用户名: 密码: 验证码:
夏玉米—冬小麦“双晚”种植方式对周年光温资源利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
夏玉米-冬小麦“双晚”种植方式是夏玉米-冬小麦周年高产高效的重要途径。为了进一步明确夏玉米-冬小麦“双晚”增产及资源高效利用的效应,选用2个夏玉米品种(郑单958和登海661)和1个冬小麦品种(登海5197)为研究对象,于2008-2009年在山东省莱州市登海种业股份有限公司第16试验场进行大田试验,夏玉米试验在济宁农科院和聊城农科院同时进行。比较研究了不同播期对夏玉米和冬小麦群体物质生产、叶片光合生产特性和生理特性以及周年产量形成的影响,探讨了夏玉米-冬小麦周年光温资源的分配和利用。主要研究结果如下:
     1夏玉米-冬小麦“双晚”周年产量及产量构成
     夏玉米直播处理比套种处理籽粒产量增加,收获穗数显著增加,但千粒重有所降低。通过对产量和产量构成因素的相关系数可以看出,收获穗数是产量构成的主要因子,呈显著正相关,且两个品种均达到显著水平。穗粒数和千粒重对产量均呈负相关,但穗粒数和千粒重对产量的相关系数较小且不显著。冬小麦随播期的推迟,收获穗数逐渐降低,千粒重有所增加,穗粒数和籽粒产量呈先上升后降低趋势,最高产量出现在10月15日。夏玉米改套种为直播(播期推迟至6月15日)和冬小麦晚播(播期相应推迟至10月15日)“双晚”种植方式周年产量最高。
     2夏玉米-冬小麦“双晚”周年光温资源分配利用
     直播夏玉米全生育期天数明显短于套种,其生育期内总积温和辐射总量分别比套种减少,直播夏玉米对光温资源的占有率较套种低,但光能利用率具有明显优势,尤其直播光能利用率比套种明显提高。冬小麦全生育期内,由于传统播期比晚播生育期天数要多6~11 d,因此传统播期的总积温和总辐射量要明显高于晚播,10月15日播种在全生育期内茎叶、籽粒和全株的光能利用率均高于10月8日和10月22日,表明冬小麦适当晚播可以提高光能利用率。
     夏玉米6月15日直播结合冬小麦10月15日晚播种得到的周年光能利用率和周年有效积温利用率最高,周年光能利用率和周年有效积温利用率相比其它组合分别提高3.6%~17.9%和5.1%~25.0%,说明适当推迟播期的夏玉米-冬小麦组合能提高周年光温资源利用率。
     3夏玉米-冬小麦“双晚”干物质积累和分配
     与套种相比,夏玉米直播在开花前和开花后均具有较大的干物质积累量和较快的干物质积累速率,但直播收获系数低于套种。开花期夏玉米的干物质积累分配比例最大的是茎秆,同时直播的茎秆分配比例较套种高,叶片分配比例较套种低;成熟期的干物质积累分配比例最大的的是果穗,且直播的果穗分配比例较套种降低。由各生育期茎叶分配比例与果穗分配比例的相关分析结果表明,成熟期叶片的分配比例对果穗分配比例呈显著负相关,说明直播处理成熟期叶片的干物质向果穗的转运率降低。
     冬小麦开花前干物质积累量和干物质积累速率随播期的推迟呈下降趋势;开花后,冬小麦的干物质积累量和干物质积累速率随播期的推迟呈先上升后下降趋势,10月15日播期显著高于10月8日和10月22日。全生育期,10月15日播期的干物质积累量和干物质积累速率显著高于10月8日和10月22日。
     4夏玉米叶片光合生产特性
     开花后是籽粒产量形成的关键时期,也是植株生理功能渐衰期,玉米花后穗位叶净光合速率均表现出随生育进程逐渐降低的趋势。开花期至花后30 d,直播与套种的穗位叶净光合速率下降缓慢,且直播具有较高的净光合速率;花后30 d至收获期,穗位叶净光合速率降低较快,后期尤为明显,直播的穗位叶净光合速率下降幅度比套种大,成熟期已显著低于套种,这与叶面积指数后期的变化趋势基本一致。
     直播处理达到最大灌浆速率的时间明显早于套种,起始势较套种高;但灌浆期、活跃灌浆期和灌浆速率最大时的生长量均低于套种,通过灌浆速率特征参数对千粒重的相关分析可见,灌浆活跃期、灌浆速率最大时的生长量、最大灌浆速率对千粒重呈显著正相关,说明直播处理灌浆活跃期短、灌浆速率最大时的生长量低、灌浆速率慢,是导致千粒重较套种降低的原因。
     开花后至花后30d直播处理叶片的叶绿素a和叶绿素(a+b)含量与套种相比差异较小,但自花后30d至成熟期直播处理叶片的叶绿素a和叶绿素(a+b)含量下降较快,显著低于套种。在整个灌浆期间,直播处理叶绿素b含量均显著低于套种,而叶绿素a/b值和类胡萝卜素含量均显著高于套种。
     5夏玉米叶片衰老酶活性
     夏玉米直播处理叶片的SOD、CAT、POD活性和可溶性蛋白含量在开花至灌浆中期与套种差异显著,而后下降较套种快,成熟期显著低于套种。MDA含量表现为随生育期的推迟逐渐升高,自开花至灌浆中期MDA含量增加趋势缓慢,直播处理叶片的MDA含量均低于套种;而灌浆后期,叶片的MDA含量增加明显,直播处理的MDA含量增加幅度较套种大,成熟期已显著高于套种处理。说明直播处理灌浆后期叶片的细胞膜脂过氧化程度加剧。
     因此,通过有效调节资源配置,将冬小麦冗余的光温资源分配给C_4高光效作物玉米,是提高周年高产高效的重要途径。直播较套种有优势,在夏玉米大田生产条件下,重视叶片的光合生产特征,延缓叶片衰老,有利于提高夏玉米的光能利用率,进一步挖掘增产潜力。
The summer maize-winter wheat rotation is the main crop system in North China plain. The double late-cropping patterns of summer maize and winter wheat is of importance for annual high yield and high efficiency. In order to quantitatively analyze the effects of double late-cropping patterns of summer maize and winter wheat on increasing yield and high resource use efficiency, two cultivars of summer maize(Zhengdan958 and Denghai661) and one cultivar of winter wheat(Denghai5197) were sowed in the No.16 farmland of Denghai Seed Co. Ltd in Laizhou City, Shandong Province in 2008-2009. In addition, summer maize experiment was made simultaneously in Jining Institute of Agricultural Science and Liaocheng Institute of Agricultural Science. The effects of different sowing dates on the dry matter production, the photosynthesis characteristics and physiological characteristics of leaf, and annual yield performance of summer maize and winter wheat were analyzed, and distribution and utilization of annual solar and heat resources of summer maize and winter wheat were studied compared. The principal results were as follows:
     1. Annual yield and yield components of summer maize and winter wheat in double late-cropping patterns
     The grain yield of direct-seeding of summer maize was higher than interplant, and harvest ears were increased significantly, but thousand-grains weight was reduced. The correlation coefficient between yield components and yield showed that harvest ears were the main factor and there was a positive and significant relation between harvest ears and yield components. There was a negative relation amang grains number, thousand-grains weight and yield components, but the correlation coefficient was smaller and insignificant. the spike number of winter wheat was deceased, and thousand-grains weight was increased, and grain number per spike and grain yield was increased firstly and then decreased with the sowing date postponed, the maximum yield occurred on October 15. The annual yield of summer maize (change interplant to direct-planting, and the sowing date postponed to June 15) and winter wheat (the sowing date postponed to October 15) in double late sowing-cropping patterns was the highest.
     2. Annual distribution and utilization of solar and heat resources of summer maize and winter wheat in double late-cropping patterns
     The total growth days of direct-seeding of summer maize was shorter obviously than interplant, and the accumulative temperature and total solar radiation of direct-seeding were decreased respectively than interplant, which implied that distribution rate of solar and heat resources was lower than interplant. But utilization of solar resources of direct-seeding had obvious advantages, especially utilization of solar resources of grain was obviously improved.
     The accumulative temperature and total solar radiation of traditional sowing date of winter wheat was evidently higher than late sowing date due to the total growth days of traditional sowing date was more by 6-11d than late sowing date. The utilization of solar resources of stem, leaf, grain and whole plant of winter wheat which sowed on October 15 was higher on average than which sowed on October 8 and 22. That indicated that winter wheat which postponed sowing date properly could improve utilization of solar resources.
     The annual utilization of solar resources and accumulative temperature of summer maize which direct-seeding on June 15 and winter wheat which late sowed on October 15 were the highest by 3.6%-17.9% and 5.1%-25.0% than other sowing-date combinations.
     3 Accumulation and distribution of dry matter of summer maize and winter wheat in double late-cropping patterns
     Direct-seeding of summer maize had a higher accumulation of dry matter and a faster crop growth rate before flowering and after flowering compared with interplant, but the harvest index of direct-seeding was lower than interplant. The distribution rate of stem of summer maize was the biggest on flowering, and distribution rate of stem of direct-seeding was higher than interplant, but distribution rate of leaf was lower; the distribution rate of ear was the biggest on maturity, and distribution rate of ear of direct-seeding was lower than interplant. The correlation coefficient between distribution proportion of stem and leaf and distribution proportion of ear in different growth stages showed that there was a negative relation between distribution proportion of leaf and distribution proportion of ear on maturity, which meaned that the transport rate of dry matter from leaf to ear decreased.
     Accumulation of dry matter and crop growth rate of winter wheat declined with delay of sowing date before flowering, but which increased firstly and then decreased with the sowing date postponed after flowering. Accumulation of dry matter and crop growth rate of sowing on October 15 were higher respectively than which sowed on October 8 and 22.
     4 The photosynthesis characteristics of leaf of summer maize
     The key period of grain yield performance and gradual senescence of physiological function of leaf was after flowering. Net photosynthesis rate of ear leaf of maize decreased gradually with growth course. Leaf area index and net photosynthetic rate of direct-seeding were higher than interplant significantly from flowering to 30d after anthesis, then it was decreased faster, especially rate of decline of leaf area index and net photosynthetic rate of direct-seeding was larger than interplant, and which was obviously lower on maturity.
     Characters of grain filling by Richards’model showed direct-seeding reached the maximal grain-filling rate earlier than interplant, and the starting potential of direct-seeding was higher than interplant, while the grain filling period, active grain-filling period and Wmax were lower than interplant. The correlation coefficient between characteristic parameters of grain filling rate and thousand-grains weight showed that there was a positive and significant relation between active grain-filling period, growth weight during the period of maximal grain-filling rate, maximal grain-filling rate and thousand-grains weight. It showed the reason that active grain-filling period was shorter, growth weight during the period of maximal grain-filling rate was smaller, maximal grain-filling rate was slower which lead to decrease thousand-grains weight.
     The differences of content of chla and chl(a+b) of leaf of direct-seeding was smaller than interplant from flowering to 30d after anthesis, but which decreased faster from 30d after anthesis to maturity. On the whole filling period, content of chlb of leaf of direct-seeding was lower respectively than interplant. On the contrary, chl a/b and carotenoid content of leaf of direct-seeding was higher respectively than interplant.
     5. The aging enzyme activity of leaf of summer maize
     Activity of SOD, CAT, POD and soluble protein content of leaf were different significantly between direct-seeding and interplant from flowering to middle filling period, and which were lower than interplant on maturity. MDA content promoted gradually with growth stage postponed. Content of MDA of direct-seeding was lower on average than interplant from flowering to middle filling period. But Content of MDA of direct-seeding ascended faster and higher significantly than interplant on later filling period. It indicated the lipid peroxidation extent of leaf of direct-seeding had enlarged on later filling period.
     Thus, the double late-cropping patterns had good performances on grain yield and resource use efficiency. The high annual yield and high production efficiency in double late-cropping patterns were mainly subject to the cropping season of maize, a C_4 plant with high photosynthetic efficiency. Directing-seeding was proved to be superior to interplant under the field planting condition. In order to enhance high solar and heat utilization efficiency and excavate yield potential, it’s essential to improve the leaves photosynthesis efficiency and postpone their aging.
引文
[1]曹广才,吴东兵,陈贺芹,等.温度和日照与春播小麦品质的关系[J].中国农业科学,2004,37(5):663-669
    [2]陈新平,张福锁,崔振岭,赵荣芳.小麦-玉米轮作体系养分资源综合管理理论与实践[M].中国农业大学出版社,2006,1:2-16
    [3]陈阜,逄焕成.冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨[J].中国农业大学学报,2000,5(5):12-16
    [4]崔读昌主编.中国主要农作物气候资源图案,1984,气象出版社,北京
    [5]崔彦生,韩江伟,曹刚,孟建,张进文.冬前积温对河北省中南部麦区冬小麦适宜播期的影响.中国农学通报,2008,24(7):195-197
    [6]戴明宏,陶洪斌,J. Binder,王利纳,W. Claupein,王璞.春、夏玉米物质生产及其对温光资源利用比较[J].玉米科学,2008,16(4):82-85
    [7]丁在松,赵明,荆玉祥,李良璧,匡廷云.玉米ppc基因过表达对转基因水稻光合速率的影响.作物学报,2007,33(5):717-722
    [8]董树亭等.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系.1992
    [9]董树亭,高荣歧.玉米花粒期群体光合性能与高产潜力的研究.作物研究,1997,23(3):318-325
    [10]董树亭.生态因素对玉米高产特性影响及调控的研究[J].华北农学报,2000,151
    [11]东先旺.光温条件对高产夏玉米产量及产量性状的影响.莱阳农学院通报,1991,8(3):192-197
    [12]W.G.邓肯(高学曾、腾世云译).玉米生理译丛[M].北京:农业出版社,1979
    [13]杜军.气候生态因子对冬小麦粒重影响规律的探讨.中国农业气象,1997,18(6):43-45
    [14]杜明伟,罗宏海,张亚黎,姚炎帝,张旺锋,等.新疆超高产杂交棉的光合生产特性研究.中国农业科学,2009,42(6):1952-1962
    [15]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响[J].作物学报,2000,26(4):399-405
    [16]冯颖,余土元,陈惠阳,王琴,王继增.环境光强对糯玉米籽粒主要品质成分的影响.生态环境,2007,16(3):926-930
    [17]逢焕成,宋吉作等.小麦玉米套种共生期的气候生态效应与小麦边际效应分析[J].耕作与栽培,1994,4:15-16
    [18]付雪丽,张惠,贾继增,杜立丰,付金东,赵明.冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究.作物学报,2009,35(9):1708-1714
    [19]高素华主编.中国农业气候资源及主要农作物产量变化图集,1995,气象出版社,北京
    [20]顾世梁,朱庆森,杨建昌,彭少兵.不同水稻材料籽粒灌浆特性的分析.作物学报,2001,27(1):7-14
    [21]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报,2000,26(6):806-812
    [22]韩永齐.山东遭遇灰飞虱.山东农药信息,2008,7:18-19
    [23]何维勋.玉米展开叶增加速率与温度和叶龄的影响[J].中国农业气象,1990,1(3):30
    [24]胡昌浩.玉米栽培生理[M].北京:中国农业出版社,1995
    [25]黄振喜,王永军,王空军,李登海,赵明,等.产量15000kg·ha-1以上夏玉米灌浆期间的光合特性.中国农业科学,2007,40(9):1898-1906
    [26]贾士芳,董树亭,王空军,张吉旺,刘鹏.弱光胁迫对玉米产量及光合特性的影响.应用生态学报,18(11):2456-2461
    [27]姜群鸥,邓祥征,战金艳,刘兴权,唐华秀.黄淮海平原气候变化及其对耕地生产潜力的影响.地理与地理信息科学,2007,23(5):82-85
    [28]金之庆.评价全球气候变化对我国玉米生产的系列影响.作物学报,1996,22(5):513-524
    [29]李潮海,苏新宏,谢瑞芝,周苏枚,李登海.超高产栽培条件下夏玉米产量与气候生态条件关系研究.中国农业科学,2001,34(3):311-316
    [30]李潮海,栾丽敏,李宁.苗期遮光和光照转换对不同玉米品种光合特性的影响.作物学报,2005,31(3):381-385
    [31]李绍长,白萍,吕新,刘淑云,董树亭.不同生态区及播期对玉米籽粒灌浆的影响.作物学报,2003,9:775-778
    [32]李新平,黄进勇.黄淮海平原麦玉玉三熟高效种植模式复合群体生态效应研究[J].植物生态学报,2001,25(4):476-482
    [33]李秀芬,郑有飞,王阳.黑龙江省作物长势与气候因子关系的研究.黑龙江气象,2007,15:15-16
    [34]李丕杰,安娟,赵素香.气候变暖对辽宁苹果生产的影响及对策.辽宁气象,2001,1:61
    [35]李增嘉,李凤超,赵秉强.小麦玉米玉米间套作的产量效应与光热资源利用率的研究[J].山东农业大学学报,1998,29(4):419-426
    [36]李增嘉,李凤超,赵秉强.小麦玉米玉米间套作种植模式经济效益的分析[J].山东农业大学学报,1997,28(4):383-390
    [37]廖宗族.土温对玉米苗期生育影响的研究[J].农业气象,1980,1(2):49-55
    [38]陆长梅,吴国荣,周长芳,顾龚平.光照对植物SOD活性的影响.南京师大学报(自然科学版),2000,23(3):96-99
    [39]陆卫平,陈国平,郭景伦,等.不同生态条件下玉米产量源库关系的研究[J].作物学报,1997,6(23):727-733
    [40]栾丽敏.遮光对不同基因型玉米产量和光合特性的影响.河南农业大学硕士学位论文,2003
    [41]罗瑶年.种植密度对玉米叶片衰老的影响[J].玉米科学,1994,3(4):48-52
    [42]马体顺,马青荣,杨光仙,赵海青,张志红,崔智慧.气候生态因子对冬小麦千粒重的影响.河南气象,2006,3:56-57
    [43]马国胜,薛吉全,路海东,张仁和,邰书静,任建红.播种时期与密度对关中灌区夏玉米群体生理指标的影响.应用生态学报,2007,18(6):1247-1253
    [44]莫兴国,林忠辉,刘苏峡.黄淮海地区冬小麦生产力时空变化及其驱动机制分析[J].自然资源学报,2006,21(3):449-456
    [45]潘洁,姜东,戴廷波,兰涛,曹卫星.不同生态环境与播种期下小麦籽粒品质变异规律的研究.植物生态学报,2005,29(3):467-473
    [46]气候变化与作物产量编写组.气候变化与作物产量[M].北京:中国科技出版社,1992
    [47]秦武发,等.生态因素对小麦品质的影响[J].河北农业大学学报
    [48]沈秀瑛.玉米叶片光合速率与光、养分和水分及产量关系的研究[J].玉米科学,1994,2(3):56-60
    [49]宋世娟.玉米群体光合性能与气象因素及产量的关系[J].玉米科学,1996,4(4):60-62
    [50]苏正淑.低温对玉米光合作用及叶面积和籽粒产量的影响[J].辽宁农业科学,1990,1(5):22-24
    [51]孙月轩,鲍继友.夏玉米灌浆与温度、子粒含水率关系的初步探讨[J].玉米科学,1994,11
    [52]孙彦坤,王丽娟,严红.籽粒灌浆过程中气候因子对不同类型春小麦产量和蛋白质含量的影响之三:光照的影响[J].中国农业气象,2003,24(3):5-6
    [53]田展,刘纪远,曹明奎.气候变化对中国黄淮海农业区小麦生产影响模拟研究[J].自然资源学报,2006,21(4):598-601
    [54]王连敏.低温对玉米幼苗生长、发育及功能的影响.杂粮作物,1990,(6):23-25
    [55]王树安.小麦-夏玉米平播亩产吨粮的理论与实践.北京:农业出版社,1991
    [56]吴春胜.超高产玉米灌浆速率与干物质积累特性研究.吉林农业大学学报,2008,30(4):382-385,400
    [57]夏国军,崔金梅,郭天财,王晨阳.小麦灌浆期间温度与千粒重关系的研究.河南农业大学学报,2003,37(3):213-216
    [58]肖家雄.黄淮海夏玉米生产中相关问题的探讨[J].河北农业科学,2007,11(3):25-26
    [59]信乃诠主编.气候变化与粮食产量,中国科技出版社,1990,北京
    [60]薛香,郜庆炉.光温生态因子对冬小麦幼穗分化的影响研究.中国农业生态学报,2005,13(4):56-59
    [61]严定春,朱艳,曹卫星.水稻栽培适宜品种选择的知识模型.南京农业大学学报,2004,27(4):20-25
    [62]杨海霞.玉米新政给燃料乙醇带来什么[J].中国投资,2007,11:56-59
    [63]杨文彬.玉米覆膜栽培地积温效应对根系及植株发育的影响[J].植物生态学与地植物学报,1989,13(3):282-288
    [64]阳作明,刘海隆,王玲.光温变化对再生稻产量的影响研究.中国生态农业学报,2007,15(1):87-90
    [65]张泽民等.不同生态环境对玉米产量和穗粒性状的影响.华北农学报,1991,6(1):28-34
    [66]张吉旺,董树亭,王空军,刘鹏.遮阴对夏玉米生长发育和产量的影响.应用生态学报,2006,17(4):657-662
    [67]张吉旺,吴宏霞,董树亭,王空军,胡昌浩,刘鹏.遮荫对夏玉米产量和品质的影响.玉米科学,2009,17(5):124-129
    [68]张烈.玉米不同基因型奈米、耐荫、耐瘠特性及遗传相关研究.山东农业大学博士后研究工作报告,2001
    [69]张毅等.低温对玉米光合、超氧物歧化酶活性和籽粒产量的影响[J].作物学报,1992,18(5):397-400
    [70]张毅等.灌浆期低温对玉米籽粒的伤害作用[J].作物学报,1995,21(1):71-75
    [71]张鸣,张仁陟,蔡立群.不同耕作措施下春小麦和豌豆叶水势变化及其与环境因子的关系.应用生态学报,2008,19(7):1467-1474
    [72]赵久然.不同时期遮光对玉米籽粒生产能力的影响及生长的效果[J].中国农业科学,1990,23(4):28-35
    [73]赵久然,陈国平.不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察.中国农业科学,1990,23(4):28-34
    [74]赵宗慈.五个全球大气海洋环流模式模拟二氧化碳增加对气候变化的影响[J].大气科学,1990,1(14):12-14
    [75]郑洪健,董树亭,王空军,郭玉秋,胡昌浩,张吉旺.生态因素对玉米品种产量影响的试验研究[J].作物杂志,2001,5:14-16
    [76]郑斯中.全球变暖对我国粮食产量影响估计中的乐观倾向[J].中国农业气象,1993,14 (5):44-47
    [77]郑伟,张艳红.气候因素对玉米产量和品质的影响研究[J].现代农业科技,2007,11:103-104
    [78]周广洽,徐孟亮,谭周.温光对稻米蛋白质及氨基酸含量的影响[J].生态学报,1997,17(5):537-542
    [79]朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-193
    [80]Allen RG, Pereira LS, Raes D, et al. Crop Evapotranspiration-guidelines for Computing Crop Water Requirements– FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations, 1998
    [81]Altenbach S B, Dupont FM, Kothari KM, et al.Temperature,water and fertilizerinfluence the timing of key events during grain development in a U S spring wheat [J].J. Cereal Sci, 2003,37: 9-20
    [82]Demmig-Adams B, Adams III W, Barker D H. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiology Plant, 1996, 98(2):253-264
    [83]Duparque A,S.Pelleri, An Attempt to model the mechanism of root lodging resistance in maize.In proceedings of the congress of the European society for agronomy,1994,8:360-361
    [84]Guedira M , Paulsen G M. Accumulation of starch in wheat grain under different shoot/ root temperatures during maturation [J].Funct. Plant Biol, 2002,29: 495-503
    [85]He Z H, Rajaram S. Differential responses of bread wheat characters to high temperature[J]. Euphytica, 1994, 72:197-203
    [86]Heer W F, Krenzer Jr E G. Soil water availability for spring growth of winter wheat as influenced by early growth and tillge. Soil Tillage Res. 1978, 14: 1048-1053
    [87]Huang J, Pray C, Rozell S. Enhancing the crops to feed the poor. Nature, 2002, 418: 678-684
    [88]Hulme eemana R , Zong-ci Zhao,Futang Wang ,et al . Climate Change due to the greenhouse effect and its implication for China[M]. CRU/ WWF/ SMA , Banson Production. London. U K, 1992
    [89]IPCC. Climate change[ R]. London : Cambridge Univer -sity-Press , 1990
    [90]IPCC. Climate change 2001: the scientific basis , summary of working group report [R]. Yin Houghton Ding Yihui, D.Griggs. eds London: Cambridge University Press ,1998
    [91]Keeling P L, Bacon P J , Holt D C.Elevated temperature reduced starch deposition in wheat endosperm by reducing the activity of soluble starch synthase [J]. Planta, 1993, 191:342-348
    [92]Knapp W R, Knapp J T. Response of winter wheat to date of planting and fall fertilization. Agron J, 1978, 70:1048-1053
    [93]Lash of D A.The dynamic greenhouse: feedback process t hat may influence future concent ration of atmospheric t race gases and climate change[J]. Clim Change ,1989,14:213~242
    [94]Lightfoot, C.W.F., Dear, K.B.G. and Mead, R. Intercropping sorghum with cowpea in dryland farming systems in Botswana. Comparative stability of alternative cropping systems [J]. Exp.Agric, 1987, 23:435-442
    [95]Loomis R S, Williams W A. Maximum crop productivity: An estimate. Crop Science, 1963, 3: 67-72
    [96]Mann CC. Crop scientists seek a new revolution. Science, 1999, 283: 310-314
    [97]Marshall, B. and Willey, R.W.. Radiation interception and growth in an intercrop of pearl millet/groundnut [J]. Field Crops Res, 1983, 7:141-160
    [98]Miller T D.Growth stages of wheat: identification and under-standing improve crop management.Better Crops, 1992: 12-17
    [99]Nakata, A. Kono Y. The effects of exposure to light on the development of the root system of rice seedlings. Report of the tokai branch of crop science society of japan, 1990,10: 27-28
    [100]Nass, H.G. Zuber M.S. Correlation of corn(Zea mays L)roots early in development to mature root development. Crop Sci, 1971,11: 655-658
    [101]Natarajan, M. and Willeym R.W.. Sorghum-pigeonpea intercropping and the effects of plant population density. Resource use [J]. J. Agric.Sci, Camb,1980,95: 51-65
    [102]Natarajan, M.and Willey, R.W.. The effects of water stress on yield advantages of intercropping systems [J]. Field Crops Res, 1986, 13:117-131
    [103]Pellerin, S.S.demotes-mainard. Effect of competition for light between plants on the root shoot ratio and the number of adventitious root of maize,Symposium root ecology and its practice application Vienna,1991:65-68
    [104]Rao, R.C.N., Wadia, K.E.R. and Williams, J.H.. Intercropping short and long duration groundnut genotypes to increase productivity in environments prone to end of season drought [J]. Exp. Agric, 1990, 26:63-72
    [105]Reddy, M.S. and Willey, R.W.Growth and resource use studies in an intercrop of pearl millet/groundnut [J]. Field Crops Res, 1981, 4:13-24
    [106]Reed A J, Singletary G W, Schussler J R. Shading effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Science, 1995, 35(1):183-190
    [107]R ijven A H G C.Heat inactivation of starch synthase in wheat endosperm tissue[J].Plant Physiol,1986, 81:448-453
    [108]Sanguineti M C, M M Giulini, Ruberose. Root and shoot traits of maize inbred lines grown in the field in hydroponic culture and their relationships with root lodging maydica.1998, 43:211-216
    [109]Sivakumar, M.V.K. and Virmani, S.M.. Crop productivity in relation to interception use efficiency with increased diffuse radiation [J]. Crop Sci, 1984 ,31:131-141
    [110]Sofield I, Evans L T, CookM G, et al. Factors influencing the rate and duration of grain filling in wheat[J]. Plant Physicol,1977, 4: 785-797
    [111]Song Lianchun, A.J.Cannon, P.H.Changes in seasonal patterns of temperature and precipitation in china during 1997-2000.Advances in Atmospheric Sciences,2007, 3:459-473
    [112]Stone P J, N icolasM E. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of postanthesis heat stress[J]. Plant Physiol, 1994, 21: 887-900
    [113]Stone P J, NicolasM E. The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance: grain growth and fractional protein accumulation [J].Plant Physiol, 1998, 25: 13-20
    [114]Struik P C. The effects of short and long shading, applied during different stages of growth, on the development, productivity and quality of forage maize(Zea may L). Netherlands Journal of Agricultural Science, 1983, 31(2):101-124
    [115]Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the north china plain. Ind Crops Prod, 2007, 25: 239-247
    [116]Tollenaar M, Bruulsema T W. Effects of temperature on rate and duration of kernel dry matter accumulation of maize. Can J Plant Sci.1988,68:935-940
    [117]Tollenaar M and Daynard T B.Relationship between assimilate source and reproductive sink in maize grown in a short-season environment.Agron J,1978, 70:219-222
    [118]Trenbath B. R., 1986. Resource by intercrops [A] In: Francis C A(ed). Multiplecropping systems[M].Macmillan. New York
    [119]Tsay, J.S., Fukai, S. and Wilson, G.L.. Intercropping cassava with soybean cultivars of varying maturities [J].Field Crops Res, 1988 , 19:211-225
    [120]Wahua, T.A.T., Babalola, O. and Aken’ova, M.E.. Intercropping morphologically different types of maize with cowpeas: LER and growth attributes of associated cowpeas[J]. Exp. Agric, 1981, 17:407-413
    [121]Waren Wilson,J., 1969. Maximum yield potential[M]. In: Proc. with Colloquium. Int. Potash Inst., Bern, Switzerland, pp.34-56
    [122]Willey, R.W. Intercropping– its importance and research needs Part 1. Competition and yield advantages [J].Field Crop Abstr, 1979, 32:1-10
    [123]Winter S R, Musick J T. Wheat planting date effects on soil water extraction and grain yield. Agron J.1993, 85: 912-916

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700