用户名: 密码: 验证码:
不同作物与施肥对黑土氨氧化微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是农田生态系统的重要组成,在土壤养分转化、有机质分解、腐殖质形成、土壤肥力保持、营养元素的转化和循环中发挥了重要作用,而发挥作用的微生物属性是丰度和种群结构。影响丰度和种群结构的外界条件是水、热、气和营养物质,而水、热、气和营养物质又决定于农田管理方式如种植作物、肥料施用等直接或间接地影响土壤微生物群落结构及其功能的演化。本研究基于长期定位试验平台,利用新一代454高通量测序技术,以16S rRNA基因为分子标靶,原位条件下研究农田管理措施对土壤微生物群落结构的影响规律;进一步结合稳定性同位素示踪土壤微生物核酸DNA技术研究长期施肥条件下,土壤硝化微生物群落结构的主要变化规律及主要作用者。主要研究结果如下:
     东北黑土区主要的种植制度下(大豆、小麦和玉米)田间原位研究结果表明:大豆对根际微生物总量影响最大,小麦次之,玉米影响最小。根际微生物的种群组成中,细菌占绝对优势。三种作物对土壤氨氧化细菌和古菌丰度影响不显著。施用氮肥导致土壤氨氧化细菌的丰度显著增加,而氨氧化古菌的丰度明显降低。施用磷肥对于氨氧化古菌和氨氧化细菌丰度的影响不显著。
     温室盆栽实验研究发现:小麦、肥料、小麦肥料耦合作用三种因素对土壤微生物数量、酶活性和氨氧化微生物丰度的影响不同。小麦种植增加了微生物数量、脲酶和磷酸酶活性,增幅分别为39.0%、302%和38.5%;不同肥料处理对三者的影响分别为24.6%~47.0%、17.2%~32.7%和21.2%~25.9%;小麦施肥耦合作用的影响分别为3.30%~31.4%、59.0%~168%和15.2%~26.7%。小麦降低了土壤氨氧化细菌的丰度达44.1%,增加了氨氧化古菌的丰度达29.5%;氮肥显著增加了氨氧化细菌的丰度264%~313%,而磷肥对于氨氧化细菌增加仅为4.94%,氮磷肥均显著降低了氨氧化古菌的丰度达23.8%~48.5%;小麦和肥料耦合显著降低了氨氧化细菌的丰度,增加了氨氧化古菌的丰度。三种因素中小麦和肥料耦合对于氨氧化细菌和古菌的影响最大,最终表现为小麦-施肥较施肥显著增加了氨氧化细菌丰度,而降低了氨氧化细菌丰度。
     针对长期定位试验的土壤样品,新一代高通量测序分析微生物16S rRNAgene,在整体水平上对长期不同施肥土壤中微生物群落变化进行研究。结果表明:长期施肥后,土壤微生物以不施肥土壤中微生物数量4.39%为分界点,长期施肥土壤中微生物总量>4.39%的土壤微生物生长被抑制;相反,促进了<4.39%的土壤微生物的生长。并且长期施肥引起了土壤微生物多样性的降低,同时,施用氮肥土壤微生物多样性较磷肥土壤微生物多样性低。
     进一步采用稳定性同位素示踪(DNA-SIP)和新一代高通量测序技术,研究了长期施肥对东北黑土中氨氧细菌和古菌功能的影响。长期施肥引起土壤铵态氮浓度增加达8倍,并且土壤原位硝化活性(~(15)N示踪)显著增强,与此同时,氨氧化细菌丰度显著增加,而氨氧化古菌变化不显著。进一步利用稳定性同位素示踪CK和NPK土壤中的氨氧化微生物核酸DNA发现,氨氧化细菌在长期不施肥CK和施肥NPK土壤中均具有氨氧化功能,而氨氧化古菌仅在不施肥CK土壤中具有活性。这充分说明东北黑土长期施肥导致了土壤中氨氧化古菌功能的退化。
     综上所述,在东北黑土中施用氮肥增加了土壤氨氧化细菌的丰度,降低了氨氧化古菌的丰度,并且氮肥的施用降低了土壤微生物多样性。黑土中长期施肥导致了氨氧化古菌功能的退化,氨氧化细菌功能的强化。
Soil microorganisms are an important part of soil, and they are the main power insoil nutrients transformation, soil organic matter resolving and the forming of humus.Besides, crops, fertilization and the interaction of crop-fertilization may influence thesoil microbial communities and the function in farm ecosystem. In this study, wetaking16S rRNA gene as molecular target and adopted the next generation454pyrosequencing to investigate the effect of farm management on the microbialabuncance and community. At the same time we adopted the454pyrosequencing andDNA-stable isotope probing technology (DNA-SIP) investigate the contribution ofammonia oxidizing bacteria and archaea under long-term fertilization. The mainconclusions were drowm as follows:
     Based on Hailun Agricultural Ecology Station of Chinese Academy of Sciences,the microorganism (bacteria, fungi and actinomyces) and abundance ofammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) affectedby different crops (such as soybean, maize and wheat) were investigated. The resultsshowed that among the three different kinds of crops, the amount of bacteria wasmuch larger than that of fungus and actinomycetes in soils. The soil microorganismamount was significantly affected by different crops roots(P<0.05)and was in thefollowing order: soybean>wheat>maize. The abundance of AOB and AOA was notsignificantly influenced by different crops. The fertilization of nitrogen significantlyincreased the abundance of AOB in maize and wheat, and has no significant effect onsoybean, while the nitrogen fertilization decreased the abundance of AOA. Thephosphorus fertilization did not change the abundance of AOB and AOA abundance.
     A pot experiment was carried out in greenhouse to study the effect of fertilization and root system of wheat on the soil microbial amount, the abundance of AOB andAOA, urease and phosphatase activity. The microbial amount, urease activity andphosphatase activity of treatment CK were significantly increased by39.0%,302%and38.5%by wheat. The microbial amount, urease activity and phosphatase activitywere significantly increased by24.6%~47.0%,17.2%~32.7%and21.2%~25.9%withfertilizer application but without wheat planting. Fertilization treatments with wheatplanting increased the soil microbial amount, urease activity and phosphatase activityby3.3%~31.4%,59.0%~168%and15.2%~26.7%, respectively. With wheat planting,the abundance of AOB was significantly decreased by44.1%, while the AOAabundance was increased by29.5%. N fertilization significantly increased the AOBabundance by264%~313%, while P fertilization only increased by the AOAabundance by4.94%. Fertilization significantly decreased the AOA abundance by23.8%~48.5%. Fertilization treatments with wheat planting significantly decreased theabundance of AOB and increased the abundance of AOA.
     Based on21-year fertilization experiment, we found that after21-yearfertilization the microorganisms which proportion>4.39%in no fertilization soilwere suppressed, while the microorganisms which proportion <4.39%were promoted.And the long-term fertilization decreased the microorganism diversity, the Ninfluenced the microbial community diversity much more than the P fertilization.
     Further more, the functional importance of AOB and AOA was studied asaffected by21-year fertilization.~(15)N-isotope tracing demonstrated that ammoniaoxidation activity was significantly stimulated under near-in situ condition infertilized NPK soils when compared to the control soil of CK treatment that receivedno fertilization. Pyrosequencing results clearly showed that AOB abundance wassignificantly increased while the AOA was not by the21-year fertilization.Furthermore,~(13)CO_2-based DNA stable isotope probing (SIP) suggested thefunctional importance of bacterial ammonia oxidation in both CK and NPK soils. However, strong proliferation of archaeal ammonia oxidizers was demonstrated incontrol but not fertilized soil.
     Therefore, N fertilization significantly increased the AOB abundance anddecreased the AOA abundance, and decreased the microbial diversity. And long-termfertilization of urea leads to the functional extinction of AOA.
引文
1. Ahn JH, Song J, Kim BY, et al. Characterization of the bacterial and archaeal communities inrice field soils subjected to long-term fertilization practices. Journal of Microbiology,2012,50:754-765.
    2. Alonso-Sáez L, Waller AS, Mende DR, et al. Role for urea in nitrification by polar marineArchaea. Proceedings of the National Academy of Sciences,2012,109:17989-17994.
    3. Alvey S, Yang C, Buerkert A, et al. Cereal/legume rotation effects on rhizosphere bacterialcommunity structure in West African soils. Biology and Fertility of Soils,2003,37:73-82.
    4. Avrahami S, Conrad R. Cold-temperate climate: a factor for selection of ammonia oxidizersin upland soil? Canadian Journal of Microbiology,2005,51:709-714.
    5. Avrahami S, Conrad R, Braker G. Effect of soil ammonium concentration on N2O release andon the community structure of ammonia oxidizers and denitrifiers. Applied andEnvironmental Microbiology,2002,68:5685-5692.
    6. Avrahami S, Liesack W, Conrad R. Effects of temperature and fertilizer on activity andcommunity structure of soil ammonia oxidizers. Environmental Microbiology,2003,5:691-705.
    7. Bachar A, Al Ashhab A, Soares MIM, et al. Soil microbial abundance and diversity along alow precipitation gradient. Microbial ecology,2010,60:453-461.
    8. Barraclough D, Puri G. The use of15N pool dilution and enrichment to separate theheterotrophic and autotrophic pathways of nitrification. Soil Biology and Biochemistry,1995,27:17-22.
    9. Bell TH, Yergeau E, Martineau C, et al. Identification of nitrogen-incorporating bacteria inpetroleum-contaminated Arctic soils by using [15N] DNA-based stable isotope probing andpyrosequencing. Applied and Environmental Microbiology,2011,77:4163-4171.
    10. Bergstrom D, Monreal C. Increased soil enzyme activities under two row crops. Soil ScienceSociety of America Journal,1998,62:1295-1301.
    11. Brandes JA, Devol AH, Deutsch C. New developments in the marine nitrogen cycle.Chemical Reviews-Columbus,2007,107:577-589.
    12. Briones Jr AM, Okabe S, Umemiya Y, et al. Ammonia-oxidizing bacteria on root biofilmsand their possible contribution to N use efficiency of different rice cultivars. Plant and Soil,2003,250:335-348.
    13. Carol J. Phillips DH, Sherry L. Dollhopf, et al. Effects of Agronomic Treatments on Structureand Function of Ammonia-Oxidizing Communities. Applied and EnvironmentalMicrobiology,2000,66:5410-5418.
    14. Chen X, Zhang LM, Shen JP, et al. Soil type determines the abundance and communitystructure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soilsand Sediments,2010,10:1510-1516.
    15. Chen XP, Zhu YG, Xia Y, et al. Ammonia-oxidizing archaea: important players in paddyrhizosphere soil? Environmental Microbiology,2008,10:1978-1987.
    16. Chen Y, Wu L, Boden R, et al. Life without light: microbial diversity and evidence ofsulfur-and ammonium-based chemolithotrophy in Movile Cave. The ISME journal,2009,3:1093-1104.
    17. Chu H, Fierer N, Lauber CL, et al. Soil bacterial diversity in the Arctic is not fundamentallydifferent from that found in other biomes. Environmental Microbiology,2010,12:2998-3006.
    18. Chu H, Fujii T, Morimoto S, et al. Population size and specific nitrification potential of soilammonia-oxidizing bacteria under long-term fertilizer management. Soil Biology andBiochemistry,2008,40:1960-1963.
    19. Chu H, Lin X, Fujii T, et al. Soil microbial biomass, dehydrogenase activity, bacterialcommunity structure in response to long-term fertilizer management. Soil Biology andBiochemistry,2007,39:2971-2976.
    20. De Boer W, Kowalchuk G. Nitrification in acid soils: micro-organisms and mechanisms. SoilBiology and Biochemistry,2001,33:853-866.
    21. De La Torre JR, Walker CB, Ingalls AE, et al. Cultivation of a thermophilic ammoniaoxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology,2008,10:810-818.
    22. DeLong EF. Microbial Evolution in the Wild. Science,2012,336:422-424.
    23. Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success ofrecently emerged bacterial hybrids. Science,2012,336:462-466.
    24. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked16S rRNA genedatabase and workbench compatible with ARB. Applied and Environmental Microbiology,2006,72:5069-5072.
    25. Di HJ, Cameron KC, Shen JP, et al. Ammonia-oxidizing bacteria and archaea grow undercontrasting soil nitrogen conditions. FEMS Microbiology Ecology,2010,72:386-394.
    26. Doran JW, Parkin TB. Defining and assessing soil quality. Defining soil quality for asustainable environment,1994:1-21.
    27. Elfstrand S, Hedlund K, M rtensson A. Soil enzyme activities, microbial communitycomposition and function after47years of continuous green manuring. Applied Soil Ecology,2007,35:610-621.
    28. Enwall K, Nyberg K, Bertilsson S, et al. Long-term impact of fertilization on activity andcomposition of bacterial communities and metabolic guilds in agricultural soil. Soil Biologyand Biochemistry,2007,39:106-115.
    29. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth'sbiogeochemical cycles. Science,2008,320:1034-1039.
    30. Fan F, Yang Q, Li Z, et al. Impacts of Organic and Inorganic Fertilizers on Nitrification in aCold Climate Soil are Linked to the Bacterial Ammonia Oxidizer Community. MicrobialEcology,2011,62:982-990.
    31. Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria.Ecology,2007,88:1354-1364.
    32. Francis CA, Beman JM, Kuypers MM. New processes and players in the nitrogen cycle: themicrobial ecology of anaerobic and archaeal ammonia oxidation. The ISME Journal,2007,1:19-27.
    33. Frankenberger W, Dick W. Relationships between enzyme activities and microbial growthand activity indices in soil. Soil Science Society of America Journal,1983,47:945-951.
    34. Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversityand high metal toxicity in soil. Science,2005,309:1387-1390.
    35. Ge Y, Zhang JB, Zhang LM, et al. Long-term fertilization regimes affect bacterial communitystructure and diversity of an agricultural soil in northern China. Journal of Soils andSediments,2008,8:43-50.
    36. Giovannoni SJ, Vergin KL. Seasonality in ocean microbial communities. Science,2012,335:671-676.
    37. Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature,2008,451:293-296.
    38. Hansel CM, Fendorf S, Jardine PM, et al. Changes in bacterial and archaeal communitystructure and functional diversity along a geochemically variable soil profile. Applied andEnvironmental Microbiology,2008,74:1620-1633.
    39. Hatzenpichler R, Lebedeva EV, Spieck E, et al. A moderately thermophilicammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy ofSciences,2008,105:2134.
    40. He JZ, Shen JP, Zhang LM, et al. Quantitative analyses of the abundance and composition ofammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soilunder long-term fertilization practices. Environmental Microbiology,2007,9:2364-2374.
    41. Hussain Q. Rhizosphere microbial community changes with rice cultivars and thesignificance in green house gases evolution from rice paddy field. Nanjing agriculturaluniversity.2011.
    42. Hyman MR, Arp D.14C2H2-and14CO2-labeling studies of the de novo synthesis ofpolypeptides by Nitrosomonas europaea during recovery from acetylene and lightinactivation of ammonia monooxygenase. Journal of Biological Chemistry,1992,267:1534-1545.
    43. Jangid K, Williams MA, Franzluebbers AJ, et al. Relative impacts of land-use, managementintensity and fertilization upon soil microbial community structure in agricultural systems.Soil Biology and Biochemistry,2008,40:2843-2853.
    44. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of16S rRNA and16SrRNA genes. Applied and Environmental Microbiology,2006,72:1719-1728.
    45. Jenkinson D. Microbial biomass in soil: measurement and turnover. Soil biochemistry,1981,5:415-472.
    46. Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in anagricultural soil. Environmental Microbiology,2009,11:1658-1671.
    47. K nneke M, Bernhard AE, José R, et al. Isolation of an autotrophic ammonia-oxidizingmarine archaeon. Nature,2005,437:543-546.
    48. Kanazawa S, Asakawa S, Takai Y. Effect of fertilizer and manure application on microbialnumbers, biomass, and enzyme activities in volcanic ash soils. Soil Science and PlantNutrition,1988,34:429-439.
    49. Katayama A, Hu HY, Nozawa M, et al. Long-term changes in microbial community structurein soils subjected to different fertilizing practices revealed by quinone profile analysis. Soilscience and plant nutrition,1998,44:559-569.
    50. Koops HP, Purkhold U, Pommerening-R ser A, et al.,2006. The LithoautotrophicAmmonia-Oxidizing Bacteria, In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H,Stackebrandt E (Eds.), The Prokaryotes. Springer New York, pp.778-811.
    51. Koops HP, M ller U. The lithotrophic ammonia-oxidizing bacteria. The prokaryotes,1992,3:2625-2637.
    52. Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbialecology. Annual Reviews in Microbiology,2001,55:485-529.
    53. Kowalchuk GA, Stephen JR, De Boer W, et al. Analysis of ammonia-oxidizing bacteria of thebeta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gelelectrophoresis and sequencing of PCR-amplified16S ribosomal DNA fragments. Appliedand Environmental Microbiology,1997,63:1489-1497.
    54. Lauber CL, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as apredictor of soil bacterial community structure at the continental scale. Applied andEnvironmental Microbiology,2009,75:5111-5120.
    55. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, et al. Cultivation of an obligate acidophilicammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy ofSciences,2011,108:15892-15897.
    56. Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizingprokaryotes in soils. Nature,2006,442:806-809.
    57. Lenski RE, Rose MR, Simpson SC, et al. Long-term experimental evolution in Escherichiacoli. I. Adaptation and divergence during2,000generations. American Naturalist,1991:1315-1341.
    58. Li X, Han X, Li H, et al. Soil chemical and biological properties affected by21-yearapplication of composted manure with chemical fertilizers in a Chinese Mollisol. CanadianJournal of Soil Science,2012,92:419-428.
    59. Liljeroth E, B th E, Mathiasson I, et al. Root exudation and rhizoplane bacterial abundanceof barley (Hordeum vulgare L.) in relation to nitrogen fertilization and root growth. Plant andSoil,1990,127:81-89.
    60. Lu L, Han W, Zhang J, et al. Nitrification of archaeal ammonia oxidizers in acid soils issupported by hydrolysis of urea. The ISME Journal,2012,6:1978-1984
    61. Lu L, Jia Z. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in twoacid soils. Environmental Microbiology,2013: DOI:10.1111/1462-2920.12071.
    62. Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA-and rRNA-basedstable isotope probing by fractionation and quantitative analysis of isopycnic centrifugationgradients. Environmental Microbiology,2003,6:73-78.
    63. Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbialcommunity in a long-term fertilizer experiment. Soil Biology and Biochemistry,2003,35:453-461.
    64. Marschner P, Yang CH, Lieberei R, et al. Soil and plant specific effects on bacterialcommunity composition in the rhizosphere. Soil Biology and Biochemistry,2001,33:1437-1445.
    65. Martens-Habbena W, Berube PM, Urakawa H, et al. Ammonia oxidation kinetics determineniche separation of nitrifying Archaea and Bacteria. Nature,2009,461:976-979.
    66. McCaig AE, Glover LA, Prosser JI. Numerical analysis of grassland bacterial communitystructure under different land management regimens by using16S ribosomal DNA sequencedata and denaturing gradient gel electrophoresis banding patterns. Applied andEnvironmental Microbiology,2001,67:4554-4559.
    67. McLean JS, Fansler SJ, Majors PD, et al. Identifying low pH active and lactate-utilizing taxawithin oral microbiome communities from healthy children using stable isotope probingtechniques. PLoS One,2012,7:32219.
    68. Mendum TA, Sockett RE, and Hirsch PR. Use of molecular and isotopic techniques tomonitor the response of autotrophic ammonia-oxidizing populations of the beta subdivisionof the class Proteobacteria in arable soils to nitrogen fertilizer. Applied and EnvironmentalMicrobiology,1999,65:4155-4162.
    69. Meselson M, Stahl FW. The replication of DNA in Escherichia coli. Proceedings of theNational Academy of Sciences,1958,44:671-682.
    70. Mettel C, Kim Y, Shrestha PM, et al. Extraction of mRNA from Soil. Applied andEnvironmental Microbiology,2010,76:5995.
    71. Mirrahimi S, Perthame B, Wakano JY. Evolution of species trait through resourcecompetition. Journal of mathematical biology,2012,64:1189-1223.
    72. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) andtemperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie vanLeeuwenhoek,1998,73:127-141.
    73. Nayak DR, Babu YJ, Adhya T. Long-term application of compost influences microbialbiomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under floodedcondition. Soil Biology and Biochemistry,2007,39:1897-1906.
    74. Nelson CE, Carlson CA. Tracking differential incorporation of dissolved organic carbontypes among diverse lineages of Sargasso Sea bacterioplankton. Environmental Microbiology,2012,14:1500-1516.
    75. Neufeld JD, Vohra J, Dumont MG, et al. DNA stable-isotope probing. Nature protocols,2007,2:860-866.
    76. Nicol GW, Leininger S, Schleper C, et al. The influence of soil pH on the diversity,abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.Environmental Microbiology,2008,10:2966-2978.
    77. Nicolaisen MH, Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approachesto study the diversity of ammonia-oxidizing bacteria. Journal of Microbiological Methods,2002,50:189-203.
    78. Okano Y, Hristova KR, Leutenegger CM, et al. Application of real-time PCR to study effectsof ammonium on population size of ammonia-oxidizing bacteria in soil. Applied andEnvironmental Microbiology,2004,70:1008-1016.
    79. Peacock A, Mullen M, Ringelberg D, et al. Soil microbial community responses to dairymanure or ammonium nitrate applications. Soil Biology and Biochemistry,2001,33:1011-1019.
    80. Philippot L, Andersson SG, Battin TJ, et al. The ecological coherence of high bacterialtaxonomic ranks. Nature Reviews Microbiology,2010,8:523-529.
    81. Pilloni G, von Netzer F, Engel M, et al. Electron acceptor-dependent identification of keyanaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMSMicrobiology Ecology,2011,78:165-175.
    82. Pratscher J, Dumont MG, Conrad R. Ammonia oxidation coupled to CO2fixation by archaeaand bacteria in an agricultural soil. Proceedings of the National Academy of Sciences,2011,108:4170-4175.
    83. Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for nichespecialisation and differentiation. Trends in Microbiology,2012,20:523–531.
    84. Purkhold U, Pommerening-R ser A, Juretschko S, et al. Phylogeny of all recognized speciesof ammonia oxidizers based on comparative16S rRNA and amoA sequence analysis:implications for molecular diversity surveys. Applied and Environmental Microbiology,2000,66:5368-5382.
    85. Radajewski S, Ineson P, Parekh NR, et al. Stable-isotope probing as a tool in microbialecology. Nature,2000,403:646-649.
    86. Rasmussen PE, Goulding KWT, Brown JR, et al. Long-term agroecosystem experiments:Assessing agricultural sustainability and global change. Science,1998,282:893-896.
    87. Rengel Z. Root exudation and microflora populations in rhizosphere of crop genotypesdiffering in tolerance to micronutrient deficiency. Plant and soil,1997,196:255-260.
    88. Rousk J, B th E, Brookes PC, et al. Soil bacterial and fungal communities across a pHgradient in an arable soil. The ISME journal,2010,4:1340-1351.
    89. Sarathchandra S, Ghani A, Yeates G, et al. Effect of nitrogen and phosphate fertilisers onmicrobial and nematode diversity in pasture soils. Soil Biology and Biochemistry,2001,33:953-964.
    90. Sauder LA, Peterse F, Schouten S, et al. Low-ammonia niche of ammonia-oxidizing archaeain rotating biological contactors of a municipal wastewater treatment plant. EnvironmentalMicrobiology,2012,14:2589–2600.
    91. Schimel JP, Gulledge JM, Clein-Curley JS, et al. Moisture effects on microbial activity andcommunity structure in decomposing birch litter in the Alaskan taiga. Soil Biology andBiochemistry,1999,31:831-838.
    92. Schippers B, Bakker AW, Bakker PAH. Interactions of deleterious and beneficial rhizospheremicroorganisms and the effect of cropping practices. Annual Review of Phytopathology,1987,25:339-358.
    93. Schleper C. Ammonia oxidation: different niches for bacteria and archaea quest. The ISMEJournal,2010,4:1092-1094.
    94. Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea. NatureReviews Microbiology,2005,3:479-488.
    95. Sessitsch A, Weilharter A, Gerzabek MH, et al. Microbial population structures in soilparticle size fractions of a long-term fertilizer field experiment. Applied and EnvironmentalMicrobiology,2001,67:4215-4224.
    96. Shen C, Xiong J, Zhang H, et al. Soil pH drives the spatial distribution of bacterialcommunities along elevation on Changbai Mountain. Soil Biology and Biochemistry,2013,57:204-211.
    97. Shen J-P, Zhang L-P, Zhu Y-G, et al. Abundance and composition of ammonia-oxidizingbacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam.Environmental Microbiology,2008,10:1601-1611.
    98. Shen JP, Zhang LM, Guo JF, et al. Impact of long-term fertilization practices on theabundance and composition of soil bacterial communities in Northeast China. Applied SoilEcology,2010,46:119-124.
    99. Shrestha PM, Kube M, Reinhardt R, et al. Transcriptional activity of paddy soil bacterialcommunities. Environmental Microbiology,2009,11:960-970.
    100. Stephen JR, McCaig AE, Smith Z, et al. Molecular diversity of soil and marine16S rRNAgene sequences related to beta-subgroup ammonia-oxidizing bacteria. Applied andEnvironmental Microbiology,1996,62:4147-4154.
    101. Tourna M, Stieglmeier M, Spang A, et al. Nitrososphaera viennensis, an ammonia oxidizingarchaeon from soil. Proceedings of the National Academy of Sciences,2011,108:8420-8425.
    102. Treusch AH, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-relatedproteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling.Environmental Microbiology,2005,7:1985-1995.
    103. Turner SM, Newman E, Campbell R. Microbial population of ryegrass root surfaces:influence of nitrogen and phosphorus supply. Soil Biology and Biochemistry,1985,17:711-715.
    104. Venter JC, Remington K, Heidelberg JF, et al. Environmental genome shotgun sequencing ofthe Sargasso Sea. Science,2004,304:66-74.
    105. Violle C, Nemergut DR, Pu Z, et al. Phylogenetic limiting similarity and competitiveexclusion. Ecology Letters,2011,14:782-787.
    106. Walker C, de La Torre J, Klotz M, et al. Nitrosopumilus maritimus genome reveals uniquemechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.Proceedings of the National Academy of Sciences,2010,107:8818.
    107. Wang BZ, Zhang CX, Liu JL, et al. Microbial Community Changes Along a Land-UseGradient of Desert Soil Origin. Pedosphere,2012,22:593-603.
    108. Watson S, Bock E, Harms H, et al. Nitrifying bacteria. Bergey’s manual of systematicbacteriology,1989,3:1808-1834.
    109. Watson SW, Valois F, Waterbury J. The family nitrobacteraceae. The prokaryotes,1981,1:1005-1021.
    110. Wei D, Yang Q, Zhang JZ, et al. Bacterial community structure and diversity in a black soil asaffected by long-term fertilization. Pedosphere,2008,18:582-592.
    111. Wessen E, Nyberg K, Jansson JK, et al. Responses of bacterial and archaeal ammoniaoxidizers to soil organic and fertilizer amendments under long-term management. AppliedSoil Ecology,2010,45:193-200.
    112. Wiehe W, H flich G. Survival of plant growth promoting rhizosphere bacteria in therhizosphere of different crops and migration to non-inoculated plants under field conditionsin north-east Germany. Microbiological Research,1995,150:201-206.
    113. Winogradsky S. Contributions a la morphologie des organismes de la nitrification.1892,6:459-462.
    114. Wu Y, Guo Y, Lin X, et al. Inhibition of bacterial ammonia oxidation by organohydrazines insoil microcosms. Frontiers in Microbiology,2012,3. doi:10.3389/fmicb.2012.00010.
    115. Wu Y, Lu L, Wang B, et al. Long-Term Field Fertilization Significantly Alters CommunityStructure of Ammonia-Oxidizing Bacteria rather than Archaea in a Paddy Soil. Soil ScienceSociety of America Journal,2011,75:1431-1439.
    116. Xia W, Zhang C, Zeng X, et al. Autotrophic growth of nitrifying community in an agriculturalsoil. The ISME Journal,2011,5:1226-1236.
    117. Chen XP, Zhu YG, Xia Y, Shen JPand He JZ. Ammonia-oxidizing archaea: important playersin paddy rhizosphere soil? Environmental Microbiology,2008,10:1978-1987.
    118. Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisationof microbial communities in soil: a review. Biology and Fertility of Soils,1999,29:111-129.
    119. Zhang J, Zhu T, Cai Z, et al. Nitrogen cycling in forest soils across climate gradients inEastern China. Plant and soil,2011,342:419-432.
    120. Zhang LM, Hu HW, Shen JP, et al. Ammonia-oxidizing archaea have more important rolethan ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISMEJournal,2011.1-14
    121. Zhang LM, Offre PR, He JZ, et al. Autotrophic ammonia oxidation by soil thaumarchaea.Proceedings of the National Academy of Sciences of the United States of America,2010,107:17240-17245.
    122.柴强,黄高宝,黄鹏,等.间甲酚及施磷对小麦间作蚕豆土壤微生物和酶活性的影响.生态学报,2006,26(2):383-390.
    123.陈利军,武志杰,姜勇,等.与氮转化有关的土壤酶活性对抑制剂施用的响应.应用生态学报,2002,13(9):1099-1103.
    124.董艳,汤利,郑毅,等.小麦-蚕豆间作条件下氮肥施用量对根际微生物区系的影响.应用生态学报,2008,19(7):1559-1566.
    125.樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究.Ⅰ.长期轮作与施肥对土壤酶活性的影响.植物营养与肥料学报,2003,9(1):9-13.
    126.耿贵.作物根系分泌物对土壤碳、氮含量、微生物数量和酶活性的影响.2011,沈阳农业大学博士论文.
    127.顾美英,徐万里,茆军,等.连作对新疆绿洲棉田土壤微生物数量及酶活性的影响.干旱地区农业研究,2009,27(1):1-5+11.
    128.顾美英,徐万里,茆军,等.新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性.生态学报,2012,32(10):3031-3040.
    129.郭天财,宋晓,马冬云,等.氮素营养水平对小麦根际微生物及土壤酶活性的影响.水土保持学报,2006,20(3):129-131+140.
    130.郭赟,吴宇澄,林先贵,等.3次连续重复提取DNA能较好反映土壤微生物丰度.微生物学报,2012,52(7):894-901.
    131.国家统计局.中国统计年鉴.北京:中国统计出版社.2010.
    132.韩贵清,杨林章.东北黑土资源利用现状及发展战略.2009,中国大地出版社.
    133.贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展.生态学报,2009,29(1):406-415.
    134.洪坚平,谢英荷,孔令节,等.矿山复垦区土壤微生物及其生化特性研究.生态学报,2000,20(4):669-672.
    135.侯雪莹,韩晓增,王树起,等.土地利用方式对黑土酶活性的影响.中国生态农业学报,2009,17(2):215-219.
    136.侯彦林,王曙光,郭伟.尿素施肥量对土壤微生物和酶活性的影响.土壤通报,2004,35(3):303-306.
    137.胡安谊,焦念志.氨氧化古菌-环境微生物生态学研究的一个前沿热点.自然科学进展,2009,19(4):370-379.
    138.黄秀梨.微生物学实验指导.北京:高等教育出版社.2006.
    139.姬兴杰,熊淑萍,李春明,等.不同肥料类型对土壤酶活性与微生物数量时空变化的影响.水土保持学报,2008,94(1):123-127+133.
    140.贾仲君.稳定性同位素核酸探针技术DNA-SIP原理与应用.微生物学报,2011,51(12):1585-1594.
    141.李晨华,贾仲君,唐立松,等.不同施肥模式对绿洲农田土壤微生物群落丰度与酶活性的影响.土壤学报,2012,49(3):567-574.
    142.李阜棣.土壤微生物学.中国农业出版社.1996.
    143.李海波,韩晓增,许艳丽,等.不同管理方式对黑土农田根际土壤团聚体稳定性的影响.水土保持学报,2008,22(3):110-115.
    144.刘均霞,陆引罡,远红伟,等.玉米、大豆间作对根际土壤微生物数量和酶活性的影响.贵州农业科学,2007,35(2):60-61+64.
    145.林先贵,王一明,尹睿,等.土壤微生物研究原理与方法.2010,高等教育出版社,北京.
    146.陆雅海,张福锁.根际微生物研究进展.土壤,2006,(2):113-121.
    147.罗文邃,姚政.促进根系健康的土壤微生态研究.中国生态农业学报,2002,10(3):44-46.
    148.苗果园,贾志红,杨珍平,等.不同作物根际微生物差异的研究.山西农业大学学报(自然科学版),2004,24(2):93-96.
    149.倪红兵,王惠民.焦磷酸测序技术及其应用进展.医学检验与临床,2006,26(9):1-3.
    150.庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响.植物营养与肥料学报,2000,6(4):476-480.
    151.齐泽民,杨万勤.苞箭竹根际土壤微生物数量与酶活性.生态学杂志,2006,25(11):1370-1374.
    152.沈菊培.不同施肥处理下土壤氨氧化微生物丰度和群落多样性研究.学位论文,2008.
    153.沈菊培,张丽梅,贺纪正.几种农田土壤中古菌、泉古菌和细菌的数量分布特征.应用生态学报,2011,(11):2996-3002.
    154.宋亚娜,林智敏,林捷.不同品种水稻土壤氨氧化细菌和氨氧化古菌群落结构组成.中国生态农业学报,2009,17(06):1211-1215.
    155.孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥田土壤酶活性的动态变化特征.生态环境,2008,17(5):2059-2063.
    156.孙志远.堆肥化过程中氨氧化菌群多样性分析.2012.黑龙江八一农垦大学.
    157.覃丽金,王真辉,陈秋波.根际解磷微生物研究进展.华南热带农业大学学报,2006,12(2):44-49.
    158.王俊华,尹睿,张华勇,等.长期定位施肥对农田土壤酶活性及其相关因素的影响.生态环境,2007,16(1):191-196.
    159.王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望.微生物学杂志,2002,22(01):36-39.
    160.王曙光,侯彦林,郭伟.不同肥土比对NO3--N浓度变化的影响研究.植物营养与肥料学报,2004,10(02):148-151.
    161.王树起,韩晓增,乔云发,等.长期施肥对东北黑土酶活性的影响.应用生态学报,2008,19(3):551-556.
    162.王树起,韩晓增,乔云发,等.不同土地利用和施肥方式对土壤酶活性及相关肥力因子的影响.植物营养与肥料学报,2009,15(06):1311-1316.
    163.熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响.土壤通报,2002,(02):145-148.
    164.严君,韩晓增,王守宇.黑土不同植被覆盖与施肥下土壤微生物的变化特征.土壤通报,2009,40(2):240-244.
    165.严君,韩晓增,祖伟.不同形态氮肥对大豆根系形态及磷效率的影响.大豆科学,2010,29(06):1003-1007.
    166.杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展.南华大学学报(自然科学版),2005,19(4):21-26+31.
    167.杨林章,徐琪.土壤生态系统.2005,科学出版社,北京.
    168.於丽华,洛雪,殷博,等.甜菜、玉米和大豆根系对土壤微生物数量的影响.中国甜菜糖业,2008,2(2):8-11.
    169.张崇邦,金则新,柯世省.天台山不同林型土壤酶活性与土壤微生物、呼吸速率以及土壤理化特性关系研究.植物营养与肥料学报,2004,10(1):51-56.
    170.张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展.生态学杂志,2005,24(1):48-52.
    171.章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,2002,11(2):140-143.
    172.张福锁,申建波,冯固.根际生态学:过程与调控.2007,中国农业大学出版社出版
    173.赵爽,胡江,沈其荣.两个水稻品种根际土壤细菌和氨氧化细菌的群落结构差异.土壤学报,2010,47(5):939-945.
    174.赵艳,张晓波.影响植物根际微生物区系之因素研究进展.中国农学通报,2007,23(8):425-430.
    175.郑燕,贾仲君.新一代高通量测序与稳定性同位素示踪DNA/RNA技术研究稻田红壤甲烷氧化的微生物过程.微生物学报,2013,53(2):173-184.
    176.中国科学院南京土壤研究所.土壤微生物研究法.科学出版社,北京.1985.
    177.邹文秀,韩晓增,乔云发,等.不同生态恢复方式及施肥管理对退化黑土物理性状的影响.水土保持通报,2008,28(6):37-40+57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700