用户名: 密码: 验证码:
精密播种单体播深控制的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密播种技术已成功应用于多种作物的种植,是农业增产、增收和降低粮食生产成本的重要措施之一。精密播种技术要求播种量精确、株距精确及播深精确,从而保证种子在田间的合理分布,为作物生长发育创造最佳的条件。精密播种过程是由仿形、开沟、施肥、播种、覆土、镇压等多种工作部件配合完成的一个复杂过程,其田间指标要求高,任何环节都可能影响其最终的精确度。目前多数学者的研究集中在精密播种理论和各种排种器的研发上,并开发出了气吸式、气吹式、勺式等多种精密排种装置,实现了播量的精确。但是播深和株距的形成是由仿形、开沟、覆土、镇压等多个部件共同完成,并与种沟的土壤状况密切相关,任何一个环节可能都会影响种子在土壤中的最终分布状态,种子的播深一致性和覆盖质量对种子出苗和作物产量有着重要影响,因此精密播种机的播深一致性和覆土质量将决定着播种质量的优劣。然而由于对影响播深精确的仿形装置和开沟装置缺乏深入系统的研究,使得田间实际播深达不到最佳状态。
     本文以影响播深控制的精密播种机仿形机构为研究对象,运用机构学、动力学、土壤流变学等知识,通过试验研究土壤下陷量与时间关系,进而确定了旱田土壤的流变模型和流变参数,建立了土壤下陷量与相关参数的回归模型,并将土壤流变模型引入平行四杆式精密播种单体的动力学分析中,建立了平行四杆式仿形机构开沟深度变化的数学模型,采用Matlab软件进行了开沟深度的计算机仿真,分析了影响开沟深度的参数和变化规律,找出开沟深度稳定性的影响因素。应用Pro/E软件的参数化设计功能,建立精密播种机三维参数化模型库,利用ADAMS软件对建立的平行四杆式精密播种单体的仿形机构进行了结构参数的优化设计和运动仿真模拟,进行了仿形机构开沟深度的分析和室内的开沟深度性能试验,试验结果与仿真结果变化趋势一致,最大误差小于23%,表明本文所建立的开沟深度数学模型的正确性和仿真分析方法的可靠性。最后,为满足大型精密播种机对播深的精确控制,研制了一种由平行四杆机构与电液自动仿形系统结合的精密播种单体,对仿形传感装置、仿形控制器、液压系统进行了设计。利用Simulink软件对建立的液压系统模型进行了仿真。通过机械仿形和电液仿形的田间对比试验,表明在仿形精度上电液自控仿形式明显优于机械式仿形,实现了播深的精确控制,为提高大型精密播种机的自动化程度提供了技术参考。
     本文是高等学校博士学科点专项科研基金(20040183024)和吉林省科技发展计划项目(200405045)、国家现代农业产业技术体系建设专项资金(CARS-01-33)的部分内容,其主要研究成果如下:
     (1)通过土壤的单轴压缩试验,观察土壤承载后变形与时间的关系曲线,选择了四元件Burgers模型来描述土壤流变特性,并得到了土壤变形量与时间的方程为:
     通过方程可知,土壤的下陷变形主要由瞬时下陷、延迟下陷和稳定蠕变三部分组成。方程也表明松散土壤的下陷变形与时间有关,且为非线性的。在此基础上,采用试验法测定了镇压力为400N、600N、800N,土壤含水率为16%、18%、20%的条件下的土壤流变曲线,通过数值模拟得到在不同试验条件下的土壤流变参数,进而确定了对应条件下的土壤流变模型。
     (2)为了获取土壤下陷量与影响因素之间的关系,选择含水率、镇压强度、作业速度为影响因素,通过响应面优化设计试验方案,得到了土壤的下陷量与相关因素的回归拟合方程:
     从回归模型可以得出,土壤的下陷量与镇压强度、含水率、作业速度呈非线性关系,影响下陷量的主要因素是镇压强度,其次是土壤含水率,而作业速度与下陷量呈负相关,但影响极小。从回归模型可更直观地分析相关因素与下陷量的影响关系。
     (3)以平行四杆仿形式精密播种机单体为研究对象,引入土壤流变参数,建立了精密播种单体开沟深度的数学模型。
     模型表明,播种单体仿形过程中为线性单自由度阻尼振动系统,系统的稳定与地表几何特征、播种单体的结构参数以及土壤的力学性质有关,式中的K2、η2分别是Burgers模型中的弹簧刚度系数和阻尼系数,A是与瞬时下陷量和延迟下陷量有关的变形系数,可以通过土壤下陷量回归模型计算得到。利用Matlab软件对开沟深度进行模拟仿真,分析了影响精密播种单体的仿形、开沟稳定性的因素,获得了较优的参数组合。
     (4)应用Pro/E软件的参数化设计功能,构建精密播种机零部件的三维参数化模型库,建立了不同形式的播种单体三维实体模型,以开沟深度为目标,利用ADAMS软件对平行四杆式精密播种单体仿形机构进行了结构参数的优化设计和运动仿真模拟,得到最优参数值:平行四杆长450mm,仿形轮配置在开沟器前面距离300mm时,开沟稳定性能够满足设计要求。
     (5)进行了仿形机构开沟深度的分析和室内的开沟深度性能试验,试验结果与仿真结果变化趋势一致,最大误差小于23%,表明本文所建立的开沟深度数学模型的正确性和仿真分析方法的可靠性。
     (6)研制了平行四杆机构与电液自动仿形系统相结合的精密播种单体,对所需的仿形装置、传感装置、仿形控制器、液压系统进行了设计。建立了液压系统的仿真模型,利用Simulink软件对液压系统的运动进行了仿真,通过试验研究,仿真值和试验值基本吻合,最大误差为16.4%,满足了设计要求,从而验证了模型的正确性。对电液自控式和机械式两种不同仿形播种单体进行了田间对比试验。田间试验结果表明,在仿形精度上电液自控仿形式明显优于机械式仿形,满足了对播深精确控制要求,提高了大型精密播种机的自动化程度。
     本文所进行的理论研究、试验研究、计算机仿真等研究成果为精密播种机的研制及农机系统建模与仿真设计提供了新的思路和方法,对丰富精密播种理论,发展精密播种技术具有重要意义。
Precision seeding technology has been successfully applied to a variety of crops, and itis one of the important measures to increase the agricultural production and income, andreduce the cost of grain production. Precision seeding technology includs accurate seedingrate, precise rows space and sowing depth, so as to ensure the reasonable distribution ofseed in the field,and create the best conditions for crop growth and development. Precisionseeding process is make up of profiling,ditching,applying fertilizer,sow,cover earth,rolling and so on, the many kinds of working parts cooperated to complete a complexprocess, and its demand of field index is accurate, any link may affect the final accuracy.At present most scholars’ study focused on precision seeding theory and development ofvarious seeding apparatus, and many kinds of precision seeding apparatus had beendeveloped for example gas suction,gas blowing,scoop types and so on,and the accuratesowing amount had been realized. But sowing depth and row spaces are formed byprofiling, furrowing, covering, suppressing, and closely related to the soil conditionof seed groove. All parts may influence the seeds final distribution state in the soil.Consistency of sowing depth and quality of covering seeds had important effects on theseeds emergence and the crop yield, so precision seeder’s consistency of sowing depth andquality of covering seeds decided sowing quality is ok or not. However, lacking ofthorough and systematic research of influence to sowing depth accurate profile and ditchdevice, the actual sowing depth had been less than the best condition.
     This paper researched precision seeder profiling mechanism that influences sowing depthcontrol, by using mechanisms and dynamics, soil rheology, and by testing therelationship of soil subsidence quantity and time, then defined the dry farmland soilrheological model and rheological parameters, established the regression model about soilsubsidence quantity and related parameters. Introduced the soil rheological model intodynamics analysis about parallel four-bar type precision seeding unit, established amathematical model of ditching depth changes about parallel four-bar profiling mechanism.Used Matlab software to simulate ditch depth, analyzed the parameter that could effectditch depth and its variation rule, found out the effecting factors on the stability of ditchdepth.By using parametric design function of Pro/E software to establish3D parametricmodel database of precision seeder,and used ADAMS software to optimize structureparameters design and simulate motion of parallel four-bar precision seeding monomerprofiling mechanism what had been built,analyzed ditch depth of profiling mechanism andtested the stability of ditch depth indoor,the results of simulation and experiment were verysimilar. At last developed a kind of precision seeding unit that combined parallel four-bar profiling mechanism with electric-hydraulic automatic controlled profiling system in orderto satisfy accuracy of sowing depth control in large-sized precision seeder, designed theprofiling sensing device, profiling controller, hydraulic system,etc. Simulated thehydraulic system model which had been established by using Simulink software, andverified the accuracy of model through the test. Field test showed that, electronic-hydrauliccontroled profiling form was obviously superior to mechanical profiling in profilingaccuracy,it realized accurately sowing depth control, provided technical reference toimprove the automation degree of the large precision seeder.
     This paper is parts of university Specialized Research Fund for the Doctoral Program ofHigher Education20040183024),Science and Technology Development Program of JiLinProvince (200405045),Construction of National Modern Agriculture Industrial TechnologySystem Specialized Fund (CARS-01-33), its main content and research conclusions asfollows:
     (1)By the test of uniaxial compression to soil, observed the deformation curve aftersoil being beard related to time variation, selected four-element Burgers model to describerheological characteristics of soil, and obtained the equation for soil deformation related totime variation:
     by the equation,it was known that soil subsidence deformation is mainly composed ofthree parts that are instantaneous subsidence, time-delay subsidence and stable creep. Thequation also suggested that subsidence deformation of loose soil related to time, and it wasnonlinear. Based on this theory,got the soil rheological curve under the condition that townpressure was400N,600N,800N, and soil moisture content was16%,18%,20%,by the way of experiment. Got soil rheological parameter at different experiment conditionsby the way of the numerical simulation, and determined soil rheological model under thecorresponding conditions.
     (2)In order to obtain the relationship between soil subsidence quantity and influencefactors, selected the moisture content, suppression strength and operation speed asinfluence factors, obtained the regression equation as follows of soil subsidence quantityand the related factors by optimized the test scheme of response surface design:
     It can be concluded from the regression model that the relationship between soil subsidence quantity and suppression strength, moisture content, operation speed wasnonlinear. The main influence factor to subsidence quantity was suppression strength,followed by soil moisture content. Though only a little effect, the operation speed wasnegatively correlated to subsidence quantity. The influence relation between correlationfactors and soil cave in quantity could be analyzed more intuitively by this regressionmodel.
     (3)Researched parallel four-bar profiling precision seeder monomer as the object,introduced soil rheological parameter,established mathematical model of precision seedingmonomer’s sowing depth:
     This model showed that profiling process of sowing monomer was linear single freedegree damping vibration system, the system’s stability was related to geometriccharacteristics of field surface,structure parameters of sowing monomer and mechanicsproperties of soil. K2and η2are spring stiffness coefficient and damping coefficient, A isdeformation coefficient related to instantaneous subsidence quantity and time-delaysubsidence quantity, it could be calculated by using of the soil subsidence quantityregression model. One better combined parameter obtained after analyzed the influencefactors of precision seeding monomer profiling, ditching stability, and simulated ditchingdepth by using Matlab software.
     (4)By the function of Pro/E software parametric design,constructed the3D parametricmodel base of precision seeder parts, established a different forms of seeder monomerentity model in3D. Ditching depth as a target, Based on the structure parametersoptimization design and movement simulation of parallel four-bar precision seedingmonomer profiling institutions, obtained the most optimal parameter value by using theADAMS software: If the length was450mm for parallel four-bar, and the distance was300mm from preposed profiling wheel to opener, ditching stability could satisfy the designrequirement.
     (5)The test results and the profiling results were similar after the research of ditchingdepth stability indoor. Verified correctness of dynamic model what the seeding monomerhad been established and reliability of the simulation analysis method.
     Analyzed ditch depth of profiling mechanism and tested the stability of ditch depthindoor,the variation trend of the simulation and experiment results were very similar,andthe largest error was less than23%,verified the stability of mathematics model for ditchdepth was correct and the simulation analysis method was reliable in this paper.
     (6)Developed the precision seeding monomer that combined parallel four-bar mechanism and electric-hydraulic controlled profiling system. Designed the requiredprofiling device, sensing device, profiling controller, hydraulic system, established thesimulation model of hydraulic system. Simulated the movement of the hydraulic systemby using Simulink software. According to the test results, the simulation value andexperimental results was similar, the maximum error was16.4%,which met the designrequirements and verified the correctness of the model. Comparative test was done betweenthe two different profiling sowing monomer, electric hydraulic automatic and mechanicalprofiling seeding monomer in the field,and the results showed that electro-hydraulicautomatic profiling form is obviously superior to the mechanical profiling form at profilingaccuracy, and satisfied accuracy control of sowing depth, improved automation degree ofthe large precision seeder.
     The research conclusions in this paper about theory, experiment and computersimulation provided a new train of method for development precision seeder and formodeling and profiling design agricultural machinery system. Its significance was importantto enrich precision seeding theory and develop precision seeding technology.
引文
[1]马成林编著.精密播种理论[M].长春:吉林科学技术出版社,1999.
    [2]王未.精密播种机触土部件CAD数据库的设计与动态分析[D].吉林:吉林大学生物与农业工程学院,2006.
    [3]袁锐.精密播种机开沟器对种子触土后位移的控制及部件的研究[D].吉林:吉林大学生物与农业工程学院,2006.
    [4]张泽平,马成林,左春柽.精密排种器及排种理论研究进展[J].吉林工业大学学报,1995,25(4):112-117.
    [5]许剑平,谢宇峰,陈宝昌国外气力式精密播种机技术现状及发展趋势[J].农机化研究,2008,12:13-14.
    [6]杜辉,樊桂菊,刘波.气力式精量播种机与排种器的研究现状[J].农业装备技术,2002,105(3):13-14.
    [7] D. F. Wanjura, E. B. Hudspeth. Performance of Vacuum Wheels Metering IndividualCottonseed[J]. Transactions of the ASAE,1969,775-777.
    [8] Ted H. Short, Samuel G. Huber. The Development of a Planetary-Vacuum SeedMetering Device[J]. Transactions of the ASAE,1970,803-805.
    [9] R. P. Rohrbach et al. Evaluating Planting Based on a Monte Caro Planter Model[J].Transaction of the ASAE,1971,(6):1146-1149.
    [10] W. A. LePori, J. G. Porterfield, E. C. Fitch. Fluidic Control of Seed Metering[J].Transactions of the ASAE,1974,463-467.
    [11] W. R. Nave, M. R. Paulsen. Soybean seed Quality as Affected by Planter Meters[J].Transactions of the ASAE,1979,739-745.
    [12].L. P. Buftan. Ect. Seed Displacement After Impact on a Soil Surface[J]. Agric EngngRes,1974(19):327-338.
    [13] J.L.Halerson. Planter selection accuracy for edible beans[J]. Transactions of the ASAE.1983,26(2):367-371.
    [14] S.A.Shearer. Precision Seed Metering with a Submerged Turbulent Air-jet[J].Transaction of the ASAE,1991,34(3):781-786.
    [15] S. D. Kachman, J.A.Smith. Alternative Measuares of Accuracy in Plant Spacing forPlanters Using Single Seed Metering[J]. Transaction of the ASAE,1995,38(2):379-387.
    [16] M.F.Kocher,Y. Lan,C. Chen,J.A. Smith. Opto-electronic Sensor System for RapidEvaluation of Planter Seed Spacing Uniformity[J]. Transaction of the ASAE,1998,41(1):237-245.
    [17] J.W.Panning, M.F.Kocher, J.A.Smith, S.D.Kachman. Laboratory and Field Testingof Seed Spacing Uniformity for Sugarbeet Planters[J]. Applied Engineering in Agricalture,2000,16(1):7-13.
    [18] A. Ozmerzi, D. Karayel,et al. Effect of Sowing Depth on Precision SeederUniformity[J]. Biosystems Engineering,2002,82(2):227-230.
    [19]蔡国华,李慧,李洪文等.基于ATmega128单片机的开沟深度自控系统试验台的设计[J].农业工程学报,2011,27(10):11-16.
    [20]马成林.精密播种的统计模拟探讨[J].吉林工业大学学报,1984(3):24-31.
    [21]赵学笃,张振京.播种机开沟器平行四杆联接机构的最佳参数[J].吉林工学院学报,1982(4):75-79.
    [22]张守勤,胡树荣,马成林.精密播种单体的动力学分析[J].农业机械学报.1984,4:26-33.
    [23]张守勤,马成林,马旭等.精密播种单体仿形机构的计算机仿真[J].农业工程学报,1994,10(1):50-55.
    [24]盛凯.播种机仿形机构仿形轮配置的研究[J].吉林工学院报,1995,16(4):21-27.
    [25]胡鸿烈,孙福辉.单体仿形压轮式播种单组的设计与试验研究[J].农业机械学报,1996.10,27(增刊):53-57.
    [26]孙福辉,封俊等.单体仿形压轮式播种单组结构参数的模拟计算[J].中国农业大学学报,1998,3(5):67-72.
    [27]宋殿香.精密播种机开沟深度稳定性研究[J].莱阳农学院学报,1995.12(4):311-315.
    [28]贺俊林,武月明,裘祖荣.免耕播种机仿形传动的设计研究——2BQYF—6A硬茬精密播种机仿形传动设计研究[J].山西农业大学学报,2000(2):40-43.
    [29]刘庆福,田耘,王朝辉,栾光辉,王景利,侯季理.2BLZ-2型玉米精密播种机仿形传动装置的研制和试验[J].农业机械学报,2001,32(6),120-121.
    [30]张文焕,郑德聪.注水播种机挂接仿形机构的计算机模拟[J].农业工程学报,2001,17(1):78-80.
    [31]侯志刚,宋建农.免耕播种机运动的线性模型的建立与分析[J].中国农业大学学报,2004,9(6):31-33.
    [32]王颖,李成华,王慧慧.铲式玉米精密播种机振动对播种质量影响的试验[J].农机化研究,2008,30(8):124-126.
    [33]白晓虎,张祖立.基于的播种机仿形机构运动仿真[J].农机化研究,2009,31(3):40-42.
    [34]包文育,林静,霍春明,李宝筏.2BG-2型免耕播种机横向运动稳定性分析[J].沈阳农业大学学报,2009,40(3):370-372.
    [35]王熙,张海玉,赵军等.大豆播种机电液仿形机构研究[J].农机化研究,2010,32(1)227-229.
    [36]马永财,张伟,李玉清等.播种机单体两种仿形机构的研究[J].农机化研究,2011,33(8)40-42.
    [37]闫以勋,赵淑红,杨悦乾,田佰亮.双自由度双向平行四杆仿形机构的设计[C].中国农业工程学会2011年学术年会论文摘要集,重庆,2011:111.
    [38]杨福增,傅向华,杨芳等.基于Pro/E的播种机零部件参数化造型[J].农业机械学报.2002,33(4):66-68.
    [39]杨欣,刘俊峰,冯晓静.小麦精密排种器特征造型及装配关联设计[J].农业工程学报,2004,20(3):89-92.
    [40]贾晶霞,张东兴,郝新明等.马铃薯收获机参数化造型与虚拟样机关键部件仿真[J].农业机械学报,2005,36(11):64-67.
    [41]李保谦.播种机排种器外槽轮CAD[J].农机化研究,2006(8):119-121.
    [42]李晶飞.基于Pro-E仿真技术的农业机械设计[J].农机化研究,2009(3):92-94.
    [43]孙裕晶,虚拟样机技术及其在精密排种部件设计中的应用[D].吉林:吉林大学生物与农业工程学院,2005.
    [44]何波,李成华.基于Pro/E的铲式成穴器几何建模和运动仿真[J].机械设计与制造,2006,6:48-49.
    [45]袁锐,马旭,马成林等,精密播种机单体的虚拟制造和运动仿真[J].吉林大学学报(工学版),2006,36(4)523-528.
    [46]夏俊芳.基于ADAMS的精密播种机补种机构虚拟设计与分析[J].华中农业大学学报,2007,26(3):419-422.
    [47]刘飞、赵满全.膜下播种机的设计及排种装置的室内性能试验[J].农业工程学报,2010,26(4):139-142.
    [48]潘君拯.我国水田土壤流变模型初探[J].镇江农业机械学院学报.1981(2):10-15
    [49]陆则坚,潘君拯.我国水田土壤的流变模型和流变参数分析[J].农业机械学报,1982(2):43-53.
    [50]侯占峰,鲁植雄,黄学勤,刘亦贯,万志源.水田土壤流变机理研究现状与展望[J].农机化研究,2007.(1):43-44.
    [51]罗大海,诸葛茜.水田土壤流变理论研究及应用[J].武汉工学院学报,1990,12(2):1-9.
    [52]于伟.对粘土的变流变参数模型的探讨[J].力学与实践,1989,11(3):21-23.
    [53]姬长英,赵池航.动载式水田土壤流变仪的研制[J].农业机械学报,2004,35(2):88-91.
    [54]翟力欣姬长英丁启朔Irshad Ali水田土壤蠕变的粘弹性计算[J],浙江农业学报,2010,4:509-514.
    [55]翟力欣,姬长英,丁启朔;流变态土壤切削试验用室内土槽与测试系统设计[J].农业机械学报,2010,41(7):45-49.
    [56]李云飞,张盛文.垄作种床松散土壤力学特性的研究[J].农业机械学报,1995,26(4):68-72.
    [57] Zolotarevsdaya DI. Mathematical modeling of relaxation processes in soils[J].Eurasian soil Science,2003,36(4):388-397.
    [58]Ghezzehei TA,Or D. Rheological properties of wet soils and clays under steady andoscillatory stresses[J].Soil Science Society of America Journal,2001,65(3):624-637.
    [59]郭颖杰,袁月明,安凤秀,胡晓丽.吉林省4种农田松散土壤流变特性[J].吉林农业大学学报,2004,26(5):542-545.
    [60]季宏飞,许杨,李燕萍.采用响应面法优化红曲霉固态发酵产红曲色素培养条件的研究[J].食品科技,2008,8:9-13,27.
    [61] S. H. Moore. Uniformity of plant spacing effect on soybean populationparameters[J].Crop Sci.1991,31(4):1049-1051.
    [62] R.P.Bracy, R.L.Parish and J.E.McCoy.Precision seeder uniformity varieswith theoretical spacing.ASAE Paper No.98095. St.Joseph,Mich:ASAE.
    [63] S.H.Bracy,R.L.Parish.Seeding uniformity of precisioneeder[J].HortTedhnol.1998,8(2):182-185.
    [64] S.D.Kachman, J.A.Smith.Alternative Measures of Accuracy in Plant Spacingfor Planters Using Seed Metering[J].Transaction of the ASAE.1995,38(2):379-387.
    [65] J.L.Halerson.Planter selection accuracy for edible beans[J].Transactions of theASAE.1983,26(2):367-371.
    [66]宋林平,韩金声.铧式玉米免耕播种机种床开沟器的研究[J].河北农业技术师范学院学报,1995,9(3):22-26.
    [67]蒋金琳,马延玺.免耕播种机工作部件评述[J].农业机械学报,1996,27:68-71.
    [68]中国农业机械科学研究院.农业机械设计手册(上)[M].北京:机械工业出版社.2007.
    [69]张海玉,大豆精播机电液仿形系统研究[D].黑龙江:黑龙江八一农垦大学,2010.
    [70]陈立平,张云清,任卫群,覃刚.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社.2005.
    [71]赵学笃,陈元生,张守勤.农业物料学[M].北京:机械工业出版社,1987.
    [72]李增刚《ADAMS入门详解与实例》[M].北京:国防工业出版社,2007.
    [73]温熙森,陈循,徐永成,陶利民。机械系统建模与动态分析[M].北京:开学出版社,2004.
    [74]孙一源,高行方,余登苑.农业土壤力学[M].农业出版社,1985.
    [75]张旭,毛恩荣.机械系统虚拟样机技术的研究与开发[J].中国农业大学学报.1999(2):94-98.
    [76]航伟.机械系统运动仿真结果可视化的研究[M].北京:中国农业大学,1999.
    [77]张旭.机械系统虚拟样机技术的研究[M].北京:中国农业大学,1999.
    [78]陈田,殷国富,舒斌,黄文兴.参数化特征造型技术在水泵叶轮设计中的应用[J].机械设计与研究[J],2000,19(3):36-37.
    [79]罗海玉,牛永江.基于特征的机械产品三维参数化造型研究[J].机械研究与应用,2005,18(3):100-01.
    [80]曾杰,鲁东.计算机辅助设计(CAD)在农业机械中的应用及实践[J].中国农机化,2000,(4):33-34.
    [81]金昊,籍国宝,柯冬香.犁体CAD通用数字模型的研究[J].农业机械学报.1998,29(1):145-149.
    [82]谭立东.牧草高密度压捆过程的计算机分析与仿真[D].呼和浩特:内蒙农业大学,2003.
    [83]周克栋.复杂机械的虚拟样机技术.南京:南京理工大学[D],2002.
    [84]于慧春,刘俊峰等.双圆盘开沟器开沟沟形的计算机模拟分析[J].河北农业大学学报.2004,27(1):108-110.
    [85]苏元升,高涣文,张晋国.免耕播种开沟器工作性能的测试与分析[J].中国农业大学学报.1994,4(4):28-30.
    [86]蒋金琳,马延玺,郭佩玉.北方夏玉米免耕覆盖播种技术及配套机具的研究[J].干旱地区农业研究,1997,15(3):103-106.
    [87]蒋金琳,宋殿香,刘智军,刘晓平.免耕播种机开沟器空间受力特征的土槽试验研究[J].莱阳农学院学报,1995,12(3):221-224.
    [88]张守勤,左春柽,马成林.圆盘开沟器受力模型的研究[J].农业机械学报,1998,29(增):68-71.
    [89]张淑敏.灌水沟播机起垄开沟器的设计与研究[J].中国农业大学学报,2001,6(4):35-38.
    [90]马晓峰,佟旭亮,马建国,宋庆文.双圆盘开沟器结构改型[J].新疆农机化,2002,1:43.
    [91]任文涛,刘涌.精量播种机开沟器长度设计方法的研究[J].沈阳农业大学学报,2003,34(6):448-451.
    [92]吴相军,韩奎福,庞喜泉,闫红萍.双圆盘开沟器性能的研究[J].山东农机,2004,2:15.
    [93]曾壮,张淑敏.翼式灌水开沟器的设计与研究[J].机械工程与自动化,2004,125(4):17-18,22.
    [94]罗海峰,汤楚宙,吴明亮等.免耕播种开沟器的发展现状[J].湖南农机,2005,5:16-18.
    [95]毛艳辉,宋建农,刘建军,彭旭.圆盘开沟器动力学振动模型的研究[J].中国农业大学学报,2006,11(1):44-46.
    [96]于建群,马成林,王立鼎.组合内窝孔精密排种器充种过程分析[J].农业机械学报,2001,32(5):30-33.
    [97]于建群,马成林,左春柽.组合内窝孔玉米精密排种器清种过程分析[J].农业机械学报,2000,31(5):34-37.
    [98]俞良群,邢纪波.筒仓卸料时力场及流场的离散单元法模拟[J].农业工程学报,2000,16(4):15-19.
    [99]周德义,马成林,左春柽等.散粒农业物料孔口出流成拱的离散单元仿真[J].农业工程学报,1996,12(2):186~189.
    [100]张锐,李建桥,李因武.离散单元法在土壤机械特性动态仿真中的应用进展[J].农业工程学报,2003,19(1):16-19.
    [101]徐泳,李红艳,黄文彬.耕作土壤动力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,19(2):34-38.
    [102]高红,傅新等.球阀阀口气穴流场的模拟与可视化研究[J].农业机械学报,2003,34(3):45-48.
    [103]王德忠,黄震等.应用高速摄像技术研究柴油机的喷雾过程[J].上海交通大学学报,2000,34(4):453-457.
    [104]钱耀义,李云清等.小型直喷式柴油机喷雾特性的试验研究[J].内燃机学报.2001,19(2):97-101.
    [105]张文增,孙振国等.基于高速摄像的人体上肢运动信息检测[J].生物医学工程学杂志.2002,19(1):76-79.
    [106]胡少兴,马成林,张爱武等.采用运动图像处理检测排种器充填性能[J].农业工程学报,2000,16(5):56-59
    [107]李勇,曾志新等.虚拟样机技术在小型农用装载机设计中的应用[J].农业工程学报,2004,20(5):134-137.
    [108]王志华,陈翠英.基于ADAMS的联合收割机振动筛虚拟设计[J].农业机械学报,2003,34(4):53-56.
    [109]吴成武,余贵珍,吴春京,张建军.基于PDM犁的智能CAD设计系统[J].农业机械学报,2003Vol.34(3):42-48.
    [110]王兵.运用Pro/E和ADAMS进行G1726型剑杆织机虚拟样机设计的介绍[J].纺织机械,2002(6):30-31.
    [111]杜中华,王兴贵,狄长春,黄涛.基于虚拟样机技术的某型炮闩系统挡弹机构的磨损研究[J].系统仿真学报,2002,14(9):1168-1170.
    [112]沈红芳,郑建荣.弧焊机器人虚拟样机研究[J].上海机电技术高等专科学校学报,200246(2):1-4.
    [113]于硕,阎函.装载机工作装置机构分析[J].CAD/CAM与制造业信化.2002.12:55-57.
    [114]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [115] N. Orlandea, J. C. Wiley, R. Wehage. ADAMS2:A Sparse Matrix Approach to theDynamic Simulation of Two-Dimensinal Systen[J].SAE paper780486,1978.
    [116] R. Serban, E.J.Haug.Kinematic and Kinetic Derivatives in Multibody SystemAnalysis[J]. Mech Struct&Mach,26(2),1998.
    [117] Shukla C,Vazquez M,Chen F F. Virtual manufacturing: an overview[J]. Computers&Industrial Engineering.1996,31(1/2):79-82.
    [118] Kanaya Noriichi. Virtual accelerator and fundamental guidelines towards sharablesoftware for accelerator control system[C]//Nuclear Instruments and Methods in PhysicsResearch, Elsevier Science BV,1994:497-500.
    [119] Emmanuel P, Daniel G, Groggier B, et al.PC-based virtual reality system withdextrous force feedback[R].American Society of Mechanical Engineers, Dynamic Systemsand Control Division(Publication) DSC,1996,58:495-502.
    [120] Thornton C. Interparticle Sliding in the Presence of Adhesion.J Phys D: ApplPhys.1991,24:1942-1946.
    [121] Lanstong P A, Tusun U, heyes D M.Discrete Simulations of Granular Flow in2Dand3D Hoppers: Dependence of Discharge Trate and Wall Stress on ParticleInteractions[J].Chem.Engng. Sci,1995,50:967-987.
    [122] Zhang X, Vu-Quoc L.Simulation of chute flow of soybeans using an improvedtangential force displacement model[J].Mechanics of Materials,2000,32:115-129.
    [123] E Sakaguchi, M Suzuki, J F Favier, Kawakami. Numerical Simulation of theShaking Separation of Paddy and Brown Rice Using the DiscreteElementMethod[J].Agric.Engg Res.2001,79(3):307-315.
    [124] Tanaka H,Momozu M,Oida A et al. Simulation of soil deformation and resistance atbar penetration by the distinct element method[J].Journal of Terramechanics,2000,37:41-56.
    [125]方开泰.均匀设计与均匀表[M].北京:科学出版社,1994.
    [126]方开泰.均匀试验设计的理论、方法和应用[J].数理统计与管理,2004,23(3):69-80.
    [127]张胜国,张沛,耿孝正.用均匀设计方法优化啮合同向双螺杆挤出过程运转条件[J].中国塑料,1998,12(6):94~98.
    [128]付晓.四川传统肉制品栅栏因子及其防腐保质机理研究[D].成都:西华大学,2011.
    [129]王韫.钛白粉表面包膜的表征及机理[D].昆明:昆明理工大学,2011.
    [130]黄春桃.羧甲基壳聚糖—膨润土复合吸附剂对Cu~(2+)、Ni~(2+)、Cr~(3+)的吸附作用研究[D].广州:广东工业大学,2012.
    [131]杜俊.复合膜生物反应器处理榨菜废水效能及膜污染控制试验研究[D].重庆:重庆大学,2011.
    [132]马聪.基于非均相催化玉米油基生物柴油的制备工艺研究[D].上海:华东理工大学,2010.
    [133]周莉.用于污染河道修复的生物脱氮菌株的筛选及脱氮条件的研究[D].武汉:华中农业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700