度问题时,针对传统算法在求解过程中存在的缺陷,提出一种基于极坐标编码的改进人工鱼群算法。
     针对传统算法在求解传送带式流水线生产调度问题时,编码和迭代方式方面存在的缺陷,研究一种基于极坐标编码的改进人工鱼群算法。借鉴概率编码思想,提出一种基于极坐标的概率编码方式;在此基础上,对人工鱼群算法的觅食、聚群和追尾行为进行改进,并根据生产调度求解过程中的特点提出一种格雷码译码方式;最后分析了该算法在求解调度问题中的优势,并通过实验验证算法的有效性和稳定性。
     ⑤使用基于极坐标的改进人工鱼群算法对调度模型进行求解。
     详细分析求解过程中所用到的编码方式、迭代方式、人工鱼个体距离、最优保留机制和约束违反度策略等关键技术;对不同参数的算法求解效果进行比较,选取最优参数的改进算法与人工鱼群算法进行对比实验,对生产调度方案进行优化。实验验证表明:使用理想情况下的调度模型描述生产过程会产生明显偏差,信息非理想情况下建立的模型则更能准确地描述传送带式流水线上实施面向精益生产的生产调度。
     ⑥根据调度方案执行过程中出现的设备故障或订单变动等带来的不确定性因素,研究了传送带式流水线上实施重调度的方法。
     分别从静态和动态两个方面分析传送带式流水线上的重调度问题,针对并行流水线中的设备故障和订单变化的问题进行研究,提出了进行重调度的方法;通过比较实验验证了提出的方法在此类流水线上进行重调度的有效性。
     上述研究工作及结果为在传送带式流水线上实施有效的生产调度和精益生产管理提供了理论和实际应用方面的支持,丰富了流水线调度问题的研究内容、技术和方法,并为制造企业实施精益生产,改善生产调度水平,进而提高生产效率及减低制造成本提供了一条有效的途径。
Production scheduling is one of the key problems in this requirement. Production scheduling is a problem, which concerns the limitied resources to complete tasks in order to optimize one or more objectives. The implement objective, scheduling ideology and information gethering are the key problems in production scheduling.
     Scheduling in flow shop is one of the most popular research problems, and the production mode with conveyor belts is a typical mode in manufacturing industry. Different from other flow shop, the jobs have the same operation speed at the same time on line. The operation time of any jobs not only decided by itself, but also by other jobs on line. For its special structure, constrains in procrssing and uncertaint elements, the researches on this line especially on the scheduling problems are few. It hinders the improvement of production efficiency in this kind of line. Lean Production (LP) is management thought which is created facing small-batch and lot-variety production. It changes the conditions, information requirements and scheduling objectives when introduce LP into scheduling problem.
     Making the conveyor belt flow shop as the study object, introducing LP management thought, scheduling with LP in conveyor belt flow shop is researched. After study the scheduling problem in conveyor belt flow shop, a scheduling model, in ideal production information environment, is proposed. Then, the research foucs on the real scheduling based on unstable information gathering and the emergencies in processing. Aiming at the information requirements in scheduling, an automatic identification technology, combining the advantages of RFID and barcode technology, is proposed to ensure the information support for LP. Based on the application situation of the identification technology, a kind of scheduling model of conveyor belt flow shop with unstable information is proposed. Then, Considering the effects of machine failures and rush orders in scheduling, research the rescheduling problems in conveyor belts flow shop from static and dynamic rescheduling. After analyzing the defects in coding and iteration in some algorithms in soluting scheduling problems, an artificial fish swarm algorithm based on polar coordinate coding is proposed to solute the models. Comparing the solution results shows the effectivness of models.
     The important research results are as follows:
     Through researching the conveyor belt flow shop and the LP, scheduling models of conveyor belt flow shop using JIT (CBFS-JIT) in ideal information environment is proposed. In the ideal information environment, through researching the physical structure and production mode of conveyor belt flow shop, technology of JIT and“Zero Wait”in LP and current scheduling models of flow shop, point out that these models couldn’t describe the line accurately. Aiming at the characteristics of unified speeds of the WIPs on an assembly line, preparing times needed for changing models, continuously operation of same class of WIPs in one assembly line and so on, CBFS-JIT is proposed. Then based on the parallel lines, identical parallel conveyor belt flow shop with ideal information is proposed.
     After making the conveyor belt flow shop as the research object and analyzing the current identification and gathering technologies, a frame and a technology of identification base on integration of RFID and barcode is designed. According to the importance of production information transparency in implementing LP in a special assembly line, an identification information acquisition frame of integrating RFID and barcode technology (IFRB) is designed. In this frame, parts and WIPs (Work in Processes) is managed in granularities, due to their species and information requirements. Based on this frame, an automatic identification technology based on integration of RFID and barcode (ITRB) is proposed, which is study in two levels: physical integration and data integration. The identification technology could support the production information transparency in manufacturing.
     Considering the unstable information production information environment, a kind of scheduling model of conveyor belt flow shop with unstable information is proposed. Then based on the parallel lines, an identical parallel scheduling model is proposed. Aiming at the time warp and leakage in information gathering in the application of ITRB on conveyor belt flow shop, combining the limitations in motors of conveyor belt, a kind of scheduling model using JIT with non-ideal circumstances (CFJ-NC) is proposed. Then based on the parallel lines, an identical parallel scheduling model is proposed (PCFJ-NC).
     To the eliminate defects of some algorithms in solving scheduling problems, a improved artificial fish swarm algorithm based on polar coordinate coding (PC-AFSA) is proposed. Aming at the defects in coding and iteration in some algorithms in solving scheduling problems and inspired from the spirit of probability coding, polar coordinate coding is proposed. After introducing polar coordinate coding into artificial fish swarm algorithm (AFSA), the three behaviors in AFSA, namely prey behavior, swarm behavior and follow behavior, are redefined in PC-AFSA. Gray decoding is proposed according to the solution process in scheduling problem. Then PC-AFSA is used to solute some optimization problems to verify its effectiveness and reliability.
     Solute the proposed scheduling models in PC-AFSA. Introduce the details of key technologies in solution process, including encoding and coding, iteration of matrix, distance between artificial fish, strategy of presering and the strategy of violation value. Compare the solution effects between different parameters, and choose the best parameters to solute the the scheduling models and do contrast experiments with AFSA. The simulation results show that an obvious deviation would be found of using an ideal scheduling model to describe a real production process. The model established in unstable information environment could describe the scheduling with LP in conveyor belt flow shop more accurately.
     Analyse the emergencies in excutiving scheduling scheme, study the rescheduling in conveyor belts flow shop in static and dynamic rescheduling. Research the impacts of machine failures and rush order in identical parallel conveyor belt flow shop. Then compare the solution results between the rescheduling and pre-scheduling, and indicate the significance of rescheduling in conveyor belt flow shop.
     The researches support the scheduling problems based on LP in the assembly line with conveyor belt though theories and applications. Improve the research content, technology and methods in flow shop. Provide an effective way in improving scheduling levels and the production efficiency and cutting down manufacturing costs.
引文
[1]周延虎,何桢,高雪峰.精益生产与六西格玛管理的对比与整合[J].工业工程, 2006.11, 9(6): 1-4.
    [2]赵立双.谈精益生产理念在工业企业管理及整体布局中的应用[J].工程建设与设计, 2009, (11): 155-158.
    [3] N.K. Abadi, N.G. Hall, C. Sriskandarajah. Minimizing cycle time in a blocking flowshop [J]. Operations Research, 2000, 48(1): 177-180.
    [4] T. Aldowaisan, A. Allahverdi. Total flowtime in no-wait flowshops with separated setup times [J]. Computers and Operations Research, 1998, 25(9): 757-765.
    [5] E.F. Stafford, F.T. Tseng. Two models for a family of flowshop sequencing problems [J]. European Journal of Operational Research, 2002, 142(2): 282-293.
    [6] A. Allahverdi, T. Aldowaisan. No-wait flowshops with bicriteria of makespan and maximum lateness [J]. European Journal of Operational Research, 2004, 152(1): 132-147.
    [7]常俊林,邵惠鹤.两机零等待流水车间调度问题的启发式算法[J].计算机集成制造系统, 2005.8, 11(8): 1147-1153, 1162.
    [8]徐震浩,顾幸生.具有零等待的不确定性flow shop调度问题[J].系统工程与电子技术, 2004.11, 26(11): 1592-1596.
    [9] T.C.E. Cheng, J.N.D. Gupta, G.Q. Wang. A review of flowshop scheduling research with setup times [J]. Production and Operations Management, 2000, 9(3): 262-282.
    [10] J.L. Chang, H.H. Shao. Scheduling a three-machine no-wait flow shop with separated setup time [J]. Journal of Harbin Institute of Technology, 2006, 13(2): 206-210.
    [11]刘静.带调整时间的一类排序问题[J].数学的实验与认识, 2006.5, 36(5): 267-272.
    [12]赵传立,张庆灵,唐恒永.调整时间可分离的无等待Flow Shop调度问题[J].东北大学学报(自然科学版), 2002.8, 23(8): 813-815.
    [13] S. Parthasarathy, C. Rajendran. A simulated annealing heuristic for scheduling to minimize weighted tardiness in a flowshop with sequence dependent setup times of jobs - A case study [J]. Production Planning and Control, 1997a, 8(5): 475-483.
    [14]韩锐,刘英博,闻立杰等.工作流管理系统中一种概率性分析和调整时间约束的方法[J].计算机研究与发展, 2010, 47(1): 157-163.
    [15] T.C.E. Cheng, B.M.T. Lin, A. Toker. Makespan minimization in the two-machine flowshop batch scheduling problem [J]. Naval Research Logistics, 2000, 47(2): 128-144.
    [16] H. Gong, L.X. Tang, C.W. Duin. A two-stage flow shop scheduling problem on a batchingmachine and a discrete machine with blocking and shared setup times [J]. Computers & Operations Research, 2010.5, 37(5): 960-969.
    [17] R. Logendran, P. deSzoeke, F. Barnard. Sequence-dependent group scheduling problems in flexible flow shops [J]. International Journal of Production Economics, 2006.7, 102(1): 66-86.
    [18] H. Hwang, J.U. Sun. Production sequencing problem with re-entrant work flows and sequence dependent setup times [J]. Computers and Industrial Engineering. 1997, 33(3-4): 773-776.
    [19]王书锋,李荣.成组加工中有主从调整时间的最大延迟问题[J].控制与决策, 2002.11, 17: 769-772.
    [20] M. Yasuhiro. Toyota Production System: An Integrated Approach to Just-in-Time [M]. Third Edition, Engineering & Management Press, Norcross, Georgia. 1998.
    [21] H.L. Wang, H.P. Wang. Determining the number of kanbans: a step toward non-stock-production [J]. International Journal of Production Research, 1990, 28(11): 2101-2115.
    [22] R.G. Askin, M.G. Mitwasi, J. B. Goldberg. Determining the number of kanban in multi-item just-in-time systems [J]. IIE Transactions, 1993, 25(1): 89-98.
    [23] B.R. Sarker, C.V. Balan. Operations planning for a multi-stage kanban system [J]. European Journal of Operational Research, 1999, 112(2): 284-303.
    [24] Y. Frein, M.D. Mascolo, Y. Dallery. On the design of generalized kanban control systems [J]. International Journal of Operations & Production Management, 1995, 15(9): 158-181.
    [25] S.J. Wang, B.R. Sarker. Optimal models for a multi-stage supply chain system controlled by kanban under just-in-time philosophy [J]. European Journal of Operational Research, 2006.7, 172(1): 179-200.
    [26] P. Shahabudeen, G.D. Sivakumar. Algorithm for the design of single-stage adaptive kanban system [J]. Computers & Industrial Engineering, 2008.5, 54(4): 800-820.
    [27] M.L. Junior, M.G. Filho. Variations of the kanban system: Literature review and classification [J]. International Journal of Production Economics, 2010.5, 125(1): 13-21.
    [28] M.D. Al-Tahat, A.M. Mukattash. Design and analysis of production control scheme for Kanban-based JIT environment [J]. Journal of the Franklin Institute, 2006.7-8, 343(4-5): 521-531.
    [29] J.A. Pettersen, A. Segerstedt. Restricted work-in-process: A study of differences between Kanban and CONWIP [J]. International Journal of Production Economics, 2009.3, 118(1): 199-207.
    [30] G. Paul, D. David, Yao. Structured buffer-allocation problems [J]. Discrete Event DynamicSystems: Theory and Applications, 1996, 6(1): 9-41.
    [31] C.G. Panayiotou, C.G. Cassandras. Optimization of kanban-based manufacturing systems [J]. Automatica, 1999, 35: 1521-1533.
    [32]魏大鹏.丰田生产方式研究[M].天津:天津科学技术出版社, 1996.
    [33] C. Corbett, E. Yucessn. Modeling just-in-time production system: a critical review [C]. Processing of the 1993 Winter Simulation Conference, 1993: 819-828.
    [34] C. CH, S. WI. Simulation studies in JIT production [J]. International Journal of Production Research, 1992, 30(11): 2573-2586.
    [35]邓修权,齐二石.精益生产拉动生产系统设计程序的研究[J].工业工程与管理, 2000, 5(5): 28-31.
    [36]魏大鹏.准时化生产方式的技术支撑体系[J].工业工厂与管理, 1998, 3(2): 30-33.
    [37] R.G. Moras, M.R. Jalali, R.A. Dudek. A categorized survey of the JIT literature [J]. Production Planning and Control, 1991, 2(4): 322-334.
    [38] A. Gunesakaran, S.K. Goyal, T. Martikainen, P. Yli- Olli. Modeling and analysis of just-in-time manufacturing systems [J]. International Journal of Production Economics, 1993, 32: 23-37.
    [39] H.S. Reza, S. Saghafian. Flowshop-scheduling problems with makespan criterion: A review [J]. International Journal of Production Research, 2005, 43(14): 2895-2929.
    [40] S.O. Shim. Generating subproblems in branch and bound algorithms for parallel machines scheduling problem [J]. Computers & Industrial Engineering, 2009.10, 57(3): 1150-1153.
    [41] K. Kurihara, Y.L. Li, N. Nishiuchi, et al. Flow shop scheduling for separation model of set-up and net process based on branch-and-bound method [J]. Computers & Industrial Engineering, 2009.9, 57(2): 550-562.
    [42] W.C. Lee, S.K. Chen, C.C. Wu. Branch-and-bound and simulated annealing algorithms for a two-agent scheduling problem [J]. Expert Systems with Applications, 2010.9, 37(9): 6594-6601.
    [43]吉中智,汤俊.主动雷达海面箔条云回波信号的仿真方法[J].清华大学学报(自然科学版), 2009, 49(4): 555-558.
    [44] M.S. Nagano, J.V. Moccellin. A high quality solution constructive heuristic for flow shop sequencing [J]. Journal of the Operational Research Society, 2002, 53(12): 1374-1379.
    [45] X.P. Li, Y.X. Wang, C. Wu. Heuristic algorithms for large flowshop scheduling problems [C]. Proceedings of the World Congress on Intelligent Control and Automation (WCICA). Institute of Electrical and Electronics Engineers Inc., Piscataway, United States, 2004: 2999-3003.
    [46] T. Kaihara, N. Fujii, A. Tsujibe. Proactive maintenance scheduling in a re-entrant flow shop using Lagrangian decomposition coordination method [J]. CIRP Annals - Manufacturing Technology, 2010, 59(1): 453-456.
    [47] L.X. Tang, H. Xuan. Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers [J]. Journal of the Operational Research Society, 2006, 57(3): 316-324.
    [48]轩华,唐立新.实时无等待HFS调度的一种拉格朗日松弛算法[J].控制与决策, 2006.4, 21(4): 376-380.
    [49] B. Naderi, M. Zandieh, A. Khaleghi Ghoshe Balagh, et al. An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness [J]. Expert Systems with Applications, 2009.8, 36(6): 9625-9633.
    [50]陈雄,杨凤霞,吴启迪. Flow-shop调度问题的自适应模拟退火算法[J].控制理论与应用, 2003.6, 20(3): 445-448, 453.
    [51] C. Basnet. Technical note: tabu search heuristic for a loading problem in flexible manufacturing systems [J]. International Journal of Production Research, 1996, 34(4): 1171-1174.
    [52] C.Y. Wang, X.P. Li, Q. Wang. Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion [J]. European Journal of Operational Research, 2010, 206(1): 64-72.
    [53] L.M. Liao, C.J. Huang. Tabu search for non-permutation flowshop scheduling problem with minimizing total tardiness [J]. Applied Mathematics and Computation, 2010.9, 217(2): 557-567.
    [54]李材峰,史金飞,阅成武.混合流水车间调度的变郁域禁忌搜索算法[J].计算机工程, 2008.11, 34(11): 10-11, 25.
    [55]唐立新,赵任.强化Dynasearch & TS算法求解酸轧生产调度问题[J].自动化学报, 2010.2, 36(2): 304-313.
    [56]农静,王磊,尹慧琳.铁路车流径路优化的遗传算法设计[J].同济大学学报(自然科学版), 2010.1, 38(1): 76-80.
    [57] H. Ishibuchi, et a1. Genetic algorithms and neighborhood search algorithms for fuzzy flowshop scheduling problems [J]. Fuzzy Sets and Systems, 1994, 67(1): 8l-100.
    [58]黄敏镁,罗荣桂,袁际军.求解置换调度问题的改进混合遗传算法[J].中国机械工程, 2006.6, 17(16): 1707-1710.
    [59]路飞,田国会.用多种群并行自适应遗传算法求解多机多阶段Flowshop提前/拖期调度问题[J].电工技术学报, 2005.4, 20(4): 58-61.
    [60]潘燕春,周泓,冯允成.同顺序Flow-shop问题的一种遗传强化学习算法[J].系统工程理论与实践, 2007.9, (9): 115-122.
    [61]杨开兵,刘晓冰.无成组技术条件下流水车间调度的多目标优化[J].计算机集成制造系统, 2009.2, 15(2): 348-355, 361.
    [62]邢焕来,潘炜,邹喜华.一种解决组合优化问题的改进型量子遗传算法[J].电子学报, 2007.10, 35(10): 1999-2002.
    [63]宋海洲,魏旭真.求解0-1背包问题的混合遗传算法[J].华侨大学学报(自然科学版), 2006.1, 27(1): 16-19.
    [64] K.H. Han, J.H. Kim. Genetic quantum algorithm and its application to combinatorial optimization problem [J]. Proceedings of Congress on Evolutionary Computation, 2000, 1354-1360.
    [65] B. Li, L. Wang. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling [J]. IEEE Transactions on System, Man, and Cybernetics–Part B: Cybernetics, 2007, 37(3): 576-591.
    [66] Y. Lv, N. Liu. Application of quantum genetic algorithm on finding minimal reduct [C]. Proc. of IEEE International Conference on Granular Computing, 2007, 728-733.
    [67] Z. Zhao, S. Zheng, J. Shang, et al. A study of cognitive radio decision engine based on quantum genetic algorithm [J]. Acta Physica Sinica, 2007, 56(11): 6760-6766.
    [68]杨俊安,邹谊,庄镇泉.基于多宇宙并行量子遗传算法的非线性盲源分离算法研究[J].电子与信息学报, 2004.8, 26(8): 1210-1217.
    [69]李英华,王宇平.有效的混合量子遗传算法[J].系统工程理论与实践, 2006.11, (11): 116-124.
    [70]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践, 2002, 22(11): 32-38.
    [71]王凌.车间调度及其遗传算法[M].清华大学出版社,北京, 2003.5.
    [72]武维,管晓宏,卫军胡. Flow Shop问题的嵌套分区优化调度方法[J].控制理论与应用, 2009.3, 26(3): 233-237.
    [73]庞哈利,万珊珊.并行流程车间调度问题及其概率学习进化算法[J].控制理论与应用, 2005.2, 22(1): 149-152.
    [74]陶泽,徐炜达,郜震霄等.具有跨工位操作的汽车总装车间调度仿真问题[J].系统仿真学报, 2009.5, 21(9): 2527-2530.
    [75]胡燕海,严隽琪,马登哲.基于遗传算法的平行流水作业计划方法[J].工业工程与管理, 2006.1, (1): 58-61.
    [76] G.R. Chacon. Electronic Kanban worksheet for the design and implementation of virtual or electronic Kanban System [P]. USA: 7020594, Mar 28, 2006.
    [77]林洁,苏杰克,徐有章. Predator SFC系统在模具生产现场的管理及应用[J].航空制造技术, 2006, (4): 54-57.
    [78]曹振新,朱云龙.混流轿车总装配线上物料配送的研究与实践[J].计算机集成制造系统, 2006.2, 12(2): 285-291.
    [79] T. Klein, A. Thomas. Opportunities to reconsider decision making processes due to Auto-ID [J]. International Journal of Production Economics, 2009.9, 121(1): 99-111.
    [80]刘卫宁,黄文雷,孙棣华等.基于射频识别的离散制造业制造执行系统设计与实现[J].计算机集成制造系统, 2007.10, 13(10): 1886-1890.
    [81] J.D. Porter, R.E. Billo, R. Rucker. Architectures for integrating legacy information systems with modern bar code technology [J]. Journal of Manufacturing Systems, 2004, 23(3): 256-265.
    [82] R.S. Chen, M.R Tu. Development of an agent-based system for manufacturing control and coordination with ontology and RFID technology [J]. Expert Systems with Applications, 2009, 36: 7581-7593.
    [83] K. Domdouzis, B. Kumar, C. Anumba. Radio-frequency identification (RFID) applications: a brief introduction [J]. Advanced Engineering informatics, 2007, 21(4): 350-355.
    [84]郎为民.射频识别(RFID)技术原理与应用[M].机械工业出版社,北京, 2006.8.
    [85] C.M. Roberts. Radio frequency identification (RFID) [J]. Computers & Security, 2006, 25: 18-26.
    [86]张持健,李旸,张铃.商空间理论(粒度计算方法)实现高精度模糊控制[J].计算机工程与应用, 2004, 42(11): 37-39.
    [87]蒙祖强,蔡自兴.一种新的计算方法:粒度进化计算[J].计算机工程与应用, 2006, 42(1): 9-12.
    [88]李道国,苗夺谦,张红云.粒度计算的理论、模型与方法[J].复旦学报:自然科学版, 2004(5): 837-841.
    [89]高平安,蔡自兴,蒙祖强.基于粒度计算理论的数据分类建模[J].计算机工程与应用, 2006, 42(19): 18-20.
    [90]信昆仑,刘遂庆.混合编码遗传算法基于面向对象方法的实现及应用[J].计算机工程与应用, 2003, (21): 36-38.
    [91] E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems [M]. New York: Oxford University Press, 1999.
    [92]冯静,舒宁.群智能理论及应用研究[J].计算机工程与应用, 2006, 42(17): 31-34.
    [93] P.L. Qin, Y. Lin, M. Chen. Improvement and convergence analysis of model-free adaptive controller based on multi-innovation projection algorithm and artificial fish swarm algorithm [J]. Journal of Computational Information Systems, 2009.2, 5(1): 125-135.
    [94] W. Du, X. Wu, H.F. Wang, et al. Feasibility study to damp power system multi-mode oscillations by using a single FACTS device [J]. International Journal of Electrical Power & Energy Systems, 2010, 32(6): 645-655.
    [95] C.J. Wang, S.X. Xia. Application of probabilistic causal-effect model based artificial fish-swarm algorithm for fault diagnosis in mine hoist [J]. Journal of Software, 2010.5, 5(5): 474-481.
    [96]王联国,洪毅,赵付青等.基于邻域正交交叉算子的人工鱼群算法[J].农业机械学报, 2008.8, 39(8): 140-144.
    [97]胡晓波,陈中,杜文娟等.利用含储能装置的STATCOM阻尼电子系统多模态振荡[J].电力自动化设备, 2008.11, 28(11): 8-12.
    [98]李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究[J].电路与系统学报, 2003.2, 8(1): 1-6.
    [99]张梅凤,邵诚,甘勇等.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报, 2006.8, 8: 1381-1385.
    [100]曲良东,何登旭.混合变异算子的人工鱼群算法[J].计算机工程与应用, 2008, 44(35): 50-52.
    [101]俞洋,殷志锋,田亚菲.基于自适应人工鱼群算法的多用户检测器[J].电子与信息学报, 2007.1, 29(1): 121-124.
    [102]李亮,迟世春,林皋.禁忌鱼群算法及其在边坡稳定分析中的应用[J].工程力学, 2006.3, 23(3): 6-10.
    [103]刘白,周永权.基于遗传算法的人工鱼群优化算法[J].计算机工程与设计, 2008.11, 29(22): 5827-5829.
    [104]李斌,谭立湘,邹谊等.量子概率编码遗传算法及其应用[J].电子与信息学报, 2005.5, 27(5): 805-810.
    [105]王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报, 2007.5, 30(5): 748-755.
    [106]张梅凤,邵诚.多峰函数优化的生境人工鱼群算法[J].控制理论与应用, 2008.8, 25(4): 773-776.
    [107] J.W. Gu, X.S. Gu, M.Z. Gu. A novel parallel quantum genetic algorithm for stochastic job shop scheduling [J]. Journal of Mathematical Analysis and Applications, 2009, 355: 63-81.
    [108] J.W. Gu, M.Z. Gu, C.W. Cao, et al. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem [J]. Computers & Operations Research,2010, 37: 927-937.
    [109] K. Deb, A. Pratap, S. Agarwal, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Trans. on Evolutionary Computation, 2002, 6(2): 182-196.
    [110]邹谊,魏文龙,李斌.多目标量子编码遗传算法[J].电子与信息学报, 2007.11, 29(11): 2688-2692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700