用户名: 密码: 验证码:
6-硝合成工艺改进的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业生产6-硝基-1,2-重氮氧基萘-4-磺酸(简称6-硝)主要采用碱溶法合成,总体收率为58~60%,且生产过程中产生大量废水,色泽深,有机物浓度高,酸性强且难于生化降解。本论文主要从改变合成工艺条件入手,通过改变亚硝化反应条件来提高收率,同时力求从源头减少废水的排放。
     由于2-萘酚不溶于水,易溶于乙醇、乙醚、氯仿、甘油等有机溶剂,拟用水-醇混合溶剂来代替液碱溶解2-萘酚进行亚硝化反应。影响亚硝化反应主要因素是有机溶剂的选择、反应温度、硫酸浓度、加酸速度等,并在亚硝化后对物料采取过滤、水洗、风干等后处理,实验结果表明亚硝化反应的最佳条件为:以30g2-萘酚为原料,亚硝化温度为0~3℃,亚硝化时间为4h,与500g.l-1硫酸22ml进行亚硝化,有机溶剂乙醇用量为100ml时,稀释硫酸用水量为100ml即硫酸浓度取9%时,亚硝化保温时间为1h,在亚硝化反应后进行过滤水洗并在空气中风干6h。亚硝化反应后所得废水由电渗析进行脱盐处理,本文探讨了电压和出水流量对电渗析脱盐率的影响,得出电渗析的脱盐条件:电压40V,脱盐的淡水流量为24L/h时,所得淡水脱盐率达94.89%,完全可以回用,而剩余的废水量仅为碱溶法工艺废水量的1/5。由于乙醇在亚硝化反应完成后已经精馏回收,在进行下一步的加成和磺化时体系内不含乙醇,本实验针对物料的用量、反应时间、催化剂的用量、反应温度等对加成反应和磺化反应的影响做了一系列的对比实验,得出最佳的实验条件:取亚硫酸氢钠的摩尔用量为2-萘酚的摩尔用量的2.5倍,在1.5h内进行媒介绿反应,并选择硫酸铜做催化剂,在55~60℃转位6h。
     改进后的生产工艺在原料消耗、产品的收率、产生的废水量以及经济效益都比改进前有较明显的改善。醇溶法所需的原料均比碱溶法要少,1-氨基-2-萘酚-4-磺酸(简称1,2,4-酸)产率由68~70%提高到74.5%,亚硝化废水减少到原工艺的1/5,每合成1000kg1,2,4-酸节约生产成本约3290.4元,是一种经济可行的工艺,有利于工业化生产。
6-Nitro-1,2-diazoxynaphthalene-4-sulfonic acid is mainly synthesized from base-dissolving method in dyestuff industry whose total product yield is 58~60%.There has been plenty of wastewater during the production process, and the waste water has the characteristic of dark color, high organic matter concentration, strong acidity and hardly in biodegradation. The thesis is to begin with the change in synthetic technology conditions, through changing the condition of nitration reaction to improve the yield and try to reduce the discharge of waste water at the same time.
     Forβ-naphthol is insoluble in water and soluble in organic soluent such as ethanol,ether,chloroform,glycerol etc .We plan to use water-ethanol binary mixtures to take place of the liquid alkali to dissolveβ-naphthol for nitration reaction. The main factors influencing the total product yield in nitration are the selection of organic soluent, reaction temperature, sulfuric acid concentration, the speed of acidification etc. Measures such as filtration、washing and air drying should be taken to materials after nitration. It is showed that the optimal experimental conditions for nitration reaction are determined by the following points: reaction temperature(0~3℃) , reaction time(4 hours), nitration reaction with a mixture of 30gβ-naphthol and 22ml sulfuric acid whose concentration is 500g.l-1 in 100ml ethanol medium. When the diluent water consumption is 100ml, namely the sulfuric acid concentration is 9%, heart-preservation time of the nitration reaction is 1 hour, then it has a filtration, washing and six-hour air drying after reaction. Wastewater from the nitration reaction is desalted by electrodialysis. The effects that Voltage and outlet flow rate have on the desalination by electrodialysis technology are discussed in this thesis. And conditions of the desalination by electrodialysis are concluded: Voltage 40V, fresh waster flow rate of desalination 24L/h, desalination rate of the freshwater reaches 94.89% which can be totally recycled. The residual wastewater is only 1/5 from the base-dissolving method. As ethanol has been distillated after the nitration reaction, so ethanol is not contained in the next addition reaction and sulfonation reaction. A series of comparison experiments are done according to a lot of factors that effect addition reaction and sulfonation reaction. Such as material amount、reaction time、catalyst amount、reaction temperature, etc. And best experiment conditions are concluded: take the amount of sodium bisulfite 2.5 times that ofβ-naphthol for addition reaction in 1.5h , choose CuSO4 as catalyst and translocate for 6h when the temperature reaches 55~60℃.
     The production technology process has obvious improvement on material consumption, product yield, wastewater amount of product and economic benefit after modification. Ethanol-solution method needs less materials than that of base-dissolving method, and the yield of 1-amino-2-naphthol-4-sulfonic acid(1,2,4-acid for short) has improved from 68~70% to 74.5%, wastewater of nitration reaction has reduced to 1/5 of the original process, thus it will save production cost for about 3290.4 yuan for synthesize every 1000kg 1,2,4-acid .So it is a economical and feasible process , good for industrial production.
引文
[1]重庆川庆化工厂. 6-硝生产中废水综合治理技术方案.2006,8.
    [2]于明和. 6-硝基-1-重氮基-2-羟基-4-萘磺酸的合成[J].丹东纺专学报, 1998,2(2):19~20.
    [3] Ram Linsburg B. Process for the preparation of 1-amino-2-naphthol-4-sulfoic acid[P]. US:4892969,1990.
    [4] Hammerschmidt E. Process for the preparation of 1-amino-2-naphthol-4-sulfoic acid(amide acid)[P]. US:4427601,1984.
    [5] Albrecht B. Process for the preparation of 1-amino-2-naphthol-4-sulfoic acid[P]. US:4929752,1990.
    [6] Peramaix P . 1-amino-2-napthol-4-sulfonic acid [P]. Nr:0080644,1990.
    [7]韩长日,宋小平.新编化工产品配方工艺手册[M].吉林:科学出版社,1995.
    [8]重庆川庆化工厂企业标准Q/SQH.09—94.
    [9]重庆川庆化工厂. 6-硝生产中废水综合治理技术方案.2006,8.
    [10]化学工业部科学技术情报研究所.世界有机中间体标准[M].北京:中国环境科学出版社,1991.
    [11]化学工业部科学技术情报研究所.化工产品手册,有机化工原料,下册[M].北京:化学工业出版社,1990.
    [12]章杰.我国染料工业发展形势和染颜料中间体市场展望[J].化工中间体, 2004,1(3).
    [13]章杰.国内外染料工业发展新动向[J].印染, 2005,4: 47~50.
    [14]章杰.中国染/颜料中间体市场现状和发展关键[J].精细与专用化学品, 2001,10: 3~6.
    [15]杨新玮.国内外酸性染料的进展[J].染料与染色, 2006,43(2):1~6.
    [16]章杰.对我国染料工为现状和发展之浅见[J].上海化工,1999,24(17):4~7.
    [17]田利明.入世后我国染料工业的发展概况[J].印染,2004,30(10):43~47.
    [18]章杰.近三十年我国染料工业的发展[J].印染, 2005,9.
    [19]梁诚.我国萘系有机中间体生产现状与发展方向[J].化工科技市场, 2002,25(12): 11~14.
    [20]陈荣圻.染料化学[M].纺织工业出版社.1989.
    [21]章杰,张晓琴.环保型染料开发动向[J].化工科技市场,2000,8:19~21.
    [22]陈荣圻.酸性染料和活性染料增溶加工技术[J].上海染料,2004(1):47~50.
    [23]史英杰.萘系中间体与磺化工艺的技术进展[D].沈阳化工研究院.
    [24]王大全.精细化工生产流程图解[M].北京:化学工业出版社,1999.
    [25]沈日炯,姬兰琴.我国染料及中间体产品质量状况析(下).化工标准·计量·质量,2001,3.
    [26]李述文.实用有机化学手册[M].上海:上海科技出版社,1986.
    [27]袁履冰.有机化学问答[M].上海:上海科技出版社.
    [28]蒋登高,章亚东,周彩荣.精细有机合成反应及工艺[M].北京:化学工业出版社,2001.
    [29]唐培.精细有机合成化学及工艺学[M].天津:天津大学出版社,1993.
    [30]佟玉衡.实用水处理技术[M].北京:化学工业出版社,1998.
    [31]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997.
    [32] Rccd B E, Matsumoto M R , Jensen J N, et al. Physicochemical processes[J]. Water Environment Research , 1998,70(4):449~473.
    [33]李胜利,李劲.用高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学, 1996,16(1):73~76.
    [34]高蓉菁,夏明芳.臭氧氧化法处理印染废水[J].污染防治技术, 2003, 16(4): 68~70.
    [35] Mameri N. et al. Defluoridation of Septentrional Sahara Water of North Africa by Electro-coagulation Process Using Bipolar Aluminum Electrodes [J]. Wat. Res., 1998, 32(5): 1604~1612.
    [36]雷乐成,汪大辉.湿式氧化法处理高浓度活性染料废水[J].中国环境科学, 1999,19(1):79~84.
    [37]佘刚.超临界水氧化技术及其应用[J].上海环境科学, 1995,14(9):13~16.
    [38]卢文森.高浓度制药有机废液的焚烧处理[J].化工环保,1985,5(2):73~77.
    [39]王怡中.光催化氧化与生物氧化组合技术对染料化合物降解研究[J].环境科学学报,2000,20(6):772~776.
    [40] Davis R J, et al. Photo catalytic decolonization of wastewater dyes [J]. Water Environment Research,1994,66:50~53 .
    [41]王怡中.光催化氧化与生物氧化组合技术对染料化合物降解研究[J].环境科学学报,2000,20(6):772~776.
    [42] Ismail M I. Electrochemical Reactor: Their Science and Technology Part A. Amsterdam: Elsevier Science Publishers B.V.1989 .
    [43]周定,蔡伟明等.印染废水脱色新方法的研究[J].环境化学, 1984,3(40):35~41.
    [44]朱宏丽,王书惠.三元电极在水处理中的应用[J].环境化学, 1985,6(6):36~40.
    [45]韩洪军.铁屑-碳粒法处理工业废水[J].环境保护,1991,(1):17~18.
    [46]陈其昌.三相催化法合成3,4,5-三甲基苯甲醛[J].江苏化工, 1992, 3(3): 44~46.
    [47]程沧沧,胡德文,周菊香.微电解法处理染料废水的研究[J].化学与生物工程, 2005, (1): 29~30.
    [48]张全兴,刘天华.我国应用树脂吸附法处理有机废水的进展[J].化工环保, 1994, 14(6): 344~347.
    [49]张全兴,刘天华.我国应用树脂吸附法处理有机废水的进展(续)[J].化工环保. 1995,15(1): 24~27.
    [50] Stol R J, Ven Helden A K. Hydrolysis Precipitation Studies of Aluminum (m) Solutions. Part2. Kinetics Study and Model [J]. Colloid and Interface Science, 2001, 57: 115~131 .
    [51]何炳林,黄文强.离子交换与吸附树脂.第一版.上海:上海科技出版社, 1995.
    [52] Schneider W, Schwyn B. The Hydrolysis of Aluminum in Synthetic Biological and Aquatic media in Aquatic Surface Chemistry, NY: John Wiley&Sons, 2002.
    [53] Li Jiaju. Practical Fine Chemical Thesaurus. Beijing: Chinese Light Industry Press, 2000: 658~659.
    [54] Tang Hongxiao, Stumm W. The Coagulation Behaviors of Fe(III)Polymeric Species. Water Ressearch, 2001, 21(1): 115~128.
    [55] Allen L H, Matijilic E. Stability of Colloidal Silica:Effect of Simple Electrolytes[J]. Colloid and Interface Scicnce, 2000(31): 287~296.
    [56] Schneider W. Hydrolysis of Aluminum (III)-Chaotic Oration Versus Nucleation Comments on Inorg. Chem, 1999, 3: 205 .
    [57] Zhang Sigui. Fine Organic Chemical Production Technical Handbook. Beijing: Science Press , 1992: 280~281 .
    [58] Zhang Quanxing, Chen Jinlong, Xu Zhaoyi. Application of polymeric resin adsorbent in organic chemical wastewater treatment and resources reuse1 Polymer Bulletin, 2005(4) : 116~121.
    [59] Wang S B, SoudiM, LiL,etal. Coal ash conversion into effective adsorbents for rem oval of heavy metals and dyes from wastewater [J]. Hazardous Materials, 2006, (B133): 243~251.
    [60] Alok M. Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers[J]. Hazardous Materials, 2006(B133): 196~202.
    [61] Mittal A, Mittal J, KurupL. Batch and bulk removal of hazardous dye,indigo carmine from wastewater through adsorption[J]. Hazardous Materials, 2006, 137(1): 591~602.
    [62]李振宇,秦炜,杨义燕等.反应萃取处理染料中间体H酸和DSD酸工业废水[J].环境科学, 2001(6): 34~35.
    [63]陈魁,李俊,索福喜等.络合萃取稀醋酸废水的模拟研究[J].江苏化工, 2006(4): 44~45
    [64] P. Luo, J.Q. Zou, Y.S. Xie, Study on the application of magnesium salts in treating wastewater containing reactive dyes, Jiang Su Hua Gong 27(5)(1999)26~28.
    [65]鲁军,周洪德,魏兴义.用络合萃取法对磺酸型有机废水进行预处理的研究[J].化工环保, 1995, 15(2): 67~71.
    [66]朱亦仁,潘碌亭,沈章平等.液膜法从工业废水中提取J酸的研究[J].中国环境科学, 1998, 18(1): 91~93.
    [67] Chang xijun. Synthesis of poly acrylamide metal ions from samples[J]. Talanta 1996. 43 (3): 407~413.
    [68]乌锡康.有机化工废水治理技术[M].第一版.北京:化学工业出版社, 1999, 270~271.
    [69]刘军.膜分离技术在生物化工中的应用[J].湖南:中南大学湖南化工职业技术学院.
    [70]潘碌亭,肖锦.乳状液膜法处理含柠檬酸工业废水的研究[J].环境化学, 1999, 18(4): 354~358.
    [71] Ellis T G. el al. Activate sludge an other suspend culture processes [J]. Water Environment Research, 1998,70(4):473~495.
    [72]贾金平.含染料废水处理方法的现状与进展[J].上海环境科学, 2000,19(1):26~29.
    [73]闵一钰. ZE-1号印染废水脱色菌群的选育及适用条件研究[J].环境污染与防治,1992.14:14~16.
    [74]苏琼,王彦斌. 1-氨基-2-萘酚-4-磺酸的合成工艺研究[J].精细化工中间体, 2003,33(5):25~28.
    [75]程能林,胡声闻.溶剂手册[M].北京:化学工业出版社,1993.282~287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700