用户名: 密码: 验证码:
基于垃圾渗滤液生化出水特征的生物炭技术试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生活垃圾焚烧发电是近年来国内采用的垃圾处置方法之一,该法可有效地达到垃圾减量化、无害化、资源化的目的,在大城市中有广泛的应用前景,但也因此带来了新的二次污染问题,其中就包括焚烧厂的贮仓渗滤液。它的水质特性不同于填埋场渗滤液,且具有可生化性高、有机物浓度高、毒性大、难处理等特点,在经过生化处理后仍有难降解的有机物残留,难以使之达标排放。目前国内外在垃圾焚烧厂渗滤液处理方面的研究很少,为解决这个新的污染问题,课题以重庆同兴垃圾焚烧发电厂的垃圾渗滤液生化处理后出水为研究对象,采用生物炭深度处理工艺对其进行深度处理。围绕垃圾渗滤液生化出水水质特征采用生物炭技术,重点研究了①O3-生物炭池臭氧氧化过程;②生物炭池工程菌的筛选、培养和固定化;③采用三种生物炭工艺(自然挂膜BAC1,固定工程菌BAC2和O3-固定工程菌BAC3)对比实验研究适用于垃圾渗滤液生化处理出水深度处理的生物炭处理技术,结果表明:
     臭氧化的功效并不在于改变有机物总量,而在于改变有机物性质,提高有机物生化降解性。臭氧化前后,当臭氧投加量为10mg/L时,UV_(254)的去除率为29.03%,色度的去除率为48%,原水中的UV_(254)/TOC比值为0.0264,臭氧化后为0.015,降低了48.31%。按照UV_(254)/TOC比值小于0.02的水适宜生化降解这个标准,表明臭氧化能提高水质的可生化性。因此臭氧投加量在2mg/L左右,氧化10min是合理的。
     采用生物工程技术,从同兴垃圾焚烧发电厂现有生化处理系统曝气池的活性污泥中筛选出3株高效工程菌Y5、Y8、Y10。经过16SrDNA鉴定表明,这三株工程菌分别为海杆菌属、埃希式菌属和不动杆菌属,尽管形态不一样,但均有很强有降解渗滤液二级生化出水中有机物的能力,对TOC的去除率分别为49.1%、61.3%、52.4%。对3株高效工程菌进行扩大培养,经过载体的选择,采用物理循环吸附法制备了可用于工程应用的人工固定化生物炭。
     稳定运行期间,分别在15mL/min, 25mL/min, 35mL/min和45mL/min的设计流量下,分别考察流量对BAC法去除水中UV_(254)所表征的难降解有机物的影响,根据试验监测数据,综合考虑效率,经济等方面的因素,认为25mL/min的流量比较适合本试验水质和工艺。进水流量为25mL/min时,三种工艺中炭层在70cm以后,对UV_(254)去除率较低10%以下。四种流量下,O3-BAC和BAC2工艺出水TOC分别比BAC1低15%和10%左右。进水TOC在110mg/L,进水流量在15~25mL/min之间时,O3-BAC工艺绝大部分时间出水TOC可以稳定在60mg/L以下。从TOC指标考虑,采用O3-BAC工艺深度处理垃圾渗滤液生化出水可以达到《生活垃圾焚烧污染控制标准》(GB18485-2001)的二级排放标准(COD<300mg/L,即TOC<60 mg/L)。生物量和生物活性沿水流方向逐渐减小。经过连续运行和监测,得出BAC柱采用间歇式气水联合反冲洗,试验运行参数为水强度2~3 L/(s.m~2),气强度为6 L/(s.m~2),间隙1min,反冲历时20min。,反冲洗后,BAC柱需要一天左右的恢复期。
In recent years, power generation by incinerating municipal solid wastes (MSW) is one of the ways in disposing wastes in metropolis, which shows a great advantage in pollutant minimization, resource ruse and detoxification of MSW and so on. However, this way in disposing MSW leads to the secondary pollution problem including leachate from MSW dumpsite, the character of which is different from that from landfill in high organic contents, toxicity and biodegradability. What is worse, there still remains much refractory contaminant in the leachate after the biochemical treatment resulting in failing to meet the discharge standard. This paper is a tentative study on the character of Leachate wastewater effluent after biological treatment with biological activated carbon technology. The main focuses are on①the ozone oxidation procedure in biological activated carbon pool;②the procedure of selecting, cultivating and immobilizing the engineering bacteria in biological activated carbon pool;③the biological activated carbon technology which is suitable to be applied to treat the Leachate wastewater effluent after a comparative experiment study on three biological activated carbon technology (natural bio-film of BAC1, fixation of engineering bacteria of BAC2, and fixation of engineering bacteria of o3-BAC3).
     Ozonization is not to change the amount of the organics, but to change its character and improve its biochemical degradation. The removal rate of UV_(254) and the chroma is 29.03% and 48% respectively when ozone is used with the amount of 10mg/L. The UV_(254)/TOC is 0.0264 in the original water, and it changes to be 0.015 with the reducing rate of 48.31%. According to the standard that the water with UV_(254)/TOC , smaller than 0.02 is qualified to be dagradated. It shows that Ozonization helps to improve the biodegradability of the water. It is plausible to input the amount of ozone of 2mg/L with the time of 10min.
     The author makes use of the biotechnology to select three high effective engineering bacteria from activated sludge in biochemical treatment system aeration pool in Tong Xiong power generation plant of MSW incineration. These three high effective engineering bacteria are identified as sea bacillus, eegje bacteria and acinetobacter after 16SrDNA identification with different forms but high capacity in degrading organics in secondary leachate .Three high effective engineering bacteria goes through the process of microbial species expanding culture, and on the other hand, artificial immobilized biochemical activated carbon is created by physical circle absorption method.
     During the stable procedure, the author tries the flow rate of 15mL/min, 25mL/min, 35mL/min and 45mL/min to see the influence of flow rate on the method of BAC’s degradation of organics. The monitoring data in experiment concludes that the flow rate, 25mL/min is the best choice for present study, allowing for the factors of efficiency and economy. When input amount of water is 25mL/min, the thickness of carbon layer is bigger than 70cm and the removal rate of UV_(254) is lower than10% in the three processes. The TOC with the method of O3-BAC is 15% lower than that with the method of BAC1 and 10% lower than that with the method of BAC2. When the input TOC is 110mg/L, and the input flow rate is 15~25mL/min, the output TOC amounts to 60mg/L in a stable way. Taking TOC index into consideration, the measurement of O3-BAC in disposing leachate lives up to the secondary discharge standard (COD<300mg/L,that is, TOC<60 mg/L) in Standard of Controlling MSW Incineration Pollution (GB18485-2001). The biomass and biological activity decrease along the direction of water flow. With a consistent treatment and monitor, the author finds that BAC works by intermittent gas and water combined reverse washing, and the water consumption intensity is 2~3 L/(s.m2), gas consumption intensity is 6 L/(s.m2), interval time is 1min, and the time of reverse washing is 20min. BAC needs one day for recovery after reverse washing.
引文
[1] Tongji University &Asian Institute of Technology. State of the Review Landfill Leachate Treatment, 2004, 9.
    [2]孟了,熊向陨,马箭.我国垃圾渗滤液处理现状及存在问题[J].给水排水, 2003, 29(10): 26-29.
    [3]周劲风,李耀初.广州李坑垃圾填埋场水环境污染调查[J].上海环境科学, 1999, 18(2):94-97.
    [4] Tongji University &Asian Institute of Technology. State of the Review Landfill Leachate Treatment, 2004, 9.
    [5] Hossein Mohammadzadeha b T, Ian Clarka, Mark Marschnera et al. Compound Specific Isotopic Analysis(CSIA) of landfill leachate DOC components[J]. Chemical Geology, 2005, 218:3-13.
    [6] Richa Srivastava, Dinesh Kumar, S.K.Gupta. Bioremediation of municipal sludge by vermitchnology and toxicity assessment by Allium cepa[J]. Bioresource Technology, 2005, 96: 1867-1871.
    [7] Bestamin Ozkaya. Chlorophenols in leachates originating from different landfills and aerobic composting plants[J]. Journal of Hazardous Materials B, 2005.124:107-112.
    [8] Pin-Jing He, Li-Ming Shao, Xian Qu. Effects of feed solutions on refuse hydrolysis and landfill leachate characteridtics[J]. Chemosphere, 2005, 59:837-884.
    [9] R.Ibanez, A.Andres, J.R.Viguri. Characterisation and management of incinerator wastes[J]. Journal of Hazardous Materials A, 2000, 79:215-227.
    [10] Joar Karsten Qygard, Amund Mage, Elin Gjengedal. 2005. Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate[J]. Waste Management,25:71-718.
    [11] William Hogland, Marcia Marques. Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel[J]. Resources, Conservation and Rcryrling, 2003, 40:53-69.
    [12]方芳,刘国强,郭劲松,宫鲁等.三峡库区垃圾填埋场和焚烧厂渗滤液水质特征[J].重庆大学学报, 2008, 31:77-82.
    [13]曹占峰,何品晶,邵立明等. SBR法处理垃圾填埋场新鲜渗滤液的实验研究[J].环境污染治理技术与设备, 2005, 6(2):33-36.
    [14]何品晶,冯会军,崔贤,等.生活垃圾焚烧厂贮坑沥滤液的污染与可处理特性[J].环境科学研究, 2006,19(2):86-89.
    [15] R.J.Slack, J.R.Gronow, N.Voulvoulis. Household hazardous waste in municipal landfills: contaminants in leachate[J]. Sciense of the Total Environment, 2005, 337:119-137.
    [16] Erik Noakssona, b, Maria Linderotha, Bodil Gustavsson. Reproductive status in female perch outside a sewage treatment plant processing leachate from a refuse dunp[J]. 2005, 340:97-112.
    [17] H.D.Robinson, K. Knox, B.D.Bone. Leachate quality from landfilled MBT waste. Waste Management, 2005, 25:383-391.
    [18]张兰英,韩静磊,安胜姬等.垃圾渗滤液中有机污染物的污染及去除[J].中国环境科学, 1998, 18(2):184-188.
    [19] Adekunle A. Bakare, Adekunle A.Mosruo, Oladele Osibanjob. An in vico ecaluation of induction of abnormal sperm morphology in mice by landfill leachates. Mutation Research, 2005, 582:28-34.
    [20] Erik Noakssona, b, Maria Linderotha, Bodil Gustavsson. Reproductive status in female perch outside a sewage treatment plant processing leachate from a refuse dunp[J]. 2005, 340:97-112.
    [21] Gian Gupta, William Gardner. Use of clay mineral for reducing poultry litter leachate toxicity[J]. Jouranal of Hazardous Materials B, 2005, 118:81-83.
    [22] Li-Nan Huang, Shuang Zhu, Hui Zhou et al. Molecular phylogentic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill[J]. FEMS Microbilolgy Lerrers, 2005, 242:297-303.
    [23] Nan Sang, Guangke Li. Chromosomal aberrations induced in mouse bone marrow cells by municipal landfill leachate[J]. Environmental Toxicology and Pharmacology, 2005, 20:219-224.
    [24]曹霞,欧阳锋.填埋场垃圾渗滤液的处理技术[J].中国测试技术, 2004, 1:38-39.
    [25] Goran Dave , Eva Nilsson. Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite[J]. Aquatic Toxicology, 2005, 20:219-224.
    [26] H. D. Robinson, K.Knox, B.D.Bone. Leachate quality from landfilled MBT waste[J]. Waste Management, 2005, 25:383-391.
    [27] Marnie L. Ward, Gabriel Bitton, Timothy Townsend. Heavy metal binding capacity of municipal solid waste landfill leachates[J]. Chemsophere, 2005, 60:206-215.
    [28] B.Fja``iiborg, G. Ahlberg, E. Nilsson et al. Identificaton of metal toxicity in sewage sludge leachate[J]. Environment International, 2005, 31:25-31.
    [29]喻晓,张甲耀,刘楚良.垃圾渗滤液污染特性及其处理技术研究和应用趋势[J].环境科学与技术, 2002, 35:43-47.
    [30]黄群贤,张月红,董文庚,等.厌氧-好氧生物法处理垃圾场渗滤液的研究[J].河北工业科技, 1999, 16(4):1-3.
    [31] Boyle W C, Ham R K. Chemical treatment of leachate from sanitary landfills[J]. Journal of Water Pollution Control Federation, 1974, 46(7): 1776-1791.
    [32] Timur H, Ozturk I. Anaerobic sequencing batch reactor treatment of landfill leachate[J]. Water Science and Technology, 1997, 36(6):510-508.
    [33] Timur H, Ozturk I. Anaerobic sequencing batch reactor treatment of landfill leachate[J]. Water Science and Technology, 1997, 36(6):501-508.
    [34] Kettunen R H, Hoilijoki T H, Rintala J A. Anaerobic and sequential anaerobic-aerobic treatments of municipal landfill leachate at low temperatures[J]. Bioresource Technology, 1996, 58(1):31-40.
    [35]胡焰宁.垃圾焚烧发电厂垃圾渗滤液处理工艺的研究[J].环境工程, 2004, 22(5):30-32.
    [36]徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究[J].中国沼气, 2002, 20(2):12-15.
    [37] Keenan P J, Iza J, Switzenbaun M S. Inorganic solids development in a pilot scale anaercobic reactor treating municipal solid wastelandfill leachate. Water Environmental Research, 1993, 65(2):181-188.
    [38]李军,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤液混合废水[J].中国给水排水, 1999, 15(5):10-12.
    [39]沈耀良,王宝贞,等.生活垃圾渗滤液处理中试研究.中国给水排水, 1999, 15(5):10-12.
    [40]孙召强,杨宏毅,武泽平,等. CASS工艺处理垃圾渗滤液工程设计实例[J].给水排水, 2002, 28(1):20-21.
    [41]蒋彬,吴浩汀,徐亚明.浅谈城市垃圾填埋场渗滤液的处理技术[J].江苏环境科技, 2002, 15(1):32-34.
    [42]王里奥,顾恒岳.垃圾渗滤液处理的实验研究[J].重庆大学学报(自然科学版, 2002, 25(2):99-102.
    [43] Robinson H D, Grantham G. The treatment of landfill leachate in on-site Aerated Lagoon Plants: Experience in Britain and Ireland[J]. Water Research, 1988, 22(6):733-744.
    [44]吴狄,熊向阳,孙慰雯,等.三级稳定塘在垃圾渗滤液处理系统后续处理中的应用[J].信阳农业高等专科学校学报, 2005, 15(1):33-35.
    [45] Maehlum T. Treatment of landfill leachate in on-site lagoons and constructed wetlands[J], Water Science and Technology, 1995, 32(3):129-135.
    [46] Loukidou M X, Zouboulis A I. Comparison of two biologicaltreatment peocesses usingattached-growth biomass for sanitary landfill leachate treatment[J]. Environmental Pollution, 2001, 111(2):273-281.
    [47]闫志明,普红平,阳立平. UASB-SMBR处理垃圾渗滤液的实验研究[J].环境科学与技术, 2004, 27(6): 21-22.
    [48] Li-Nan Huang, Shuang Zhu, Hui Zhou et al. Molecular phylogentic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill[J]. FEMS Microbilolgy Lerrers, 2005, 242:297-303.
    [49]李平,韦朝海,吴超飞,等.厌氧/好氧生物流化床耦合处理垃圾渗滤液的新工艺研究[J].高校化学工程学报, 2002, 16(3):345-350.
    [50]郑金伟,武剑,马国伟. UASB-SBR工艺处理垃圾渗滤液[J].中国给水排水,2003, 19(4):59-60.
    [51]沈耀良,赵丹,杨铨大,等.厌氧-好氧法处理渗滤液与污水混合废水的可行性[J].污染防治技术, 2000, 13(2):63-67.
    [52]王敏,阳小敏.垃圾渗滤液深度处理技术及其分析[J].江苏环境科技, 2002, 15(2):32-34.
    [53]胡焰宁.垃圾焚烧发电厂垃圾渗滤液处理工艺的研究[J].环境工程, 2004, 22(5):30-32.
    [54]李旭东,李毅军,陈忠于,等.垃圾填埋场渗滤液处理工艺研究[J].应用与环境微生物学报, 1999,5:189.
    [55]陈立杰,苏永勃,王恩德,等.化学混凝-SBR法处理垃圾渗滤液的研究[J].工业水处理,2003, 23(8):43-45.
    [56] Wang Z P, Zhang Z, Lin Y J, et al. Landfill leachate treatment by a coagulation-photo oxidation process[J]. Journal of Hazardous Materials, 2002, 95(1):153-159.
    [57] Zouboulis A I, Chai X L, Katsoyiannis I A. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates[J]. Jounal of Encironmental Management, 2004, 20(1):50-52.
    [58]尚爱安,赵庆详,徐美燕,等.混凝在垃圾渗滤液处理中的作用研究[J].中国给水排水, 2004, 20(1):50-52.
    [59] Tatsi A A, Zouboulis A I, Matis K A. Coagulation-flocculation pretreatment of sanitary landfill leachates[J]. Chemosphere, 2003, 53(5):737-744.
    [60]邓国志,赵由才.混凝絮凝法取出腐植酸的研究[J].环境污染与防治, 2003, 25(5):268-270.
    [61]柴小丽,何宗剑.混凝法强化处理垃圾渗滤液的实验研究[J].应用与环境微生物学报, 1999, 5:143-146.
    [62]程梨花,黎明,倪福祥.高级氧化技术在水处理中的应用[J].青岛建筑工程学院学报, 2003, 24(1):22-25.
    [63] Scott J P, Quis D F.Integration of chemical and biological oxidation processes for water treatment: review and recommendation[J]. Environmental Progress, 1995, 14(2):88-103
    [64]张晖, Huang C P. Fenton法处理垃圾渗滤液[J].中国给水排水, 2001, 17(3):1-3.
    [65]张晖, Huang C P. Fenton法处理卫生填埋场渗滤液-从模型放大到中试的问题初探[J].重庆环境科学, 2002, 24(1):26-29.
    [66]张晖, Huang C P.填埋场渗滤液水质特性在Fenton处理过程中的变化[J].环境科学研究, 2002, 15(2): 48-53.
    [67]张晖, Huang C P. Fenton法处理垃圾渗滤液的影响因素分析[J].中国给水排水, 2002, 18(3):14-17.
    [68]江举辉,虞继舜,李武,等.臭氧协同产生·OH的高级氧化过程研究进展及影响因素的探讨[J].工艺安全与环保, 2001, 21(12):16-20.
    [69] Huang S S, Diyamandoglu V, Fillos J. Ozonnatin of leachates from aged domestic landfills[J]. Ozone: Scinece and Engineering, 1993, 15(5):433-444.
    [70] Imai A, Onuma K, Inamori Y, et al. Effect of pre-ozonation in refractory leachate treatment by the biological activated carbon fluidized bed process[J]. Environmental Technology, 1998, 19(2): 221-273.
    [71] Welander U, Henrysson T. Physical and chemical treatment of a nitrified leachate from a municipal landfill[J]. Envionmental Technology, 1998, 19(6):591-599.
    [72] Steensen M. Chemical oxidation for the treatment of leachates-process comparison and results from full-scale plants[ J]. Water Science and Technology, 1997, 35(4):249-256.
    [73] Monji-Ramirez I, Orta De Velasquez M T. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes[J]. Water Research, 2004, 38(9):2358-2366.
    [74] Wu J J, Wu C C, Ma H W, et al. Treatment of landfill leachate by ozone-based advanced oxidation proxesses[J]. Chemosphere, 2004, 54(7):977-1003.
    [75]刘春方.臭氧高级氧化技术在废水处理中的研究进展[J].石化技术与应用, 2002, 20(4):278-280.
    [76] Piatkiewicz W. A polish stugy: Treating landfill leachate with membranes[J]. Filtration and Seperation, 2001, 22(7):22-26.
    [77] Peters T A. Purification of landfill leachate with reverse osmosis and nanofiltration[J]. Desalination, 1998, 119(1):289-293.
    [78]袁潍坊,王国生,汤可敏.反渗透法处理城市垃圾填埋场渗滤液[J].水处理技术, 1997, 23(6):333-336.
    [79]于瑞连,胡恭任,王琼.用复台改性闰土处理垃圾渗滤液的实验[J] 2003, 13(2):73-75.
    [80]张富韬,方少明,松全元.活性炭对垃圾渗滤液中甲醛、苯酚和苯胺吸附规律的研究[J].安全与环境科学, 2003, 3(4):69-72.
    [81]方土,陆航,蓝学春.两级SBR-PAC吸附混凝法处理垃圾渗滤液的研究[J].浙江大学学报, 2002, 28(4): 435-439.
    [82]韩丽荣,鲁安怀,郑红等.有机膨润土吸附垃圾渗滤液中苯酚的研究[J].环境化学, 2001,20(5):460-465.
    [83]苏朝晖,张跃升,赵书评.北京安定垃圾填埋场渗滤液治理工艺改进研究[J].环境卫生工程, 2001, 9(7):127-129.
    [84]胡琴海,金明亮,方土.吹脱-SB-吸附混凝法处理垃圾填埋场渗滤液[J].环境污染与防止, 2000, 22(3):21-23.
    [85]沈耀良,杨铨大,王宝贞.垃圾渗滤液的混凝-吸附预处理研究[J].中国给水排水, 1999, 15(11):10-14.
    [86] J. Rodrigueza, L, Castrillon, E. Maranon, H. Sastre, E. Fernandez. Removal of non-biodegradable organic matter from landfill leachates by adsouption[J]. Water Research 38(2003):3297-3303.
    [87] F. Javier Rivas, Fernando Beltran, Olga Gimeno, Benito Acedo, Fatima Carvalho. Stabilized leachates: ozone-activated carbon treatment and kinetics[J]. Water Research 37 (2004)4823-4834.
    [88]钱伯兔.混凝沉淀SBR活性炭过滤处理垃圾渗滤液的实验研究[J].北京科技大学学报, 2005, 27(1):21-24.
    [89]王斐,廖利,王松林.垃圾渗滤液的吸附净化实验研究[J].安全与环境工程, 2005, 12(2):35-38.
    [90] (美)卡尔普(Culp, R.L)等著:城市污水高级处理手册[M].张中和译,北京:中国建筑工业出版社, 1986.
    [91]沈顺雨.生物炭作用机理及其在废水处理中的应用[J].城市环境与城市生态, 1992(5):18-20.
    [92]田晴,陈季华. BAC生物炭法及其在水处理中的应用[J].环境工程, 2004, 2(24):84-86.
    [93] Woo hang kim, Watam Niahi jima: Competitive Removal of Dissolved Organic Carbon By Adsorption and Biodegradation on BAC[J], Water Science and Technology, 1997, 35(7):147-153.
    [94]马放,时双喜等.固定化生物炭的形成及功能研究[J].哈尔滨建筑大学学报, 2000, 33(1):46-50.
    [95]王九思,陈学民,肖举强等.水处理化学[M].北京:化学工业出版社, 2002.
    [96] Takeuchi Yasushi, Mochidzuki kazuhiro, Matsunobu Noriyuki, Kojima Ryozo, MotohashiHiroshi and Yoshimoto Syunichi: Removal of Orgaic Substances From Water by Ozone Treatment Followed by BAC Treatment[J]. Wat Sci. Tech, 35, 171-178.
    [97] S. Sirotkin Alexander, Yu.Koshkina larisa and G. Ippolitov Kocstantin: THE BAC-PROCESS FOR TREATMENT OF WASTE WATER CHONTAING NON-IONOGENIC SYNTHETIC SURFACTANTS[J]. Wat. Res. 35: 3265-3271.
    [98]胡治安.宝钢洗浴污水的处理工艺[J].上海环境科学, 1995, 14:25-26.
    [99]耿石锁.印染废水深度处理的过滤技术实验研究[J].环境与开发, 1995(10):10-15.
    [100]冀贞全等.一种啤酒生产污水再生回用工艺技术[J].广州食品工业科技, 1996(12): 111-114.
    [101]陈洪斌等.炼油厂污水回用处理研究[J].环境科学学报, 2002, 22, 5
    [102] Metcalf & Eddy, Inc. Wastewater Engineering Treatment and Reuse (Fourth edition)Ⅱ,北京:清华大学出版社, 2003.
    [103]雷乐成.废水处理与回用技术[M].北京:水利电力出版社, 1998.
    [104]李伟光,谭力国,何文杰.臭氧-活性炭深度处理滦河水的实验研究[J].给水排水, 2005, 30(1):47-50.
    [105]王峥,付学起.饮用水消毒净化过程产生的副产物[J].净水技术, 2000, 13(4):16-19.
    [106]任基成.臭氧活性炭工艺去除饮用水中的COD的应用实验[J].给水排水, 2001, 13(4):16-19.
    [107]黄年龙,廖凤京.净水厂臭氧系统的设计与安装调试[J].给水排水, 2003, 29(2):3-6.
    [108]范洁.臭氧-生物炭深度处理饮用水安全技术报告博士后研究报告. 2003.
    [109] N. Gonce, E. A. Voudrais. Removal of Chlorite and Chlorate Ions from Water Using Granular Activated Carbon[J]. Water Res. 2001, 28(8):1059-1069.
    [110]王琳,王宝贞.饮用水深度处理技术[M].化学工业出版社, 2002: 4-5.
    [111] CJ / T 3028.2- 94,臭氧发生器臭氧浓度、产量、电耗的测量[ S] . 1994.
    [112]魏谷,于鑫,叶林,等.脂磷生物量作为活性生物量指标的研究[J].中国给水排水, 2007, 23(9): 1-4.
    [113]胡子斌. TTC-脱氢酶活性常温萃取测定法及应用[J].工业水处理, 2001, 21(10): 29-31.
    [114]唐受印,戴友芸.水处理工程师手册[M].化学工业出版社.
    [115] LI CW, Korshin GV, Benjamin MW. Monitoring DBP formation with different UV spectroscopy[J]. AWWA. 1998, 90(8):88-100.
    [116] Tambo N, Kamei K. Tteattability evaluation of general organic matter-matrix conception and application for a regional water and waster system[J]. Water research. 1987, 12:931-934.
    [117]金鹏康,王晓昌.水中腐植酸臭氧化特性研究[J].西安建筑科技大学学报, 2000, 4.
    [118]王晨. A/O-固定化生物炭工艺处理煤气废水的中试研究[D].哈尔滨工业大学硕士学位论文. 2005.
    [119]曹相生.污水深度处理中的生物强化过滤技术研究[D].哈尔滨工业大学博士学位论文. 2003.
    [120]秦永生,孙长虹,武江津.生物炭工艺用于废水深度处理的设计[J].中国给谁排水, 2003, 19:88-91.
    [121]侯方东.低浓度臭氧-生物炭对污水深度处理试验研究[D].西安建筑科技大学硕士学位论文, 2003.
    [122] B. E.Rittmann. Aerobic Biological Filter. Environ[J]. Sci.&Technol.1987,21:128-135.
    [123] Committee Report. An assessment of microbial activity on GAC [J]. Journal AWWA, 1981, 73: 44-454.
    [124] M. Scholz, R. J. Martin. Ecological equilibrium on biological activated carbon [J]. Water Science and Technology, 1997, 31 (12) : 2959-2968.
    [125] W. Nishijima, M. Tojo. Biodegradation of organic substances by biological activated carbon - stimulation of bacterial activity on granular activated carbon [J]. Water Science and Technology, 1992, 26 (9-11): 2031-2034.
    [126]汪义强.快滤池气水反冲洗最佳运行参数研究[J].净水技术, 2001, 20(1): 9~13.
    [127] R. Ahmad, A. Amirtharajah, A. Al-Shawwa. Effects of Backwashing on Biological Filters [J]. J. AWWA, 1998, 90(12): 62~73.
    [128]张朝晖,吕锡武.生物炭反应器反冲洗技术的优化[J].中国给水排水, 2005, 4(21): 51-53.
    [129]张杰,陈秀荣.曝气生物反应器反冲洗的特性[J].环境科学, 2003, 24(5): 86-91.
    [130] Liu Xibo, Peter M Huck, Robin M Slawson. Factors Affecting Drinking Water Biofiltration [J]. American Water and Wastewater Association, 2001, 90 (12): 90-101.
    [131] Kasuga.I, Shimazaki.D, Kunikane.S. Influence of backwashing on the microbial community in a biofilm developed on biological activated carbon used in a drinking water treatment plant [J]. Water Science and Technology, 2007, 55 (8): 173-180.
    [132]邹伟国,朱月海.反应器气水反冲洗应用技术研究[J].中国给水排水. 1996, 12(1): 10~13.
    [133] Liu Y. Adhesion. Kinetics of Nitrifying Bacteria on Various Thermoplastic Supports [J]. Colloids and Surfaces B: Biointerfaces, 1995 (5): 213-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700