用户名: 密码: 验证码:
利用大头金蝇幼虫生物转化餐厨垃圾的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市餐厨垃圾具有环境废弃物和可循环利用资源的双重特点。餐厨垃圾产量大,水、油脂及盐含量高,易腐烂发臭而成为困扰城市的一大难题;同时,其富含蛋白质、淀粉和油脂等营养物质,又是可循环利用的生物质资源。目前,城市餐厨垃圾的处理方式主要有卫生填埋和焚烧,少部分用堆肥方式处理。现有处理技术均将城市餐厨垃圾当作城市废弃物来对待,存在众多困难与弊端,未能充分利用城市餐厨垃圾。
     通过对大型垃圾填埋场滋生的蝇类进行生态学调查,发现大头金蝇Chrysomya megacephala (Fabricius)是垃圾填埋场的优势蝇种,生长速度快,幼虫夏季生长期只需5-6d,产卵量大,繁殖率高,具有生物转化有机废弃物、实现餐厨垃圾循环利用的潜力。本研究在前期筛选、驯化蝇种、规模化饲养和定量获取蝇卵的基础上,设计利用大头金蝇幼虫来生物转化餐厨垃圾,在迅捷有效地清除餐厨垃圾污染的同时,生产出优质的昆虫蛋白和生物有机肥。论文从餐厨垃圾的来源、放置天数、油脂的利用、接卵量、处理配方和单位面积内的料重等多个角度分析大头金蝇生物转化餐厨垃圾的技术参数和处理效果,得到下述研究结果。
     (1)三种不同来源的餐厨垃圾在理化性质上有差异,如水分、pH值、营养成分等,可通过滤水及放置5d来降低这些差异,减少其对大头金蝇幼虫生长的不利因素,使处理配方和效果趋于稳定。
     (2)在利用大头金蝇幼虫生物处理餐厨垃圾的过程中,餐厨垃圾转化料配方对处理效果影响较大。若餐厨垃圾经过滤水工序,可选择P11配方(85%餐厨垃圾+15%辅料A),其产虫成本低,产虫量大,处理效果最好。若餐厨垃圾未经过滤水,可选择P12配方(80%餐厨垃圾+20%辅料A),此时产虫成本低,产虫量大,处理效果最好。
     (3)利用大头金蝇幼虫处理餐厨垃圾,最佳的接卵量为0.5g/kg左右(可根据餐厨垃圾原料的实际营养水平作微调),但生产留作种蝇的大头金蝇幼虫时,接卵量以0.3g/kg为宜。
     (4)大头金蝇幼虫能很好地处理放置1-7d的三种餐厨垃圾,但在放置5d时,餐厨垃圾转化料产出的大头金蝇幼虫总质量最大,幼虫体重最大,体长最长,餐厨垃圾达到最佳处理效果。产出的大头金蝇幼虫(干基)的粗脂肪含量达到25.0-30.0%,可作为一种潜在的油料昆虫,在生物柴油、化工用油及保健用油等方面具有巨大开发潜力;粗蛋白含量约为50.0%左右,脱脂后粗蛋白含量超过70%,完全可与进口鱼粉相媲美;产出的有机肥,有机质含量介于48.0%-52.0%,氮含量3.9%-4.3%,磷含量2.0%-3.1%,钾含量1.8%-2.6%,粗脂肪含量1.6%-9.7%,NaCl含量2.6%-3.6%,水分含量5.0%-6.0%,五项重金属含量(铅<10mg/kg,铬<10mg/kg,镉<3mg/kg,汞<1mg/kg,砷<10mg/kg)均在国家有机肥的重金属含量许可范围之内,属于优质的生物有机肥。利用大头金蝇幼虫处理1t餐厨垃圾转化料,可得到约120kg大头金蝇老熟幼虫和300kg有机肥(含水量10%),减量100%。
     (5)大头金蝇幼虫能有效转化和利用动、植物油脂及混合油脂并贮存在幼虫体内,从而提高大头金蝇幼虫的产量,增强其对餐厨垃圾的处理效果。
     (6)在餐厨垃圾转化料配方固定的情况下(75%餐厨垃圾+25%辅料A),为获得较好的疏松度、透气性及适当的发酵温度,达到最好的处理效果,可根据各个季节的平均温度来选择适当的料重,如在夏季,可以选择30kg转化料/m~2,如在冬季,可选择40kg转化料/m~2。
     综上所述,利用大头金蝇幼虫生物转化餐厨垃圾,处理周期短(5~6天),减量化100%,无二次污染,资源化利用程度高,完全符合有机废弃物处理的“3R”原则(减量化reducing、再利用reusing和再循环recycling),经济效益、社会效益和生态效益显著。
Food waste is characterized by high moisture, salinity and organic mattercontent, which makes it possess duplicity of the perishable and smelly as a waste andthe potential as a recycling biotic resource. There are significant spatial and temporalvariations in components of food waste from different areas due to geographicdifferences, eating habits and cultural traditions. Thereby it is usually difficult toprocess various food wastes with a unitary approach. At present, commonly useddisposal technologies for food waste include incineration, sanitary landfill, ecofeed,anaerobic digestion, aerobic composting, and vermicomposting. However,incineration is featured with heavy energy consumption because of the high moisturecharacter and sanitary landfill occupies a lot of places with the possibility of thesecondary pollution. Other unconventional approaches (except for incineration andsanitary landfill) also have common limitations, such as a long processing period,complex operation, inefficient reclamation and low economic value, when referredto the principle of decrement, innoxiousness, and reclamation. In recent years,more and more attentions have been paid to the food waste reclamation in view ofthe gradually serious predicament of garbage siege. Nevertheless, the food wastereclamation is still in its infancy with many problems of management and disposal.
     It was found that Chrysomya megacephala (Fabricius), a dominant fly species in the rubbish fields which grew fast (the developmental periods of the larvae justwas4-5days in summer) and laid vast eggs, was easy to be mass reared and had thepotential of bio-translating food waste into insect materials and organic fertilizer.Based on the previous investigation on population selection and domestication adultmass rear, and pure egg acquisition, the C. megacephala larvae were used tobio-translate food waste into maggot and organic fertilizer in the present studies. Themajor results are as follows.
     (1) There were differences in physical and chemical characters, such as watercontent, pH, and nutrition component, etc, among three sources of food wastes fromfamilies, school canteens, and restaurants. The difference could be reduced byfiltrating water and keeping five days, and then was in favor of C. megacephalalarvae growth in a stable process formula with good translating effects.
     (2) During the process of using C. megacephala larvae to bio-translate foodwaste, different formulas affected the disposal effects greatly. When water wasfiltrated from food waste, P11formula was favorable (85%food waste+15%accessory A) with the advantage of the least operating costs, the most yield and thebest disposal effects. If water was not filtrated, P12formula was preferred (80%foodwaste+20%accessory A), which had the similar effects to P11.
     (3) When bio-translating food waste, the suitable egg density, introduced intofood waste, of C. megacephala was0.5g/kg (or could redress inappreciablyaccording to the factual nutrition level of food waste). If the produced maggots wereprepared to be used as stud for next generation, the suitable quantity of eggsintroduced was0.3g/kg.
     (4) C. megacephala larvae could dispose three sources of food waste deposited1-7days. However, food waste deposited5days produced the most larvae yield withthe heaviest body weight, the longest body length and the best disposal effects. Thecrude fat content of the dry larvae was between25.0%and30.0%, which wouldmake it to be a potential oil insect having huge potential applications in bio-diesel oil,chemical oil and health-care oil. The crude protein content of the dry larvae wasabout50%and even exceeded70%when defatted, which was comparable with the import fish powder. The organic substance content of the organic fertilizer outputwas between48.0%and52.0%, nitrogen (N) was between3.9%and4.3%,phosphorus (P) was between2.0%and3.1%, kalium (K) was between1.8%and2.6%, crude fat was between1.6%and9.7%, NaCl was between2.6%and3.6%,water was between5.0%and6.0%, and five heavy metal content (Pb<10mg/kg,Cr<10mg/kg, Cd<3mg/kg, Hg<1mg/kg, As<10mg/kg) were all within the permissionrange of the national standard, which revealed that the organic fertilizer output was akind of high quality organic fertilizer. One ton food waste disposed by C.megacephala larvae could obtain about120kg maggots and300kg organic fertilizer(water content was10%), and food waste utilization rate reached nearly100%.
     (5) C. megacephala larvae could translate and utilize animal, botanic and mixedgrease effectively, and reserve them into their body consequently, advancing thelarvae yield and the disposal effects on food waste.
     (6) In the condition of a certain translating formula, it’s possible to confirmsuitable stuff weight according to the average temperature in each season, forexample,30kg stuff per m~2in summer and40kg invert stuff per m~2in winter, to getbetter loosen degree, ventilation, suitable zymosis temperature, and the best disposaleffect.
     In summary, using C. megacephala larvae to bio-translate food waste, whichdisposal period was short (5~6d), and the food waste was completely used withoutsecondary pollution, and resource utilization level was high, which was inconformity with the “3R” principles (reducing, reusing and recycling) of organicwaste disposal absolutely, and economic benefit, social benefit and ecologicalbenefit were remarkable.
引文
陈浩,朴光玄.韩国城市生活垃圾管理制度探析[J].当代世界,2010,(11):55-57.
    陈冰,封静,黄文雄等.应用生命周期模型评价餐厨垃圾处理技术[J].环境工程学报,2011,5(8):1857-1862.
    陈禄仕.利用积温和昆虫发育历期推测死亡时间的研究[J].中国法医学杂志,2007,22(4):236-237.
    陈留存,王金星,刘瑶等.家蝇抗菌肽的分离纯化及性质研究[J].山东大学学报,2001,36(3):351-357.
    DZ/T0064.27-93,地下水质检验方法——火焰发射光谱法测定钾和钠[S].1993.
    范海容,华珞,王学江等.城市堆肥的肥力效应、生物效应和环境效应分析.首都师范大学学报(自然科学版):2004,25(1):90-96.
    高志勇.单细胞蛋白研究概况[J].畜牧与兽医,2009,36(8):111-112.
    高丹,张红玉,李国学等.余热和菌剂对垃圾堆肥效率及温室气体减排的影响[J].农业工程学报,2010,26(10):264-271.
    郭涛.城市餐厨垃圾加工的研究[D].武汉工业学院硕士学位论文,2009,8-11.
    GB/T6432-94,饲料中粗蛋白测定方法[S].1994.
    GB/T6433-2006,饲料中粗脂肪的测定[S].2006.
    GB/T6435-2006,饲料中水分和其他挥发性物质的含量测定[S].2006.
    GB/T15337-2008,原子吸收光谱分析法通则[S].2008.
    GB/T8576-2002,复混肥料中游离水含量的测定——真空烘箱法[S].2002.
    GB/T15063-2009,复混肥料(复合肥料)[S].2009.
    GB8172-87,城镇垃圾农用控制标准[S].1987.
    霍文冕,郑舒绮,窦立宝.兰州市餐厨垃圾资源化利用可行性分析[J].西北大学学报(自然科学版),2010(1):114-118.
    胡家骏,周群英.环境工程微生物学[M].北京,高等教育出版社.1988年3月第1版.
    胡新军,张古忍.一种家蝇饲养装置及其养殖方法[P].中国专利: ZL200910040108.2,2011-11-16.
    何凤琴,李梅,宣维健.家蝇养殖与综合利用技术[M].北京:中国农业出版社/农村读物出版社,2006年6月第1版.
    蒋三俊.中国药用昆虫集成[M].北京:中国林业出版社,1999.
    金羊网.专家:应对垃圾围城全国应有大的环境消纳战略.(2010-02-05)[2012-5-14], http://gdjsb.ycwb.com/2010-02/05/content_2424744.htm.
    金建祥.餐饮有机固型废弃物厌氧消化处理技术研究[D].东南大学硕士学位论文,2005.
    亢霞生,钟振琪,陈梅.蝇蛆高效养殖技术——特种养殖点金术[M].南宁:广西科学技术出版社,2008年1月第1版.
    李荣平,葛亚军,王奎升等.餐厨垃圾特性及其厌氧消化性能研究[J].可再生能源,2010,(1):76-80.
    刘敏.对餐厨垃圾进行畜禽养殖和饲料化处理的危害探析[J].甘肃农业,2006,(11):164.
    刘会友,王俊辉,赵定国.厌氧消化处理餐厨垃圾的工艺研究[J].能源技术,2005,26(4):150-154.
    冷雪冰.餐厨垃圾多流向“地下”,正规设备无用武之地[J].深圳特区报,2010.11.11(第A25版).
    李孜男,顾玉祥.餐厨垃圾综合处理利用[J].上海建设科技,2007(1),57-59.
    刘光华,甘泳红,陆永跃等.不同食料条件下密度因子对黄粉虫高龄幼虫生长发育的影响[J].仲恺农业技术学院学报,2004,17(2):19-22.
    罗金香,杨春龙,吴伟东.家蝇抗菌肽的研究与应用[J].昆虫知识,2005,42(3):235-239.
    吕凡,何品晶.易腐性有机垃圾的产生与处理技术途径分析[J]环境污染治理技术与设备,2003,4(8):46-50.
    李小卉.餐厨垃圾的危害及综合治理对策[J].研究与探讨,2006,11,11:24-25.
    郎跃深.蝇蛆养殖技术与应用[M].北京:科学技术文献出版社,2010年3月第1版.
    梅耀武.将餐厨垃圾变为有机肥料和生物饲料——BGB餐厨垃圾资源化处理技术介绍[J].科技潮,2009,(4):19.
    马晓,朱光峰,邵国文等.垃圾填埋场蝇类分布及密度消长监测资料分析[J].中华卫生杀虫药械,2006,12(4):301-303.
    孟勤宪.成都市餐厨垃圾处置方式优化选择研究[D].西南交通大学硕士研究生学位论文,2010.
    马玉堃,胡萃,闵建雄.温度对4种常见尸食性蝇类生长发育的影响及其法医学意义[J].中国法医学杂志,1998,11(2):81-84.
    NY525-2002,有机肥料[S].2002.
    潘丽爱,张贵林,石晶等.餐厨垃圾特性的试验研究[J].粮油加工,2009,(9):154-156.
    裴广畅,郭娟宁,樊爱英等.自然条件下大头金蝇的发育速度和有效积温及其法医学应用[J].新乡医学院学报,2008,25(2):187-189.
    齐玉梅,王震,李雅芳.上海市餐厨垃圾收运处理成本分析[J].环境卫生工程,2008,16(3):47-49.
    人民网.垃圾处理:中国城市环境保护的攻坚战[J].环境卫生工程,2006,14(2):61.
    沈超青,马晓茜.广州市餐厨垃圾不同处置方式的经济与环境效益比较[J].环境污染与防治,2010,32(11):103-106.
    王向会,李广魏,孟虹等.国内外餐厨垃圾处理状况概述[J].环境卫生工程,2005,13(2):41-43.
    吴旭亮.广州市餐厨垃圾处理项目商业计划[D].华南理工大学,2010.
    吴殿鹏,毛润乾,郭明昉等.温度对大头金蝇生长发育的影响及其用于PMI推断的探讨[J].环境昆虫学报,2010,32(3):318-321.
    王争艳,莫建初.家蝇和大头金蝇在麦麸和猪瘦肉上的产卵选择和发育差异[J].昆虫学报,2009,52(11):1280-1284.
    汪海洋,时燕薇,刘小山等.不同温度条件下棕尾别麻蝇的生长发育及其在法医学上的意义[J].环境昆虫学报,2010,32(2):166-172.
    王建龙,文湘华.现代环境生物技术[M].北京,清华大学出版社.2001年10月第1版.
    王俊刚.大头金蝇人工饲养技术及授粉行为学的研究[D].华中农业大学博士学位论文,2006.
    王本忠,高玉彬,李法勤等.大蚕期饲养密度对养蚕成绩的影响[J].蚕桑通报,1995,(6):31.
    王芙蓉,艾辉,雷朝亮等.家蝇幼虫组织匀浆液的抗病毒活性[J].昆虫知识,2006,43(1):82-85.
    王梅.餐厨垃圾的综合处理工艺及应用研究[D]西北大学,2008.
    韦平,潘广燧.利用动物粪便生产微生物和昆虫的蛋白质产品(二)——利用鸡粪生产蝇蛆[J].广西畜牧兽医,1995,11(3):53-55.
    吴珍泉.利用昆虫净化猪场生态环境的初步研究I.食粪昆虫种类及优势种利用评价[J].应用生态学报,1997,8(5):515-518.
    新华网.餐厨垃圾:危险而宝贵的资源.(2009-1-7)[2011-5-14],http://news.xinhuanet.com/life/2009-01/07/content_10615418.htm.
    新华网.解读餐厨垃圾处理“西宁模式”:政企合作是关键.(2010-08-03)[2011-5-13],http://www.qh.xinhuanet.com/2010-08/03/content_20511923.htm.
    谢炜平,梁彦杰,何德文等.餐厨垃圾资源化技术现状及研究进展[J].环境卫生工程,2008,16(2):43-48.
    薛万琦,杜晶,佟艳丰.蝇类概论[D].北京:科学出版社,2009年5月第一版.
    严镝飞.餐厨垃圾现行管理政策分析[J].环境卫生工程,2010,18(3):32-35.
    杨从发,王淑军,陈静.利用酒糟开发蝇蛆蛋白的研究[J].酿酒,1999,(03):30-31.
    中华人民共和国统计局.中国统计年鉴-2004[M].北京:中国统计出版社,2004.
    中华人民共和国统计局.中国统计年鉴-2010[M].北京:中国统计出版社,2010.
    中国生物能源网.餐厨垃圾处理处置技术及各地实例.(2007-12-13)[2011-5-13],http://www.bioenergy.cn/web/application/200712/application_20071213094546_156325.shtml.
    郑灵玲.不同基料配比培养蝇蛆的效果[J].广东饲料,2002,11(5):14-15.
    张传溪,胡萃.昆虫资源利用及其产业化的回顾与展望.昆虫知识,2000,37(2):89-96.
    赵端君,刘成芳,董建臻等.家蝇抗菌肽对弓形虫的抑制作用研究[J].中国媒介生物学及控制杂志,2005a,16(3):189-190.
    赵端君,刘成芳,董建臻等.家蝇抗菌肽的诱导提取及筛选[J].热带医学杂志,2005b,5(2):193-194.
    赵福,王俊刚,田军鹏等.大头金蝇营养成分分析[J].昆虫知识,2006,43(5):688-690.
    Cheng H F, Zhang Y G, Meng A H et al. Municipal solid waste fueled powergeneration in China: a case study of waste-to-energy in Changchun City[J].Environmental Science&Technology,2007,41(21):7509-7515.
    Cyranoski D. Waste management: One man's trash…[J]. Nature,2006,444(7117):262-263.
    Chu C F, Li Y Y, Xu K Q et al. A pH-and temperature-phased two-stage process forhydrogen and methane production from food waste[J]. International Journal ofHydrogen Energy,2008,33(18):4739-4746.
    Chu C F, Ebie Y, Xu K Q et al. Characterization of microbial community in thetwo-stage process for hydrogen and methane production from food waste[J].International Journal of Hydrogen Energy,2010,35(15):8253-8261.
    de Araújo A S F, de Melo W J, Singh R P. Municipal solid waste compostamendment in agricultural soil: Changes in soil microbial biomass[J]. Reviewsin Environmental Science and Bio-Technology,2010,9(1):41-49.
    Han S K, Shin H S. Performance of an innovative two-stage process converting foodwaste to hydrogen and methane[J]. Journal of the Air&Waste ManagementAssociation,2004,54(2):242-249.
    Jo J H, Lee D S, Park D et al. Biological hydrogen production by immobilized cellsof Clostridium tyrobutyricum JM1isolated from a food waste treatmentprocess[J]. Bioresource Technology,2008,99(14):6666-6672.
    Jamaludin A A, Mahmood N Z. Effects of vermicomposting duration tomacronutrient elements and heavy metals concentrations in vermicompos[J].Sains Malaysiana,2010,39(5):711-715.
    Kim, M. H., Kim, J. W. Comparison through a LCA evaluation analysis of foodwaste disposal options from the perspective of global warming and resourcerecovery[J]. Science of the Total Environment,2010,408(19):3998-4006.
    Kim D H, Kim S H, Shin H S. Hydrogen fermentation of food waste withoutinoculum addition[J]. Enzyme and Microbial Technology,2009,45(3):181-187.
    Kim J K, Nhat L, Chun Y N et al. Hydrogen production conditions from food wasteby dark fermentation with Clostridium beijerinckii KCTC1785[J].Biotechnology and Bioprocess Engineering,2008a,13(4):499-504.
    Kim J K, Oh B R, Shin H J et al. Statistical optimization of enzymaticsaccharification and ethanol fermentation using food waste[J]. ProcessBiochemistry,2008b,43(11):1308-1312.
    Ke G R, Lai C M, Liu Y Y et al. Inoculation of food waste with the thermo-tolerantlipolytic actinomycete Thermoactinomyces vulgaris A31and maturityevaluation of the compost[J]. Bioresource Technology,2010,101(19):7424-7431.
    Lee Y W, Chung J. Bioproduction of hydrogen from food waste by pilot-scalecombined hydrogen/methane fermentation[J]. International Journal ofHydrogen Energy,2010,35(21):11746-11755.
    Lim S J, Kim B J, Jeong C M et al. Anaerobic organic acid production of food wastein once-a-day feeding and drawing-off bioreactor[J]. Bioresource Technology,2008,99(16):7866-7874.
    Majumdar D, Patel J, Bhatt N et al. Emission of methane and carbon dioxide andearthworm survival during composting of pharmaceutical sludge and spentmycelia[J]. Bioresource Technology,2006,97(4):648-658.
    Niwagaba C, Nalubega M, Vinneras B et al. Substrate composition and moisture incomposting source-separated human faeces and food waste[J]. EnvironmentalTechnology,2009,30(5):487-497.
    Shimizu S, Fujisawa A, Mizuno O et al. Fermentative hydrogen production fromfood waste without inocula[J]. Water Dynamics,2008,987:171-174,185.
    Sasaki K, Aizaki H, Motoyama M et al. Impressions and purchasing intentions of Japanese consumers regarding pork produced by 'Ecofeed', a trademark offood-waste or food co-product animal feed certified by the Japanesegovernment[J]. Animal Science Journal,2011,82(1):175-180.
    Sugiura K, Yamatani S, Watahara M et al. Ecofeed, animal feed produced fromrecycled food waste[J]. Veterinaria Italiana,2009,45(3):397-404.
    Sim E Y S, Wu T Y. The potential reuse of biodegradable municipal solid wastes(MSW) as feedstocks in vermicomposting[J]. Journal of the Science of Foodand Agriculture,2010,90(13):2153-2162.
    Tripathi G, Bhardwaj P. Comparative studies on biomass production, life cycles andcomposting efficiency of Eisenia fetida (Savigny) and Lampito mauritii(Kinberg)[J]. Bioresource Technology,2004,92(3):275-283.
    Westendorf M L, Dong Z C, Schoknecht P A. Recycled cafeteria food waste as afeed for swine: Nutrient content, digestibility, growth, and meat quality[J].Journal of Animal Science,1998,76(12):2976-2983.
    Wang Q H, Wang X Q, Wang X M et al. Glucoamylase production from food wasteby Aspergillus niger under submerged fermentation[J]. Process Biochemistry,2008,43(3):280-286.
    Ye Z L, Lu M, Zheng Y et al. Lactic acid production from dining-hall food waste byLactobacillus plantarum using response surface methodology[J]. Journal ofChemical Technology and Biotechnology,2008a,83(11):1541-1550.
    Ye Z L, Zheng Y, Li Y H et al. Use of starter culture of Lactobacillus plantarumBP04in the preservation of dining-hall food waste[J]. World Journal ofMicrobiology&Biotechnology,2008b,24(10):2249-2256.
    Zhang H Y, Zhao Y C, Qi J Y. Utilization of municipal solid waste incineration(MSWI) fly ash in ceramic brick: Product characterization and environmentaltoxicity[J]. Waste Management,2011,31(2):331-341.
    Zhang R H, El-Mashad H M, Hartman K et al. Characterization of food waste asfeedstock for anaerobic digestion[J]. Bioresource Technology,2007,98(4):929-935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700