用户名: 密码: 验证码:
丹参根部病害发生微生态机制与放线菌促生作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为国内外需求量日益增加的热门药用植物,丹参连作根系病害已成为其人工栽培扩大化的主要限制因素,寻找合适有效的病害防治途径是目前解决丹参根系病害问题的首要任务。本研究从根际微生态角度出发,通过对丹参病株与健株根系、根区及根表土壤微生物区系,以及根区土壤与叶片养分的系统比较研究,确定了丹参根部病害的主要致病菌及优势微生物,揭示了丹参3种根部病害发生的土壤微生态机制;通过丹参根腐病病原菌分离鉴定及拮抗放线菌筛选鉴定,获得了丹参根腐病的致病菌及8株有较强拮抗作用的广谱生防放线菌;通过2年田间试验,证实了生防放线菌对丹参的防病促生效果,初步探明了放线菌剂作用的微生态机理。该结果为丹参连作土传根部病害微生态机制揭示及微生物修复技术研究提供了新的理论依据、试验证据及生防菌株。论文主要研究结果如下:
     (1)丹参根系内生细菌的分离鉴定及其生物活性
     从收获期丹参健株根系韧皮部、木质部中分离得到6株可培养内生细菌,分别归属于假单胞菌属(Pseudomonas)、根瘤菌属(Rhizobium)、芽孢杆菌属(Bacillus)和新鞘脂菌属(Novosphingobium)。研究发现放射型根瘤菌(R. radiobacter)和阿氏芽孢杆菌(B. aryabhattai)这2株细菌的细胞悬液(约10~9cell·mL~(-1))以及十字花科假单胞菌(Ps.brassicacearum subsp. neoaurantiaca)、放射型根瘤菌(R. radiobacter)、假单胞菌属帚形菌(Ps. thivervalensis)和阿氏芽孢杆菌(B. aryabhattai)这4株细菌的无细胞发酵滤液对甜瓜种子的胚轴和胚根有明显的促生作用。但是这6株内生细菌的无细胞发酵滤液对丹参根腐病病原真菌均无明显的抑菌活性。
     (2)丹参3种根部病害发生的微生态机制
     对丹参红叶病、枯萎病和根腐病病株与健株根区土壤与叶片养分,以及根区、根表土壤中的微生物区系分别进行比较研究,探索根部病害发生的微生态机制。
     丹参红叶病:①红叶病植株叶片中N、P、K元素含量均显著低于健株,而根区土中速效P元素与健株根区土无显著差异,速效N、K元素含量均显著高于健株根区土,表明丹参红叶病害发生与P元素缺乏有关,但植株缺磷不是由于土壤供磷不足所致。②与健株相比,丹参红叶病植株根区、根表土壤中细菌数量分别减少41.3%、78.8%,真菌数量分别增加156.6%、14.3%,放线菌数量分别增加189.5%、127.5%。③在丹参红叶病株根区、根表土壤中,6种优势真菌、4种优势放线菌及2种优势细菌可能为有害微生物。优势真菌为腐皮镰刀菌(Fusarium solani)、露湿漆斑菌(Myrothecium roridum)、三线镰刀菌(F. tricinctum)、焦曲霉(Aspergillus calidoustus)、尖孢镰刀菌(F. oxysporum)及座囊菌(Dothideomycetes sp.);优势放线菌为砖红链霉菌(Streptomyces lateritius)、威威达湖伦茨氏菌(Lentzea waywayandensis)、马铃薯疮痂病原链霉菌(S. stelliscabiei)及山丘链霉菌(S. collinus);优势细菌为阿氏芽孢杆菌(B. aryabhattai)及水生细菌(Piscinibacter aquaticus)。这些优势微生物可能通过影响根系生长及根系对土壤养分吸收引起丹参出现缺磷现象。
     丹参枯萎病:①在丹参枯萎和枯死病株叶片组织中,N、P、K含量均显著低于健株;而在根区土壤中,有机质和N、P、K含量均高于健株。说明枯萎病发生与土壤养分供应无关。②丹参枯死病株根区土壤细菌、真菌和放线菌数量分别较健株增加168.0%、852.8%和247.4%(P<0.05),根表土壤中细菌、真菌和放线菌数量分别较健株增加72.6%、2020.0%和424.2%(P<0.05)。③在丹参枯萎和枯死病株根区、根表土壤中,2种优势真菌腐皮镰刀菌(F. solani)和尖孢镰刀菌(F. oxysporum)均为植物根系病害病原菌。在枯死病株的根区及根表土壤中:这两种真菌总数分别占优势真菌总数的61.8%及100%,其中腐皮镰刀菌分别占57.0%及99.6%,其数量分别为健株的7.4倍及75.9倍,即腐皮镰刀菌为丹参枯萎病的主要致病菌。丹参枯萎病的发生与丹参根区、根表土壤微生物区系异常密切相关,其中腐皮镰刀菌的大量增加是病害发生的主要原因。
     丹参根腐病:①在发病末期病株叶片中,N、P、K元素含量均高于健株。并且病株根区土壤的有机质和速效养分含量均高于健株根区土壤,其中有机质、速效P和速效K在发病末期植株根区土壤中含量最高,分别是健株的2.9、2.3和1.6倍,同时pH值最低,较健株根区土壤低12.3%。说明丹参根腐病的发生与土壤养分供应无明显关系,且病株根系因病原菌侵染导致吸收功能下降,引起病株根区土壤中速效磷钾残留量大幅度增加。②在丹参根区土壤中,发病初期、中期及末期病株细菌数量分别较对照减少36.5%、54.1%及80.2%;真菌数量分别较健株增加160.8%、191.0%及310.6%;发病中期和末期病株放线菌数量分别减少52.2%和51.9%。在根表土壤中,发病初期、中期及末期病株细菌数量分别较对照减少35.0%、增加147.7%及498.0%;发病初期、中期及末期病株真菌数量分别较对照增加364.0%、365.8%及1312.9%;发病初期和末期病株放线菌数量分别较对照增加158.4%和989.1%。在丹参根系中,发病初期、中期及末期病株的细菌数量分别是健株的1.5、24.3及13.1倍;发病末期丹参病株根系真菌数量约是中期病株的4.3倍,且放线菌数量较健株增加225.6%。③在丹参病健株根区、根表土壤以及根系中分离得到6株优势真菌,有4种为疑似有害微生物,分别为尖孢镰刀菌(F. oxysporum)、腐皮镰刀菌(F. solani)、镰刀菌(Fusarium sp.)及布雷正青霉(Penicillium. brefeldianum),其中尖孢镰刀菌(F. oxysporum)和腐皮镰刀菌(F. solani)均是已知的植物根系病害致病菌。丹参根腐病的发生与土壤微生物区系异常密切相关,根区、根表土壤真菌数量大幅度增加是丹参根腐病发病的重要原因之一。
     综上所述,丹参红叶病、枯萎病和根腐病的发生与丹参根区、根表土壤中微生物区系异常密切相关,与土壤养分供应无显著关系,且根系发病后还会导致丹参根系吸收功能下降,根区土壤中速效磷钾残留量大幅度增加。
     (3)丹参根腐病病原真菌分离鉴定
     采用组织块分离法从丹参根腐病植株根系中共获得19株真菌分离物,通过丹参根系离体侵染试验得到4株病原真菌,通过形态特征及rDNA-ITS序列分析将其鉴定为腐皮镰刀菌(F. solani)和尖孢镰刀菌(F. oxysporum)各2株。
     (4)丹参根腐病拮抗放线菌筛选鉴定
     利用琼脂块拮抗圈测定和发酵液抑菌率测定法从300株供试放线菌中筛选出22株对腐皮镰刀菌(F. solani)和尖孢镰刀菌(F. oxysporum)有显著拮抗性的放线菌,其中有8株具有广谱抑菌活性(D62,F54,D3,D38,Act8,L8,Act12,Act1),分别为锈赤蜡黄链霉菌(S. rubiginosohelvolus, D62)、林可链霉菌(S. lincolnensis, D3)、橄榄色链霉菌(S. olivaceus, D38)、密旋链霉菌(S. pactum, L8, Act12)、加州链霉菌(S.californicus, Act1)以及(Streptomyces sp. F54, Act8)。其中放线菌D62、F54、D3和Act8对腐皮镰刀菌和尖孢镰刀菌抑制作用明显,抑菌率为31.0%~55.6%。菌株L8、D62和Act12对4株病原真菌的单位菌体抑菌率为18.3%~91.0%;菌株D62和F54对尖孢镰刀菌1的拮抗环宽度分别为7.0和6.8mm,其发酵滤液对其抑菌率分别达53.5%和51.4%。
     (5)Act12放线菌菌剂对丹参的促生作用及根域微生态的调整效应
     放线菌剂Act12+草木灰蘸根接种具有如下作用:①对丹参生长有明显的促进作用。在小区试验中,与对照相比,放线菌剂稀释10倍、100倍处理丹参茎叶鲜质量分别增加29.7%、35.5%,根鲜质量分别增加44.0%、39.6%,根干质量分别增加26.3%、33.3%。在大田试验中,放线菌剂蘸根处理丹参增产2022.0kg·hm-2。②能显著提高丹参产量及药材中丹参酮IIA、丹酚酸B和丹参素含量及单株产量,改善药材品质。在小区试验中,放线菌剂稀释100倍处理丹参根内丹参酮ⅡA、丹酚酸B及丹参素含量分别较对照增加175.0%、102.6%及110.0%,三者产量分别较对照增加348.7%、230.6%及242.6%。在大田试验中,放线菌剂蘸根处理丹参根内丹酚酸B、丹参素含量分别较对照增加19.4%、20.8%,二者产量分别较对照增加27.1%、28.5%。③能明显调整丹参植株根域土壤微生态平衡,减少有害微生物数量,增加有益微生物数量,改善微生物区系。在丹参根区土壤中,放线菌处理细菌、真菌数量分别较对照减少58.8%、34.8%,放线菌数量较对照增加85.3%。③在放线菌处理丹参根区、根表土壤中,有7种优势微生物可能对丹参生长有促进及抗病作用:2株优势细菌假中间苍白杆菌(Ochrobactrum. pseudogrignonense)和鞘脂菌(Sphingobium aromaticiconvertens);5株优势放线菌为黄暗色链霉菌(S.xanthophaeus)、微管螺旋链霉菌(S. capillispiralis)、马特链霉菌(S. matensis)、教酒链霉菌(S. chartreusis)和林可链霉菌(S. lincolnensis)。有4株优势真菌可能对丹参根系有害,分别为黄曲霉(As. flavus)、黑曲霉(As. niger)、露湿漆斑菌(M. roridum)和红球丛赤壳菌(Nectria haematococca)。关于这几种真菌对其他作物的有害作用已有报道。④放线菌剂接种对丹参根结线虫侵染有强烈抑制作用,可使大田根结线虫侵染率降低50%,但其机制尚不清楚,可能与放线菌剂减弱了病原菌真菌对丹参根系的侵染,导致线虫侵染下降所致。
     (6)Act12放线菌剂与腐植酸钾配施对丹参的促生作用及根域微生态的调整效应
     Act12放线菌菌剂与腐植酸钾混合施用具有如下作用:①能增强菌剂对丹参的促生效果。菌剂与腐植酸钾配施处理丹参成活率较对照提高8.7%,收获时的死亡率较对照减少39.0%;茎叶鲜质量、根鲜质量、单株根鲜质量、根干质量以及单株根干质量分别较对照增加6.1%、28.6%、11.1%、36.3%以及9.0%。②可以调整丹参植株根域土壤微生态平衡,降低有害微生物数量,增加有益微生物数量,改善微生物区系。在丹参根表土壤中,菌剂与腐植酸钾配施处理B/A值较对照降低78.4%,A/F值较对照增加95.0%。在丹参根系内,菌剂与腐植酸钾配施处理细菌数量较对照增加195.0%,未检测到真菌和放线菌存在。③在放线菌处理丹参根区、根表土壤中,有6种优势菌可能对丹参生长及抗病有益:3株优势细菌分别为硝基愈疮木胶节杆菌(Arthrobacter nitroguajacolicus)、放射型根瘤菌(R. radiobacter)和弗雷德里克斯堡假单胞菌(Ps. frederiksbergensis);3株优势放线菌分别为淀粉酶产色链霉菌(S. diastatochromogenes)、砖红链霉菌(S.lateritius)和卡伍尔链霉菌(S. cavourensis)。有2株优势菌疑为有害微生物:优势细菌为耐寒短杆菌(B. frigoritolerans),1株优势放线菌为肿痂链霉菌(S. turgidiscabies)。这2种菌对其他作物的有害作用已有报道。④对丹参根结线虫侵染有强烈抑制作用,可使田间根结线虫侵染率降低49.6%。
As a well-known traditional Chinese medicinal herb, the international and domesticdemand of Salvia miltiorrhiza Bge. is increasing fast. Consequently, replant disease is themajor limiting factors of the development of S. miltiorrhiza artificial cultivation. Findingeffective disease control approaches is the first priority to solve this problem. In order toelucidate reasons for the occurrence of S. miltiorrhiza root diseases, changes of rhizospheresoil and leaves chemical properties and microbial community composition between healthyand diseased S. miltiorrhiza plants root, rhizosphere and rhizoplane soil were determined byroutine soil agro-chemistry analysis and culture-depended method, respectively. Meanwhile,based on the research of isolation and identification of pathogenic fungi from root rot plant,screening and identification of antagonistic actinomycetes,8strains broad spectrumantagonistic actinomycetes were obtained.2-years field experiment was conducted to studythe biocontrol and growth promotion effect of actinomycetes and its microecologicalmechanism. The related results studies provided theoretical basis, experimental evidence andbiocontrol actinomycetes for indication of microecological mechanism and research ofmicrobial remediation of replant soil-borne root disease in S. miltiorrhiza. Related results andconclusions are listed as follows:
     (1) Isolation and identification of endophytic bacteria from root tissues of S. miltiorrhizaand determination of their bioactivities
     This study examined the occurrence, distribution, growth-promoting and antifungalactivities of endophytes in the root of S. miltiorrhiza. Six endophytic bacterial strains, whichbelong to genera of Pseudomonas, Rhizobium, Bacillus and Novosphingobium, were isolatedfrom the root of healthy S. miltiorrhiza. Cell suspension (approx.10~9cell·mL~(-1)) of twoisolates namely R. radiobacter, B. aryabhattai and cell-free fermentation filtrate of fourisolates namely Ps. brassicacearum subsp. neoaurantiaca, R. radiobacter, Ps. thivervalensis,B. aryabhattai substantially promoted the growth of hypocotyl and radicle of muskmelonseeds. The cell-free fermentation filtrate of six isolates had no inhibiting effect on testedpathogenic fungi namely Fusarium solani, F. oxysporum f. sp. vasinfectum and F. oxysporum. This work indicates that endophytic bacteria occur in the root of S. miltiorrhiza, and thatassociated bacterial isolates have growth-promoting effect on muskmelon seeds and areexpected to be a potential source for bioactive metabolites.
     (2) Microecological mechnism of root diseases occurrence of S. miltiorrhiza
     The microecological mechanism of the red-leaf diseased, Fusarium wilt infected and rootrot diseased S. miltiorrhiza were studied by determination and comparison of soil nutritioncontents and microflora in the root zones of healthy and infected plants. Normal method wasused to measure the content of soil and leaf nutrition, the amount of bacteria, actionmycetes,fungi and the ratio of B/F, A/F, B/A in the rhizosphere, rhizoplane and bulk soil by dilution,and semar technique was used to do the molecular biology identification of the dominantmicrobes and to study the microecological mechanism of diseased S. miltiorrhiza in rootingzone soil.
     Red-leaf diseased S. miltiorrhiza:①The available N, P and K contents in rhizospheresoil of diseased S. miltiorrhiza leaves were all significantly lower than in healthy S.miltiorrhiza leaves, while there was no significant difference of available P content inrhizosphere soil between the diseased and the healthy S. miltiorrhiza. These indicated thedeficiency of P in S. miltiorrhiza leaves was the primary cause of the red-leaf disease.②Thenumber of bacteria in the rhizosphere soil of diseased S. miltiorrhiza decreased sharply, whilethe numbers of fungi and actinomycetes increased enormously; compared to the healthy S.miltiorrhiza, the number of bacteria decreased by41.3%, whilst the numbers of fungi andactinomycetes increased by156.6%,189.5%, respectively. The dynamic of the numbers ofbacteria, fungi and actinomycetes in the rhizoplane soil of diseased S. miltiorrhiza was as thesame as the rhizosphere soil.③The numbers of predominant bacteria (B. aryabhattai,Piscinibacter aquaticus), the predominant fungi (F. solani, Myrothecium roridum, F.tricinctum, Aspergillus calidoustus, F. oxysporum, Dothideomycetes sp.) and the predominantactinomycetes (Streptomyces lateritius, Lentzea waywayandensis, S. stelliscabiei, S. collinus)in the root zone soil were higher in the diseased S. miltiorrhiza than in the healthy plant,which could resulted in the red-leaf disease of S. miltiorrhiza.
     Fusarium wilt infected S. miltiorrhiza:①Compared to those in the healthy plant leaves,N, P, K contents significantly decreased by8.4%,35.6%,23.5%and23.4%,57.6%,57.7%inwithered and dead plant leaves (P<0.05). Compared to those in the healthy plant rhizosphere,soil organic matter and available N, P, K contents increased in infected plant rhizosphere. Itshowed that the occurrence of Fusarium wilt was independent of soil nutrient deficiency.②In dead plant rhizosphere, the numbers of soil bacteria, fungi and actinomycetes respectivelyincreased by168.0%,852.8%and247.4%compared to those in the healthy plant rhizosphere (P<0.05). In dead plant rhizoplane, the numbers of soil bacteria, fungi and actinomycetesrespectively increased by72.6%,2020.0%and424.2%compared to those in the healthy plantrhizosphere (P<0.05).③In infected plant rhizosphere and rhizoplane soils, predominantmicrobial species that might be harmful were mainly2fungi isolates (F. solani and F.oxysporum). These predominant soil microbes likely caused Fusarium wilt by negativelyaffecting the growth of roots and their absorption of nutrient from soil.
     Root rot diseased S. miltiorrhiza:①The content of available N, P and K interminal-stage infected plant leaves were higher than in healthy plant leaves. Compared tothose in the healthy plant rhizosphere, soil organic matter and available nutrient contents allincreased in infected plant rhizosphere soil. Soil organic matter, available P and K contentswere highest in terminal-stage infected plant rhizosphere soil and were respectively2.9,2.3and1.6times of that in the healthy plant rhizosphere soil, and pH decreased by12.3%compared with the control. It showed that the occurrence of root rot was independent of soilnutrient deficiency.②In rhizosphere soil, compared to those in the healthy plant, thenumbers of soil bacteria in initial-stage, middle-stage and terminal-stage infected plantincreased by36.5%,54.1%and80.2%, respectively; the numbers of fungi in initial-stage,middle-stage and terminal-stage infected plant increased by160.8%,191.0%and310.6%,respectively; the numbers of actinomycetes in middle-stage and terminal-stage infected plantdecreased by52.2%and51.9%, respectively. In rhizoplane soil, compared to those in thehealthy plant, the numbers of soil bacteria decreased by35.0%in initial-stage infected plant,while increased by147.7%and498.0%in middle-stage and terminal-stage infected plant,respectively; the numbers of fungi in initial-stage, middle-stage and terminal-stage infectedplant increased by364.0%,365.8%and1312.9%, respectively; the numbers of actinomycetesin initial-stage and terminal-stage infected plant increased by158.4%and989.1%,respectively. In S. miltiorrhiza roots, the numbers of bacteria in initial-stage, middle-stage andterminal-stage infected plant were1.5,24.3and13.1times of the control, respectively. Fungiwere only detected in middle-stage and terminal-stage infected plant, and the number of fungiin terminal-stage infected plant was4.3times of that in middle-stage infected plant; while thenumber of actinomycetes in terminal-stage infected plant was225.6%higher than the control;B/A in middle-stage infected plant was350.0%higher than the control.③6predominantfungi were isolated from S. miltiorrhiza rhizosphere, rhizoplane soils and root, of which4isolates were suspected harmful organisms. They were identified as F. oxysporum, F. solani,Fusarium sp. and Penicillium brefeldianum. The main pathogenic fungi were F. oxysporumand F. solani. These predominant soil microbes likely caused root rot disease by negativelyaffecting the growth of roots and their absorption of nutrient from soil.
     In conclusion, the occurence of root diseases in S. miltiorrhiza are mainly caused byabnormal soil microflora in plant rhizosphere and rhizoplane soil. In addition, root diseasescould lead a decline of S. miltiorrhiza root absorption function, which made a substantialincrease in residual available P, K in rhizosphere soil.
     (3) Isolation and identification of pathogenic fungi from root rot diseased S. miltiorrhiza
     From the infected S. miltiorrhiz plant roots,19fungi isolates were collected by tissueseparation method.4pathogenic fungi were screened by in vitro infection test of S. miltiorrhizroots and further attributed to2genus and2species, which were Fusarium solani1, F. solani2, F. oxysporum f. sp. vasinfectum1and F. oxysporum2, according to morphologicalcharacters and rDNA-ITS sequence analysis.
     (4) Screening and identification of antagonistic actinomycetes against pathogenic fungifrom root rot diseased S. miltiorrhiza
     22strains of antagonistic actinomycetes, which had obvious inhibitory effects on F.solani and F. oxysporum were screened from the300tested actinomycetes with agar blockmethod and growth rate method, included8strains of broad spectrum actinomycetes (D62,F54, D3, D38, Act8, L8, Act12, Act1) against the4pathogenic fungi. The inhibitory effectsof actinomycetes D62, F54, D3and Act8were obvious on F. solani and F. oxysporum, whichinhibitory rates were31.0%-55.6%. And the unit mycelium inhibitory rates of L8, D62andAct12on the4pathogenic fungi were114.5-691.7%·g-1; The inhibitory rings of D62and F54were7.0mm and6.8mm on F.oxysporum1, and the inhibitory rates reached53.5%and51.4%. The8broad spectrum actinomycetes isolates were identified as S. rubiginosohelvolus(D62), S. lincolnensis (D3), S. olivaceus (D38), S. pactum (L8, Act12), S. californicus (Act1)and Streptomyces sp.(F54, Act8).
     (5) The growth promoting and adjusted effect in rooting zone of biomicrobialactinomycetes Act12on S. miltiorrhiza
     ①Root dipping of actinomycetes Act12preparation showd favorable growth and yieldpromotion effect on S. miltiorrhiza. In the plot experiment, inoculating with actinomycetes of10and100times dilution, the stem-leaf natural weight increased by29.7%and35.5%respectively compared with the control treatment; the root natural weight increased by44.0%and39.6%respectively, and root dry weight increased by26.3%and33.3%respectively. Inthe field experiment, inoculating with actinomycetes preparation, the yield of root naturalweight increased2022.0kg·hm-2.②Root dipping of actinomycetes Act12preparation canimprove medicine quality of S. miltiorrhiza root. In the plot experiment, under the treatmentof actinomyces diluted100times by wood ash, the contents of TanshinoneⅡA, Salvianolicacid B and Danshensu in S. miltiorrhiza all achieved maximum value which increased by 175.0%,102.6%and110.0%respectively compared with that of control. Similarly, thecontents of this three active constituents per plant increased by348.7%、230.6%and242.6%compared with that of control. In the field experiment, the contents of Salvianolic acid B andDanshensu in S. miltiorrhiza were19.4%and20.8%higher than that in the control treatment,also, the contents of this two active constituents per plant improved by27.1%and28.5%compared with the control treatment.③Inoculating with actinomycetes Act12can adjust soilmicroecological balance, modify microflora and microbial community composition byreducing amount of harmful organisms and increasing amount of beneficial organisms. Inrhizosphere soil, compared to those of control, inoculating with Act12of10times dilution,the numbers of bacteria and fungi decreased by58.8%and34.8%respectively, and thenumber of actinomycetes increased by85.3%.③In rhizosphere and rhizoplane soilinoculating with Act12treatment,7predominant microorganisms might be beneficial, whichincluded2bacteria isolates namely Ochrobactrum pseudogrignonense and Sphingobiumaromaticiconvertens,5actinomycetes isolates namely S. xanthophaeus, S. capillispiralis, S.matensis, S. chartreusis and S. lincolnensis;4predominant fungi are suspected harmfulorganisms, which are Aspergillus flavus, As. niger, M. roridum and Nectria haematococca.④Inoculating with actinomycetes may control the disease of root-knot nematode. The diseaseincidence of root-knot nematode in S. miltiorrhiza decreased by50%by using actinomycetesAct12preparation.
     (6) The growth promoting and adjusted effect in rooting zone of biomicrobialactinomycetes Act12combined with potassium humate on S. miltiorrhiza in field
     Combined application of Act12preparation with potassium humate enhanced the growthpromotion effect on S. miltiorrhiza.①Under Act12combined with potassium humatetreatment, survival rate increased by8.7%compared with the control treatment, and mortalityrate decreased by39.0%; Stem-leaf natural weight, root natural weight, root natural weightper plant, root dry weight and root dry weight per plant were6.1%、28.6%、11.1%、36.3%and9.0%higher than the control, respectively.②C ombined application of Act12preparation withpotassium humate can adjust soil microecological balance, modify microflora and microbialcommunity composition. In rhizoplane soil, compared with the control treatment, A/Fincreased by95.0%under Act12combined with potassium humate treatment. In S.miltiorrhiza roots, under Act12combined with potassium humate treatment, the number ofbacteria was195.0%higher than the control. While fungi and actinomyctes were not detected.③In rhizosphere and rhizoplane soil with Act12and potassium humate,6predominantmicroorganisms might be beneficial, which included3bacteria isolates namely Arthrobacternitroguajacolicus, R. radiobacter and Ps. frederiksbergensis,3actinomycetes isolates namely S. diastatochromogenes, S. lateritius and S. cavourensis;2predominant microorganisms weresuspected harmful isolates, included1bacteria isolate Brevibacterium frigoritolerans and1actinomycetes isolate S. turgidiscabies.③Combined application of Act12preparation withpotassium humate may control the disease of root-knot nematode. The disease incidence ofroot-knot nematode in S. miltiorrhiza decreased by49.6%by using Act12preparationcombined with potassium humate.
引文
毕军,夏光利,毕研文,张萍,史桂芳,朱国梁.2005.腐殖酸生物活性肥料对冬小麦生长及土壤微生物活性的影响.植物营养与肥料学报,11(1):99-103.
    蔡学清,林彩萍,何红,胡方平.2005.内生枯草芽孢杆菌BS-2对水稻苗生长的效应.福建农林大学学报(自然科学版),34(2):189-194.
    曹书苗.2009.草莓连作障碍生物防治研究.[硕士学位论文].杨凌:西北农林科技大学.
    曹书苗,薛泉宏,邢胜利.2010.施用有机无机养分对生防放线菌数量的影响.西北农林科技大学学报(自然科学版),38(10):210-215.
    曾华兰,叶鹏盛,李琼芳,江怀仲.2003.利用木霉防治丹参根腐病的研究.四川农业大学学报,21(2):142-144.
    陈秦,薛泉宏,申光辉,段春梅,赵娟,王玲娜,薛磊,毛宁.2010a.放线菌制剂对番茄PPO活性及生物量的影响.西北农林科技大学学报(自然科学版),38(3):184-188.
    陈秦,薛泉宏,申光辉,薛磊,段春梅,王玲娜,赵娟,毛宁.2010b.放线菌对棉花幼苗生长及抗旱能力的影响.西北农业学报,19(8):84-89.
    陈曦.2010.东北地区药用植物根际土壤真菌多样性的研究.[硕士学位论文].大连:辽宁师范大学.
    陈长宝,刘继永,王艳艳,焉石,许世泉,张连学.2006.人参根际化感作用及其对种子萌发的影响.吉林农业大学学报,(5):534-537.
    程丽娟,薛泉宏.2012.微生物学实验技术.第二版.北京:科学出版社.
    程亮星,闫玉华,汪宝军,张艳侠,胡香杰,王世祥,郑晓晖,付润芳.2011.丹参素异丙酯对D-半乳糖致衰老大鼠的抗氧化作用.中国中药杂志,36(8):1094-1096.
    程小萍,刘曼西,张一竹,张莉,甘泉,黄刚良.2003.酵母葡聚糖对丹参毛状根过氧化物酶和苯丙氨酸解氨酶的影响.生物技术,13(6):26-28.
    崔林,孙振,袁军,田宏先,王利琴,徐惠云.2003.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定.植物病理学报,33(4):353-358.
    崔增杰,张克诚,折改梅,孙蕾.2010.抗真菌农用抗生素有效成分研究进展.中国农学通报,26(5):213-218.
    丁栋,王博禅,陈桂琛,王启兰,彭敏,史萍.2012.一株抗肿瘤放线菌的鉴定及生物活性.应用与环境生物学报,18(6):983-987.
    丁万隆,程慧珍,张国珍,陈君,高秋义.1994.木霉防治西洋参立枯病研究.中草药,25(2):91-93.
    丁远杰,吴志明,谢晓亮,朱水芳,温春秀,高必达.2003.丹参病毒病病原鉴定研究.中草药,(12):1136-1139.
    董艳,董坤,郑毅,田芝花,鲁耀,汤利.2009.种植年限和种植模式对设施土壤微生物区系和酶活性的影响.农业环境科学学报,28(3):527-532.
    窦瑞木,雷清泉,曹克强.2010.中药白鲜皮内生细菌TS-5生化特性及对番茄灰霉病菌的抑制作用.中国农学通报,26(13):324-327.
    段春梅,薛泉宏,呼世斌,赵娟,魏样,王玲娜,申光辉,陈秦.2010a.连作黄瓜枯萎病株、健株根域土壤微生物生态研究.西北农林科技大学学报(自然科学版),38(4):143-150.
    段春梅,薛泉宏,赵娟,呼世斌,陈秦,王玲娜,申光辉,薛磊.2010b.放线菌剂对黄瓜幼苗生长及叶片PPO活性的影响.西北农业学报,19(9):48-54.
    段佳丽,舒志明,孙群,魏良柱,傅亮亮,薛泉宏,于妍华.2012.放线菌剂对丹参生长及有效成分的影响.西北农林科技大学学报(自然科学版),40(2):195-200.
    段增强,刘媛媛,郑小军,张均,兰金旭,贺德先.2007.丹参酮ⅡA和丹酚酸B在丹参根组织中的分布特征研究.河南农业大学学报,41(2):178-182.
    范丽霞,李红兵,宗兆锋,辛红梅,祁志军,魏少鹏,吴文君.2012.抗菌蛋白磷酸盐结合蛋白前体的分离及其产生菌的鉴定.农药学学报,14(5):489-496.
    范晓龙,朱建华,周旭,孟祥民,林志鹏,郭文硕.2006.南方红豆杉炭疽病病原鉴定及其生物学特征.福建林学院学报.26(2):117-122.
    方中达.1998.植病研究法.第三版.北京:中国农业出版社.
    冯玲玲,周吉源.2004.丹参的研究现状与应用前景.中国野生植物资源,(2):4-7.
    付彬,李志红,王小妮.2008.丹参常见病虫害防治研究.河南大学学报(医学版),27(4):56-58.
    傅佳,李先恩,傅俊范.2008.西洋参生长过程中土壤微生物区系的动态变化.中国农学通报,24(9):371-735.
    冮洁,杜连祥,路福平,孙喜林,张淑艳.2004.基因工程菌里氏木霉染色体DNA的提取方法.生物技术,14(2):24-26.
    高群,孟宪志,于洪飞.2006.连作障碍原因分析及防治途径研究.山东农业科学,(3):60-63.
    高山林,朱丹妮,蔡朝晖,徐德然.1996.丹参多倍体形状和药材质量的关系.植物资源与环境,5(2):11.
    高微微,陈震,张丽萍,马小军,赵杨景.2006.药剂消毒对西洋参根际微生物及根病的作用研究.中国中药杂志,31(8):684-686.
    高子勤,张淑香.1998.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应.应用生态学报,9(5):549-554.
    郭巧生.2004.药用植物栽培学.北京:高等教育出版社.
    郭志英,薛泉宏,张晓鹿,杨斌,许英俊,周永强.2008.生防菌苗床接种对辣椒根域微生态及产量的影响.西北农林科技大学学报(自然科学版),36(4):159-165,170.
    国家药典委员会编.2010.中华人民共和国药典:2010版.北京:中国医药科技出版社.
    韩建萍,梁宗锁,孙群,王渭玲,魏永胜,叶正良,王敬民.2003.氮磷对丹参根系生长及总丹参酮累积的影响.西北植物学报,23(4):603-607.
    韩晓增,许艳丽.1999.大豆连作减产主要障碍因素的研究: Ⅱ.连作大豆土壤有害生物的障碍效应.大豆科学,18(1):47-51.
    郝芳,周国英,李河.2009.经济林植物病原真菌分类鉴定方法研究进展.经济林研究.27(1):112-116.
    郝绍卿,武侠.1992.老参地实行绿肥轮作后栽参的研究.特产研究,4:21-23.
    何红,蔡学清,关雄,胡方平,谢联辉.2003.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报,33(4):373-378.
    何平勋,赵连书.1987.极细枝孢(Cladosporium tenuiussimum cooke)研究初报.吉林林业科技,(1):24-28.
    何月秋.2000.真菌菌丝培养和提取DNA方法的改进.菌物系统,19(3):434.
    胡燕梅,杨龙.2006.利用微生物防治植物病害的研究进展.中国生物防治,22(增刊):190-193.
    胡咏武,王胜春,李哲.2005.丹参酮ⅡA对LPS等诱导的肝细胞损伤及枯否细胞释放细胞因子的作用.中国药理学通报,21(12):1482-1486.
    黄柏青,刘曼西.2001.真菌诱导物对丹参毛状根氧化酶活性的影响.华中科技大学学报,29(8):111-113.
    黄惠琴,黄美容,叶建军,朱军,鲍时翔.2010.2株产纤维素酶放线菌的筛选及分类鉴定.微生物学杂志,30(1):47-50.
    黄炼栋,胡之壁,刘涤.1995.丹参发状根再生植株的研究.上海中医药杂志,(10):401.
    黄璐琦,郭兰萍.2007.中药资源生态学研究.上海:上海科学技术出版社,117.
    冀玉良,李堆淑,朱广启,何军.2011.商洛丹参内生真菌的种群多样性研究.安徽农业科学,39(15):8913-8915,8982.
    贾利军.2008.丹参优质高产栽培技术.科技风,55.
    姜钰,董怀玉,徐秀德,刘志恒,樊慧梅.2005.放线菌在植病生防中的研究进展.杂粮作物,25(5):329-331.
    姜竹,李晶,王玉霞,张云湖.2011.人参土传病害生防菌株的筛选及抑菌活性研究.安徽农业科学,39(11):6464-6466.
    蒋婧,宋明华.2010.植物与土壤微生物在调控生态系统养分循环中的作用.植物生态学报,34(8):979-988.
    金树梅,赵桂峰,范英昌.2004.丹酚酸B对大鼠心肌缺血再灌注损伤内皮素及TXA_2/PGI_2系统的影响.中国老年学杂志,24(2):127-128.
    李勃,马瑜,党永.2010.银杏中内生细菌的分离鉴定.果树学报,(4):566-569.
    李国婧,王树才,夏凯.2001.酵母激发子与水杨酸对Ti转化的丹参组培物内源激素含量的影响.南京农业大学学报,24(1):13-16.
    李海燕,刘润进,柬怀瑞.2002.丛枝菌根菌与大豆胞囊线虫相互作用研究初报.植物病理学报,32(4):35-60.
    李建军,孙华,高致明,吴月红.2007.施肥对丹参根结构发育及有效成分积累的影响.河南农业大学学报,41(4):405-408.
    李科,吾鲁木汗·那孜尔别克,罗江华,姚福成,恩特马克·布拉提白.2011.药用白花泡桐内生细菌的分离鉴定及抑菌活性检测.贵州农业科学,39(4):96-99.
    李娜,戴美学.2010.草莓内生细菌的分离及草莓灰霉病菌拮抗菌的筛选鉴定.植物保护,(4):70-74.
    李琼芳,曾华兰,叶鹏盛,何炼,谭永久.2007a.哈茨木霉(Trichoerma harzianum)T23生防菌筛选及防治中药材根腐病的研究.西南大学学报(自然科学版),(11):119-122.
    李琼芳,曾华兰,叶鹏盛,杨红宣,何炼,何尊信.2007b.麦冬、丹参、川芎根腐病的发生及生物防治研究.西南农业学报,20(6):1310-1312.
    李胜华,谷丽萍,刘可星,廖宗文.2009.有机肥配施对番茄土传病害的防治及土壤微生物多样性的调控.植物营养与肥料学报,15(4):965-969.
    李小林,袁红梅,戚珊珊,冯茂林,刘洪伟,张小平.2010.丹参、黄精内生放线菌的分离及遗传多样性分析.微生物学通报,37(9):1341-1346.
    李晓君.2012.五种共生菌化学成分与生物活性研究.[博士学位论文].杨凌:西北农林科技大学.
    李艳玲,史仁玖,王健美,苗苗,张显忠,郝岗平.2012.泰山产丹参内生真菌的分离鉴定和多样性分析.时珍国医国药,23(1):114-117.
    李英梅,陈振锋,冯小惠,刘建利,任武婷,陈志杰.2010.商洛丹参根结线虫病发生特点及无公害防治技术研究.公共植保与绿色防控.
    梁建根,张炳欣,喻景权,石江,陈振宇.2005.黄瓜根际重要病原与其拮抗菌消长规律的研究.应用生态学报,16(5):911-914.
    梁军锋,薛泉宏,牛小磊,李增波.2005.7株放线菌在辣椒根部定殖及对辣椒叶片PAL与PPO活性的影响.西北植物学报,25(10):2118-2123.
    梁太波,王振林,王汝娟,刘兰兰,史春余.2007.腐植酸钾对生姜根系生长发育及活性氧代谢的影响.应用生态学报,18(4):813-817.
    梁银丽,陈志杰,徐福利,张成娥,杜社妮,严勇敢.2004.黄土高原设施农业中的土壤连作障碍.水土保持学报,18(4):134-136.
    刘红彦,王飞,王永平,鲁传涛.2006.地黄连作障碍因素及解除措施研究.华北农学报,21(4):131-132.
    刘兰兰,史春余,梁太波,于海静,刘凤娟.2009.腐植酸肥料对生姜土壤微生物量和酶活性的影响.生态学报,29(11):6136-6141.
    刘少华,陆金萍,朱瑞良,戴富明.2005.一种快速简便的植物病原真菌基因组DNA提取方法植物病理学报,35(4):362-365.
    刘文婷,梁宗锁,付亮亮,卫新荣,白吉庆.2003.栽植密度对丹参产量和有效成分含量的影响.现代中药研究与实践,17(4):14-17.
    刘文婷.2004.丹参的生物学特性研究.[硕士学位论文].杨凌:西北农林科技大学.
    刘新月,李凡,陈海如,郭俊,张萍.2008.致病性尖孢镰刀菌生物防治研究进展.云南大学学报(自然科学版),30(S1):89-93.
    刘志恒,姜成林.2004.放线菌现代生物学与生物技术.北京:科学出版社.
    龙良鲲,肖崇刚,窦彦霞.2003.防治番茄青枯病内生细菌的分离与筛选.中国蔬菜,(2):19-21.
    泷岛.1983.防治连作障碍的措施.日本土壤肥料学杂志,(2):170-178.
    罗厚蔚,书苞洋.丹参酮类及有关化合物抑菌作用的构效关系.中国医科大学学报,33(1):6-12.
    罗明,芦云,张祥林.2004.棉花内生细菌的分离及生防益生菌的筛选.新疆农林科学,41(5):277-282.
    马承铸,李世东,顾真荣,陈昱君,周薇,王勇,刘云芝,夏振远,李云华.2006.三七连作田根腐病复合症综合治理措施与效果.上海农业学报,22(4):63-68.
    马贵龙,张阿桃,王美英.2008.人参锈腐病拮抗放线菌筛选、形态及培养特征研究.吉林农业大学学报,30(5):687-691.
    马芸,谢占玲,李德英,马志杰.2010.青藏高原药用植物内生细菌多样性研究.生物技术通报,(6):234-239.
    毛宁,薛泉宏,唐明.2010.2株放线菌对土壤中苯甲酸和对羟基苯甲酸的降解作用.西北农林科技大学学报(自然科学版),38(5):143-148.
    聂桂丽,郭茂娟,李燕平,范英昌.2007.丹参单体对肿瘤坏死因子损伤的血管平滑肌细胞炎症介质IL-1β表达的影响中国老年学杂志,27(9):823-824.
    潘春梅,堵国成,陈坚.2004.辅酶Q10高产菌Rhizobium radiobacter的选育及发酵条件优化.过程工程学报,4(5):451-456.
    彭慧,郑岳臣.2000. rDNA-ITS序列在鉴定尖端赛多孢子菌种的应用.同济医科大学学报.29(1):26-28.
    彭克明,裴保义.1980.农业化学.北京:农业出版社.
    彭珧,杨静玉,吴春福,田威,张怡轩.2009.菌株Streptomyces capillispiralis1070代谢产物的抗肿瘤机制.沈阳药科大学学报,26(6):488-492,501.
    曲桂武,解飞霞,岳喜典,刘影,李桂生.2005.丹参酚酸B和丹参酮ⅡA在丹参根中的分布.中药研究与信息,7(1):11-14.
    饶小莉,沈德龙,李俊,姜昕,李力,张敏,冯瑞华.2007.甘草内生细菌的分离及拮抗菌株鉴定.微生物学通报,34(4):700-704.
    阮继生.1990.放线菌研究及应用.北京:科学出版社.
    阮维斌,王敬国,张福锁,申建波.1999.根际微生态系统理论在连作障碍中的应用.中国农业科技导报,1(4):53-58.
    邵阳.2011.大连海域可培养海洋放线菌的分离筛选及鉴定.[硕士学位论文].哈尔滨:黑龙江大学.
    绍荣,许琦余晓红,刘珊珊.2007.壳聚糖抗菌性能的研究.食品科学,28(9):121-124.
    申光辉,薛泉宏,陈秦,王玲娜,赵娟,薛磊.2012a.硅酸钾与密旋链霉菌Act12菌剂配施对连作草莓生长、果实产量及品质的影响.中国生态农业学报,20(3):315-321.
    申光辉.2012b.草莓连作根腐病发生机制与微生物及化学修复研究.[博士学位论文].杨凌:西北农林科技大学.
    石晶盈,陈维信,刘爱媛.2006.植物内生菌及其防治植物病害的研究进展.生态学报,26(7):2395-2401.
    宋洪允,韩立荣,冯俊涛,张兴.2010.94株土壤放线菌抑菌活性的初步筛选.西北农业学报,(12):172-176.
    苏林涓,陈丹,杨民和.2012.一株茶树内生放线菌的分离鉴定及抗菌活性测定.福建师范大学学报(自然科学版),28(3):94-100.
    孙广宇,张雅梅,张荣.2004.突脐孢属Brn1基因核苷酸序列比较及系统发育研究.菌物学报,23(4):480-486.
    孙焕顷,苏长青.2009.腐植酸钾对黄冠梨土壤肥力的影响.北方园艺,(7):100-101.
    孙敬祖,薛泉宏,唐明,曹书苗,邢胜利.2009.放线菌制剂对连作草莓根区微生物区系的影响及其防病促生作用.西北农林科技大学学报(自然科学版),37(12):153-158.
    唐咏,梁成华,刘志恒,须湘成.1999.日光温室蔬菜栽培对土壤微生物和酶活性的影响.沈阳农业大学学报(自然科学版),30(1):16-19.
    陶璐璐,袁静明.1990.丹参愈伤组织细胞固定化及其转化产物的特征.生物工程学报,6(3):218-223.
    田义新,尹春梅,韩东,王本有,盛吉明,金志哲.2002.老参地再利用研究-参参轮作.人参研究.14(3):5-10.
    王闯,徐公义,葛长城,毛志泉.2009.酚酸类物质和植物连作障碍的研究进展.北方园艺,(3):134-137.
    王芳,纪明山,谷祖敏,张杨,王建坤.2009.苦参内生枯草芽孢杆菌B_(36)抗菌物质对番茄叶霉病菌的作用机制.中国生物防治,25(3):250-254.
    王刚云,文家富,郑小惠,陈光华,叶丹宁.2009.陕西商洛丹参根部病害调查研究.陕西农业科学,(3):53-54.
    王健,宋杨,柴艳峰.2006.苦参素注射液联合复方丹参注射液治疗慢性乙型肝炎38例.中国药业,15(1):70.
    王丽娟.2005. Talea-3基因植物表达载体构建及其对丹参遗传转化的研究.[硕士学位论文].西安:陕西师范大学.
    王玲娜,薛泉宏,唐明,申光辉,赵娟,段春梅,陈秦,薛磊,毛宁.2010a.内蒙古芹菜根腐病病株和健株根域土壤的微生物生态研究.西北农林科技大学学报(自然科学版),38(8):167-172,181.
    王玲娜.2010b.内蒙芹菜连做障碍微生物修复研究.[硕士学位论文].杨凌:西北农林科技大学.
    王汝娟,王振林,梁太波,张晓冬,刘兰兰,史春余.2008.腐植酸钾对食用甘薯品种钾吸收、利用和块根产量的影响.植物营养与肥料学报,14(3):520-526.
    王守正,王海燕,李洪连,于思勤,袁红霞,岳红宾.2001.植物微生物区系和植物抗病性研究.河南农业科学,(5):20-23.
    王伟,赵谦,杨微.1997.木霉对土传病原尖孢镰刀菌的拮抗作用.中国生物防治,13(1):46-47.
    王渭玲,梁宗锁,孙群,魏永胜,王敬民,蒋传忠.2004.丹参高产栽培优化配方施肥技术研究.西北植物学报,24(1):130-135.
    王小慧,张国漪,张鹏,韦巧婕,冉炜,沈其荣.2012.生防菌根系定殖竞争作用对西瓜枯萎病发病机理的影响微生物学通报,39(11):1603-1613.
    王燕,宗兆锋,程联社.2005.放线菌在植物病害生物防治中的应用.杨凌职业技术学院学报,4(3):21-23.
    韦巧婕,郑新艳,邓开英,王小慧,高雪莲,沈其荣,沈标.2013.黄瓜枯萎病拮抗菌的筛选鉴定及其生物防效.南京农业大学学报,36(1):40-46.
    卫生部药典委员会.1995.中国药典,一部.北京:化学工业出版社,63.
    魏景超.1979.真菌鉴定手册.上海:上海科学技术出版社.
    魏艳敏,刘大群,田世民,张汀.2000.链霉菌(Streptomyces spp.)对几种蔬菜病原菌的拮抗作用.河北农业大学学报,23(3):65-68.
    文家富,王刚云,陈光华,郑小惠,叶丹宁.2009.商洛市丹参主要病虫害调查及综合防治技术.陕西农业科学,(1):210-211.
    吴凤芝,王学征,潘凯.2008.小麦和大豆茬口对黄瓜土壤微生物生态特征的影响.应用生态学报,19(4):794-798.
    吴凤芝,赵凤艳,刘元英.2000.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报,31(3):241-147.
    吴孟玲,庄铃木,傅春旭,葛兆年,张东柱.2005.应用放线菌生物制剂防治林木幼苗猝倒病害之探讨.台湾大学生物资源暨农学院实验林研究报告,19(4):251-260.
    肖培根,杨世林,宋经元.1996.药用动植物种养加工技术-丹参.北京:中国中医药出版社.
    谢永,高志凤,周宝忠,许宁,盛云,王波.2012.林可霉素菌(Streptomyces lincolnensis)利用吡唑酮废水的研究.环境工程学报,6(5):1576-1580.
    徐丽华,李文均,刘志恒,姜成林.2007.放线菌系统学:原理、方法及实践.北京:科学出版社.
    徐同,钟静萍,李德葆.1993.木霉对土传病原真菌的拮抗作用.植物病理学报,23(1):36-37.
    许英俊,薛泉宏,邢胜利,周永强,张晓鹿,郭志英,杨斌,林超峰,孙敬祖.2007.3株放线菌对草莓的促生作用及对PPO活性的影响.西北农业学报,16(6):146-153.
    薛磊,王建涛,刘相春,薛泉宏,申光辉,赵娟.2012b.拮抗性链霉菌对大丽轮枝菌微菌核形成与萌发的影响.植物保护学报,39(4):289-296.
    薛磊,薛泉宏,卢建军,申光辉,赵娟.2012a.棉花黄萎病原真菌菌体对链霉菌4种胞外水解酶活性的影响.植物病理学报,42(1):73-83.
    薛泉宏,同延安.2008.土壤生物退化及其修复计数研究进展.中国农业科技导报,10(4):28-35.
    严玉平,由会玲,朱长福,徐树楠.2007.丹参种源分布及道地性研究.时珍国医国药,18(8):1882-1883.
    阎逊初.1992.放线菌的分类和鉴定.北京:科学出版社.
    颜平,罗心平,施海明,范维琥.2004.丹参多酚酸治疗心绞痛患者的临床疗效及对血小板功能的影响.介入放射学杂志,12(S2):55-59.
    晏琼,胡宗定,吴建勇.2006.生物和非生物诱导子对丹参毛状根培养生产丹参酮的影响.中草药,37(2):262-265.
    杨华,郭纯,刘高,饶力群,彭国平.2009.内生黄曲霉对丹参悬浮细胞氧化酶活性的影响.现代生物医学进展,9(2):312-314.
    杨立.2012.丛枝菌根真菌对丹参根部病害的抗病性及其机理研究.[硕士学位论文].成都:西南交通大学.
    杨阳,何随成,张丽.2002.抗人参真菌病害的链霉菌的摇瓶发酵试验.微生物学杂志,2(3):56-58.
    杨云马,薛世川,夏风召,贾树龙,孟春香.2007.腐植酸复合肥对土壤微生物量的影响.华北农学报,22(S2):187-189.
    杨振明,闰飞,邹永久.1997.关于大豆连作障碍几个问题的研究思考.大豆通报,(2):26-27.
    叶龙彬,奚涛,陈峰,王瑜丹.2004.丹参酮ⅡA对大鼠局灶性脑缺血再灌注损伤的保护作用.中国药科大学学报,35(3):267-270.
    叶鹏盛,曾华兰,江怀仲,李琼芳.2003.丹参根腐病及其微生物防治研究.世界科学技术,5(2):63-65.
    尹莘耘.1983.农用抗生素和抗生菌的筛选.抗生素,8(1):64-65.
    尹淑丽,麻耀华,张丽萍,张根伟,黄亚丽,梁然,周竟,崔冠慧,段普凡.2012.不同生防菌对黄瓜根际土壤微生物数量及土壤酶活性的影响.北方园艺,(1):10-14.
    于慧瑛,吕国忠,孙晓东.2006.不同生长年限人参根际土壤真菌种类及数量的初步研究.人参研究,(4):9-11.
    于妍华.2011.西洋参连作障碍微生态机制及生防放线菌的抗病作用.[硕士学位论文].杨凌:西北农林科技大学.
    郁雪平,朱伟杰,高观朋,王伟.2009.生防木霉菌Th2和T4对甜瓜根围土壤微生态的影响.植物保护学报.36(6):522-528.
    喻景权,杜尧舜.2000.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,31(1):124-126.
    员子晶.2011.油松幼苗菌根围优良磷钾细菌的筛选及对油松的促生作用.[硕士学位论文].呼和浩特:内蒙古农业大学.
    张辰露,孙群,叶青.2005.连作对丹参生长的障碍效应.西北植物学报,25(5):1029-1034.
    张成林,刘丽丽.2008.施用不同肥料对土壤状况的影响.天津师范大学学报(自然科学版),28(2):5-10.
    张海涵.2011.黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制.[硕士学位论文].杨凌:西北农林科技大学.
    张红瑞,李志敏,高致明.2007.丹参生长发育特性研究.安徽农业科学,35(19):5783-5785.
    张少英,王俊斌,王海凤,邵金旺,李国龙,李晓东.2005.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系.植物生理与分子生物学学报,31(3):281-286.
    张淑梅,赵晓宇,张先成,孟利强,李晶,张云湖,王玉霞.2010.3种瓜类枯萎病菌Fusariumoxysporum的分子检测.植物病理学报,40(6):636-641.
    张晓鹿,薛泉宏,郭志英,杨斌,周永强,许英俊.2008.混合接种对辣椒疫病生防菌定殖、辣椒生长及诱导抗性的影响.西北农林科技大学学报(自然科学版),36(4):151-158.
    张艳丽,刘春元,袁虹霞,邢小萍,孙炳剑,李洪连.2005.生防菌株对地黄枯萎病的防治效果及其促生作用.河南农业科学,(4):46-48.
    张永清,王苓,孙晋璞.1999.根结线虫侵害对丹参药材氨基酸与蛋白质含量的影响.中国中医药科技,6(6):383-384.
    张子龙,王文全.2009.药用植物连作障碍的形成机理及其防治.中国农业科技导报,11(6):19-23.
    赵娟,杜军志,薛泉宏,段春梅,王玲娜,申光辉,陈秦,薛磊.2010.3株放线菌对甜瓜幼苗的促生与抗性诱导作用.西北农林科技大学学报(自然科学版),38(2):110-116.
    赵娟,薛泉宏,唐明.2009.伽师甜瓜猝倒病生防放线菌的筛选.西北农林科技大学学报(自然科学版),37(5):144-148,154.
    赵娟,薛泉宏,王玲娜,段春梅,薛磊,毛宁.2011.多功能放线菌Act12对土传病原真菌的拮抗性及其鉴定.中国生态农业学报,19(2):394-398.
    赵娟.2012.连作甜瓜蔓根真菌病害发生与放线菌生物防治研究.[博士学位论文].杨凌:西北农林科技大学.
    赵庆芳,刘靓,李巧峡,李海燕.2012.15种植物水提液对当归根腐病抑制活性的初步筛选.西北师范大学学报(自然科学版),48(2):66-69,85.
    赵庆芳,赵培强,郭鹏辉,李巧峡,韩静.2009.17种植物水提物对黄芪根腐病菌的抑制活性初步研究.西北农林科技大学学报(自然科学版),37(3):163-167.
    赵杨景,王玉萍,杨峻山,刘东.2005.西洋参与紫苏、薏苡轮作效应研究.中国中药杂志.30(1):12-15.
    赵杨景,杨峻山,王玉萍,刘东.2004.西洋参、紫苏籽和薏苡根水提物的化感作用.中草药,(4):452-455.
    赵曰丰.2001.人参西洋参忌地形成机制.特产研究.(1):40-45.
    郑晓慧,卿贵华,钟川.2010.西昌地区石榴叶霉病的病原鉴定.植物保护,36(1):131-133.
    周兴民.2001.中国嵩草草甸.北京:科学出版社.
    周绪朋,康书平.2009.丹参根结线虫病的发生与防治.农技服务,26(11):53.
    周永强,薛泉宏,杨斌,张晓鹿,许英俊,郭志英,林超峰.2008.生防放线菌对西瓜根域微生态的调整效应.西北农林科技大学学报(自然科学版),36(4):143-150.
    朱广军.2007.地黄连作障碍中化感物质的鉴定.[硕士学位论文].郑州:河南农业大学.
    邹德勋,徐凤花,潘俊波,徐诚蛟,夏清梅.2007.抗生菌剂在缓解大豆重迎茬根际微生态障碍中的作用.大豆科学,26(2):280-283.
    左豫虎,康振生,杨传平,芮海英,娄树宝,刘惕若.2009. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系.植物病理学报,39(6):600-607.
    Ahmed AM, Mueller R.2009. Degradation of long chain Alkanes by a newly isolated Pseudomonasfrederiksbergensis at low temperature. Bioremediation, Biodiversity and Bioavailability,3(2):55-60.
    Amaike S, Keller NP.2011. Aspergillus flavus. Annual Review of Phytopathology,49:107-133.
    Andersen SM, Johnsen K, S rensen J, Nielsen P, Jacobsen CS.2000. Pseudomonas frederiksbergensissp. nov., isolated from soil at a coal gasification site. International Journal of Systematic and EvolutionaryMicrobiology,50(6):1957-1964.
    Andrews JH.1990. Biological control in the phyllosphere: Realistic goal or false hope? CanadianJournal of Plant Pathology-revue Canadienne de Phytopathologie,12(3):300-307.
    Arshad M, Frankenberger WT.1991. Microbial production of plant hormones. Plant Soil.133:1-8.
    Babalola OO.2010. Beneficial bacteria of agricultural importance. Biotechnology Letters,32(11):1559-1570.
    Bandyopadhyay R, Mwangi M, Aigbe SO, Leslie JF.2006. Fusarium species from the cassava root rotcomplex in west Africa. Phytopathology,96:673-679.
    Bardgett RD, Bowman WD, Kaufmann B, Schmidt SK.2005. A temporal approach to linkingaboveground and below-ground ecology. Trends in Ecology and Evolution,20:634-641.
    Bardgett RD, Frankland JC, Whittaker JB.1993. The effects of agricultural practices on the soil biotaof some upland grasslands. Agriculture, Ecosystems and Environment,45:25-45.
    Bardgett RD, Hobbs PJ, Frosteg rd.1996. Changes in soil fungal: bacterial biomass ratiosfollowing reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils,22,261-264.
    Bardgett RD, Leemans DK, Cook R, Hobbs PJ.1997. Season-ality of the soil biota of grazed andungrazed hill grass-lands. Soil Biology and Biochemistry,29:1285-1294.
    Baytak S, Ko yi it A, Türker AR.2007. Determination of Lead, Iron and Nickel in water andvegetable samples after preconcentration with Aspergillus niger loaded on Silica Gel. Clean-Soil, Air, Water,35(6):607-601.
    Ben-Hammouda M, Ghorbal H, Hremer RJ.2002. Autotoxieity of barley. Journal of Plant Nutrition,25(6):1155-1161.
    Benson DR, Silvester WB.1993. Biology of Frankia strains, actinomycete symbionts of actinorhizalplants. Microbiological Reviews,57(2):293-319.
    Berman T, Holm-Hansen O.1974. Release of photoassimi-lated carbon as dissolved organic matter bymarine phyto-plankton. Marine Biology,28:305-310.
    Bhuyan BK.1962. Pactamycin production by Streptomyces pactum. Applied Microbiology,10(4):302-304.
    Bockle B, Galunsky B, and Muller R.1995. Characterization of a keratinolytic serine proteinase fromStreptomyces pactum DSM-40530. Applied and Environmental Microbiology,61(10):3705-3710.
    Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L, Bianco P.2011. Restructuringof endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.Applied and Environmental Microbiology,77(14):5018-5022.
    Cavaglieri LR, Andrés L, Ibá ez M, Etcheverry MG.2005. Rhizobacteria and their potential to controlFusarium verticillioides: effect of maize bacterisation and inoculum density. Antonie van Leeuwenhoek,87(3):179-187.
    Chun J, Lee JH, Jung Y, Kim M., Kim S, Kim BK, Lim YW.2007. EzTaxon: a web-based tool for theidentification of prokaryotes based on16S ribosomal RNA gene sequences. International Journal ofSystematic and Evolutionary Microbiology.57,2259-2261.
    Clay K, Holah J.1999. Fungal endophyte symbiosis and plant diversity in successional fields. Science,285(5434):1742-1744.
    Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A.2011. Endophytes of Grapevine flowers,berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualizationof niches of colonization. Microbial Ecology,62:188-197.
    Compton JE, Watrud LS, Arlene Porteous L, DeGrood S.2004. Response of soil microbial biomassand community composition to chronic nitrogen additions at Harvard forest. Forest Ecology andManagement,196:143-158.
    Cottyn B, Debode J, Regalado E, Mew T, Swings J.2009. Phenotypic and genetic diversity of riceseed-associated bacteria and their role in pathogenicity and biological control. Journal of AppliedMicrobiology,107(3):885-897.
    Cullen DW, Lees AK.2007. Detection of the neck virulence gene and its correlation withpathogenicity in Streptomyces species on potato tubers and in soil using conventional and real-time PCR.Journal of Applied Microbiology,102:1082-1094.
    Davis RD, Moore NY, Kochman JK.1996. Characterisation of a population of Fusarium oxysporum f.sp. vasinfectum causing wilt of cotton in Australia. Australian Journal of Agricultural Research,47(7):1143-1156.
    Davis RM, Colyer PD, Rothrock CS, Kochman JK.2006. Fusarium wilt of cotton: populationdiversity and implication for management. Plant Disease,90(6):692-703.
    De Boer AH, Volkov V.2003. Logistics of water and salt transport through the plant: structure andfunctioning of the xylem. Plant Cell and Environment,26(1):87-101.
    Do¨bereiner J, Urquiaga S, Boddey RM.1995. Alternatives for nitrogen nutrition of crops in tropicalagriculture. Fertilizer Research.42:339–346.
    Doumbou CL, Salove MKH, Crawford DL, Beaulieu C.2001. Actinomycetes, promising tools tocontrol plant diseases and to promote plant growth. Phytoprotection,82(3):85-102.
    Duan JL, Li XJ, Gao JM, Wang DS, Yan Y, Xue QH.2013. Isolation and identification of endophyticbacteria from root tissues of Salvia miltiorrhiza Bge. and determination of their bioactivities. Annals ofMicrobiology. doi:10.1007/s13213-013-0614-0.
    Eckwall EC, Schottel JL.1997. Isolation and characterization of an antibiotic produced by the scabdisease-suppressive Streptomyces diastatochromogenes strain PonSSII. Journal of Industrial Microbiology&Biotechnology,19(3):220-225.
    Elroy AC.1986. The Rhizosphere. Spring-Verlag Berlin, Heidelber.
    El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, HardyGE ST J.2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes.Plant Pathology,49(5):573-583.
    Fan YQ, Luan YS, An LJ, Yu K.2008. Arbuscular mycorrhizae formed by Penicillium pinophilumimprove the growth, nutrient uptake and photosynthesis of strawberry with two inoculum-types.Biotechnology Letters,30(8):1489.
    Feng YJ, Song W.2001. Endophytic bacteria. Progress in Natural Science,23(5):249-252.
    Fitton M, Holliday P.1970. Myrothecium roridum. Commonwealth Mycological Institute.Descriptions of Pathogenic Fungi and Bacteria,253:1-2.
    Fleck WF, Stranss DG, Prauser H.1980. Naphthoquinone antibiotics from Streptomyces lateritius. IFermentation, isolation and characterization of granatomycins A, C and D. Z Allg Mikrobiol,20(9):543-551.
    Fusooni A, Gnavi E, Berta G.1999. Apical meristems of tomato roots and their modifications inducedby arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytologist,142(34):505-516.
    Geromel V, Darin N, Chrétien D, Bénit P, DeLonlay P, R tig A, Munnich A, Rustin P.2002.Coenzyme Q10and idebenone in the therapy of respiratory chain diseases: rationale and comparativebenefits. Molecular Genetics and Metabolism,77(1-2):21-30.
    Glick BR, Jacobson CB, Schwarze MK, Pasternak JJ.1994.1-Aminocyclopropane-1-carboxylic aciddeaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2do notstimulate canola root elongation. Canadian Journal of Microbiology,40:911-915.
    Glick BR, Penrose DM, Li J.1998. A model for the lowering of plant ethylene concentrations by plantgrowth promoting bacteria. Journal of Theoretical Biology,190:63-68.
    Glick BR.2004. Bacterial ACC deaminase and the alleviation of plant stress. Advances in AppliedMicrobiology,56:291-312.
    Gordon TR, Martyn RD.1997. The evolutionary biology of Fusarium oxysporum. Annual Review ofPhytopathology,35:111-128.
    Hall MH, Henderlong PR.1989. Alfalfa autotoxic fraction charactetization and initial separation. CropScience,29:425-428.
    Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J.1997. Bacterial endophytes in agriculturalcrops. Canadian Journal of Microbiology,43(10):895-914.
    Hartmann A, Rothballer M, Schmid M.2008. Lorenz Hiltner, a pioneer in rhizosphere microbialecology and soil bacteriology research. Plant and Soil,312(1-2):7-14.
    Hartung AC, Putuam AR, Stephens CT.1989. Inhibitory activity of asparagus root tissue and Extractson asparagus seedlings. Journal of the American Society for Horticultural Science.114(1):144-148.
    Harvey PR, Warren RA, Achouak W, Ryder MH.2005. Geographic differentiation of Pseudomonasbrassicacearum populations and bio-control of take-all disease of wheat and Pythium root rot of Canola.Shandong Science,18:50-61.
    Hwang SC, Ko WH.2004. Cavendish banana cultivars resistant to fusarium wilt acquired throughsomaclonal variation in Taiwan. Plant Disease,88(6):580-588.
    Hyakumachi M.1998. Systemic resistance in plants induced by beneficial rhizospheremicroorganisms. Journal of Pesticide Science,23(4):422-426.
    Inglis GD, Kawchuk LM.2002. Comparative degradation of oomycete, ascomycete andbasidiomycete cell walls by mycoparasitic and biocontrol fungi. Microbiology,48:60-70.
    Ivanova EP, Christen R, Bizet C, Clermont D, Motreff L, Bouchier C, Zhukova NV, Crawford RJ,Kiprianova EA.2009. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmentedbacteria isolated from soil and the rhizosphere of agricultural plants. International Journal of Systematicand Evolutionary Microbiology,59(10):2476-2481.
    Jacyno JM, Harwood JS, Lee MK.1993. Isocladosporin, a biologically active isomer of cladosporinfrom Cladosporium cladosporioides. Journal of Natural Products,56(8):1397-1401.
    James K, Olivares FL.1997. Infection and colonization of sugar cane and other Graminaceous plantsby endophytic diazotrophs. Critical Reviews in Plant Sciences.17(1):77-119.
    Jang SI1, Kim HJ, Kim YJ, Jeong SIl, You YO.2006. Tanshinone ⅡA inhibits LPS-induced NF-κBactivation in RAW264.7cells:Possible involvement of the NIK-IKK, ERK1/2, p38and JNK pathway.European Journal of Pharmacology,542(1-3):1-7.
    Jha P, Kumar A.2007. Endophytic colonization of Typha australis by a plant growth-promotingbacterium Klebsiella oxytoca strain GR-3. Journal of Applied Microbiology,103(4):1311-1320.
    Jr Casida LE.1982. Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil.International Journal of Systematic Bacteriology,32(3):339-345.
    Kannan V, Sureendar R.2009. Synergistic effect of beneficial rhizosphere microflora in biocontrol andplant growth promotion. Journal of Basic Microbiology,49(2):158-164.
    Kellock AW.1971. Red-leaf virus-a newly recognized virus disease of subterranean clover (Trifoliumsubterraneum L.). Australian Journal of Agricultural Research,22:615-624.
    Khalesi E, Shahidi Bonjar GH, Aghighi S, Mahdavi MJ, Ayatollahi Moosavi A.2006. Anti yeastactivity of Streptomyces olivaceus strain115against Candida albicans. Journal of Applied Sciences,6(3):524-526.
    Kleopper JW, Schroth MN.1978. Plant growth-promoting rhizobacteria on radishes. In Proceedings ofthe4th International Conference on Plant Pathogenic Bacteria, Angers, France.879-882.
    Klich MA.2007. Aspergillus flavus: the major producer of aflatoxin. Molecular Plant Pathology,8(6):713-22.
    Kloepper JW, Ryu CM, Zhang S.2004. Induced systemic resistance and promotion of plant growth byBacillus species. Phytopathology,94:1259-1266.
    Kortemaa H, Pennanen T, Smolander A, Haahtela K.1997. Distribution of antagonistic Streptomycesgriseoviridis in rhizosphere and non-rhizosphere sand. Journal of Phytopathology-phytopathologischeZeitschrift.145:137-143.
    Kosuri NR, Grove MD, Yates SG, Tallent WH, Ellis JJ, Wolff IA, Nichols RE.1970. Response ofcattle to mycotoxins of Fusarium tricinctum isolated from corn and fescue. Journal of the AmericanVeterinary Medical Association,157:938-940.
    Kosuri NR, Grove MD, Yates SG, Tallent WH, Ellis JJ, Wolff IA, Nichols RE.1970. Response ofcattle to mycotoxins of Fusarium tricinctum isolated from corn and fescue. Journal of the AmericanVeterinary Medical Association,157:938-940.
    Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL.2004.Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion.Environmental Microbiology,6:1244-1251.
    Leach BE, Calhoun KM, Johnson LE, Teeters CM, Jackson WG.1953. Chartreusin, a New antibioticproduced by Streptomyces chartreusis, a new species. Journal of the American Chemical Society,75(16):4011-4012.
    Lee JR, Park SC, Kim MH, Jung JH, Shin MR, Lee DH, Cheon MG, Park Y, Hahm KS, Lee SY.2007.Antifungal activity of rice Pex5p, a receptor for peroxisomal matrix proteins. Biochemical and BiophysicalResearch Communications,359:941-947.
    Lee K, Paek K, Ju WT, Lee Y.2006. Sterilization of bacteria, yeast, and bacterial endospores byatmospheric-pressure cold plasma using helium and oxygen. Journal of Microbiology,44(3):269-275.
    Lee S, Ka JO, Song HG.2012. Growth promotion of Xanthium italicum by application ofrhizobacterial isolates of Bacillus aryabhattai in microcosm soil. Journal of Microbiology,50(1):45-49.
    Li XJ, Tang HY, Duan JL, Gao JM, Xue QH.2012. Bioactive alkaloids produced by Pseudomonasbrassicacearum subsp. neoaurantiaca, an endophytic bacterium isolated from Salvia miltiorrhiza. NaturalProduct Research,27(4-5):496-499.
    Li YG, Ma FM.2012. Antagonistic mechanism of Fusarium oxysporum of soybean root rot byBacillus subtilis. Applied Mechanics and Materials,108:127-131.
    Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D.2002. Endophytic bacteria and their potential applications. CRC Critical Reviews in Plant Sciences,21(6):583-606.
    Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van der Lelie D.2006. Endophyticbacteria and their potential application to improve the phytoremediation of contaminated environments.Biotechnology&Genetic Engineering Reviews,23:175-207.
    Maw T, Tan TK, Khor E, Wong SM.2002. Selection of Gongronella butleri strains for enhancedchitosan yield with UV mutagenesis. Journal of Biotechnology,95(2):189-193.
    Mazzola M.2007. Manipulation of rhizosphere bacterial communities to induce suppressive soils.Journal of Nematology,39(3):213-220.
    Michielse CB, Reijnen L, Olivain C, Alabouvette C, Rep M.2012. Degradation of aromaticcompounds through the β-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogenFusarium oxysporum f. sp. lycopersici. Molecular Plant Pathology,13(9):1089-1100.
    Mims CW, Nickers NL.1986. Ultrastructure of the host-pathogen relationship in red leaf disease oflowbush blueberry caused by the fungus Exobasidium vaccinii. Canadian Journal of Botany-revueCanadienne de Botanique,64:1338-1343.
    Misaghi IJ, Donndelinger CR.1990. Endophytic bacteria in symptom free cotton plants.Phytopathology,80:808-811.
    Miyajima K, Tanaka F, Takeuchi T, Kuninaga S.1998. Streptomyces turgidiscabies sp. nov.International Journal of Systematic Bacteriology,48(2):495-502.
    Moran MA, Torsvik VL, Torsvik T, Hodson RE.1993. Direct extraction and purification of rRNA forecological studies. Applied and Environment Microbiology,59:915-918.
    Nihorimbere V, Ongena M, Smargiassi M, Thonart P.2011. Beneficial effect of the rhizospheremicrobial community for plant growth and health. Biotechnologie Agronomie Societe et Environnement,15(2):327-337.
    Oliveira VC de, Costa JLS.2002. Restriction analysis of rDNA (ARDRA) can differentiate Fusariumsolani f. sp. phaseoli from F. solani f. sp. glycines. Fitopatologia Brasileira,27(6):631-634.
    Olivieri FP, Lobato MC, González Altamiranda E, Daleo GR, Huarte M, Guevara MG, Andreu AB.2009. BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusariumsolani. European Journal of Plant Pathology,123(1):47-56.
    Oskay M, Tamer UA, Azeri C.2004. Antibacterial activity of some actinomycetes isolated fromfarming soils of Turkey. African Journal of Biotechnology,3:441-446.
    Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S.2000. Transgenic plants expressingcationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnology,18:1162-1168.
    Park W, Li J, Song R, Messing J, Chen X.2002. CARPEL FACTORY, a Dicer Homolog, and HEN1, aNovel Protein, Act in microRNA metabolism in Arabidopsis thaliana. Current Biology,12:1484-1495.
    Peters S, Draeger S, Aust HJ, Schulz B.1998. Interactions in dual cultures off endophytic fungi withhost and nonhost plant calli. Mycologia,90:360-367.
    Petrini O.1991. Fungal endophytes of tree leaves. Microbial ecology of leaves,179:197.
    Poltronieri LS, Trinidad DR, Albuquerque FC, Duarte MLR, Cardoso SS.2002. Incidence of Fusariumsolani in annulled in the State of Pará, Brazil. Fitopatologia Brasileira,27:544.
    Pryce TM, Palladino S, Kay ID, Coombs GW.2003. Rapid identification of fungi by sequencing theITS1and ITS2regions using an automated capillary electrophoresis system. Medical Mycology,41(5):369-381.
    Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y.2009. The rhizosphere: aplayground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil,21(1-2):341-361.
    Ray S, Datta R, Bhadra P, Mitra BACK.2012. From space to earth: Bacillus aryabhttai found in theIndian Sub-continent. Bioscience Discovery.3(1):138-145.
    Recorbet G, Steinberg C, Olivain C, Edel V, Trouvelot S, Dumas-Gaudot E, Gianinazzi S, AlabouvetteC.2003. Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. New Phytologist,159:73-92.
    Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E.2001.Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appliedand Environmental Microbiology,67(7):3264-3268.
    Rosenblueth M, and Martínez-Romero E.2006. Bacterial endophytes and their interactions with hosts.Molecular Plant-microbe Interactions,19(8):827-837.
    Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH.2000. Genetic diversity and biological controlactivity of novel species of closely related Pseudomonads isolated from wheat field soils in South Australia.Applied and Environmental Microbiology,66(4):1609-1616.
    Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN.2008. Bacterial endophytes: recentdevelopments and applications. Fems Microbiology Letters,278(1):1-9.
    Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW.2003. Bacterial volatilespromote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States ofAmerica,100:4927-4932.
    Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW.1984. Ribosomal DNA spacer-lengthpolymorphism in barley: mendelian inheritance, chromosomal location and population dynamics.Proceedings of the National Academy of Sciences,81(24):8014-8018.
    Saito H, Miura KI.1963. Preparation of transforming deoxyribonucleic acid by phenol treatment.Biochimica et Biophysica Acta (BBA)-Specialized Section on Nucleic Acids and Related Subjects,72:619-629.
    Sarter B.2002. Coenzyme Q10and cardiovascular disease: a review. Journal of CardiovascularNursing,16(4):9.
    Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW.2006. A multigenephylogeny of the Dothideomycetes using four nuclear loci. Mycologia,98(6):1041-1052.
    Selvakumar G, Sushil SN, Stanley J, Mohan M, Deol A, Rai D, Ramkewal, Bhatt JC, Gupta HS.2011.Brevibacterium frigoritolerans a novel entomopathogen of Anomala dimidiata and Holotrichia longipennis(Scarabaeidae: Coleoptera). Biocontrol Science and Technology,21(7):821-827(7).
    Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S,Vaishampayan P, Dutt C.2009. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillusaryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere.International Journal of Systematic and Evolutionary Microbiology,59(12):2977-2986.
    Siciliano S, Germida J.1999. Taxonomic diversity of bacteria associated with the roots of field growntransgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv.Parkland. Fems Microbiology Ecology,29(3):263-272.
    Silva JL da, Teixeira RNV.2012. Sporulation and mycelial growth of Fusarium solani in differentculture media and steady bright. Universidade Federal de Roraima,6(1):47-52.
    Silva JRC, Souza RM, Zacarone AB, Silva LHCP, Castro AMDS.2008. Control with endophyticbacteria and in vitro inhibition of Pseudomonas syringae pv tomato, agent of bacterial speck of tomato.Cienciae Agrotecnologia,32(4):1062-1072.
    Strobel GA.2003. Endophytes as sources of bioactive products. Microbes and Infection,5(6):535-544.
    Sturz A, Christie B, Matheson B, Nowak J.1997. Biodiversity of endophytic bacteria which colonizered clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils,25(1):13-19.
    Sturz A, Christie B, Nowak J.2000. Bacterial endophytes: potential role in developing sustainablesystems of crop production. CRC Critical Reviews in Plant Sciences,19(1):1-30.
    Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, LelieD van der.2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effecton growth and development of Poplar trees. Applied and Environmental Microbiology,75(3):748-757.
    Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA4: Molecular evolutionary genetics analysis(MEGA) software version4.0. Molecular Biology and Evolution,24:1596-1599.
    Triplett EW.1996. Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots.Plant Soil,186:29-38.
    Uren NC, Reisenauer HM.1988. The role of root exudates in nutrient acquisition. Advaunces in PlantNutrition,3:79-114.
    Utkhede RS.2006. Soil sickness, replant problem or replant disease and its integrated control.Allelopathy Journal,18(1):23-38.
    Van Buren AM, Andre C, Ishimaru CA.1993. Biological control of the bacterial ring rot pathogen byendophytic bacteria isolated from potato. Phytopathology,83(2):140-146.
    Van Loon LC, Bakker P, Pieterse CMJ.1998. Systemic resistance induced by rhizosphere bacteria.Annual Review of Phytopathology,36(1):453-483.
    Van Wees SC, Van der Ent S, Pieterse CM.2008. Plant immune responses triggered by beneficialmicrobes. Current Opinion in Plant Biology,11(4):443-448.
    VanEtten H, Funnell-Baerg D, Wasmann C, McCluskey K.1994. Location of pathogenicity genes ondispensable chromosomes in Nectria haematococca MPVI. Antonie Van Leeuwenhoek,65:263-267.
    Vigo C, Norman JR, Hooker JE.2000. Biocontrol of the pathogen Phytophthora parasitica byarbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology,49(23):509-514.
    Wall DH, Moore JC.1999. Interactions underground: soil biodiversity, mutualism, and ecosystemprocess. BioScience,49:109-117.
    Wei XY, Jing MB, Wang JC, Yang XJ.2010. Preliminary study on Salvia miltiorrhiza bungendophytic fungus. Academic Journal of Xi'an Jiaotong University(English Edition),22(4):241-246.
    Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS.2002. Microbial populationsresponsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology,40:309-348.
    Wittich RM, Busse HJ, K mpfer P, Tiirola M, Wieser M, Macedo AJ, Abraham WR.2007.Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from pollutedriver sediment. International Journal of Systematic and Evolutionary Microbiology,57:306-310.
    Worapong J, Sun J, Newcombe G.2009. First report of Myrothecium roridum from a gymnosperm.North American Fungi,4(6):1-6.
    Xu CK, Lou XJ, Xi JQ, Gu L, Duan CQ, Mo MH, Zhang KQ, Yang FX, Fang DH.2011. Phylogeneticanalysis of the nematicidal actinobacteria from agricultural soil of China African. Journal of MicrobiologyResearch,5(16):2316-2324.
    Zaitlin B, Turkington K, Parkinson D, Clayton G.2004. Effects of tillage and inorganic fertilizers onculturable soil actinomycetes communities and inhibitors of fungi by specific actinomycetes. Applied SoilEcology,26:53-62.
    Zhang JX, Xue AG., Zhang HJ, Nagasawa AE, and Tambong JT.2010. Response of soybean cultivarsto root rot caused by Fusarium species. Canadian Journal of Plant Science,90:767-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700