用户名: 密码: 验证码:
三峡库区植物篱生态效益分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在调查分析三峡库区现有坡耕地植物篱的配置方式和生长状况的基础上,通过研究不同植物篱(乔木类植物篱、灌木类植物篱、草本类植物篱)系统土壤物理性质、水土保持特性和土壤养分含量的差异与变化和对比植物篱系统与无植物篱措施坡耕地的土壤物理性质、水土保持特性和土壤养分含量,对植物篱改善土壤物理性质、保持水土、增加土壤养分和控制面源污染的生态效益进行了综合分析,同时提出了植物篱生态效益评价的指标体系,对不同类型和种类的植物篱生态效益进行了评价。并在此基础上确定了三峡库区的不同植物篱的结构,并对不同类型的植物篱进行了典型设计,为长江三峡库区坡耕地植物篱植物种选择、植物篱建设技术及其建设模式提供了理论依据。研究结果表明:
     (1)植物篱系统土壤物理性质各指标在植物篱带内、带上、带下和带间坡耕地存在一定的变异性,土壤容重、土壤孔隙度、土壤含水量、土壤饱和导水率、土壤水稳性团聚体的变异系数分别为11.1%,9.8%,17.9%,51.2%和16.3%。
     土壤养分含量在植物篱系统表现出一定的规律性,自篱间坡耕地至植物篱带呈增加的趋势,至植物篱带下土壤养分含量减小。
     植物篱对土壤颗粒分布具有显著影响,3种植物篱带前、带内和带下土壤粘粒平均含量比带间坡耕地土壤分别高18.5%,26.0%和16.3%,土壤沙粒含量分别减小了14.2%,16.3%和12.0%。
     乔木类、草本类和灌木类植物篱带内土壤抗冲指数比带间坡耕地分别提高了121.2%,60.7%和108.3%;土壤抗蚀性在植物篱系统中表现出一定的变异性。
     (2)植物篱措施能显著改善植物篱系统土壤理化性质,和无植物篱措施的坡耕地相比,植物篱系统土壤孔隙度、土壤含水量、饱和导水率、水稳性团聚体平均分别增加了9.3%,25.6%,68.4%和11.5%,而土壤容重减小了8.3%。土壤抗冲性和抗蚀性指数平均分别增加了48.3%和53.0%。植物篱系统土壤有机质、全氮、有效氮、全钾、有效钾、全磷,有效磷的平均含量比无植物篱措施的坡耕地分别增加了31.5%,40.3%,31.2%,7.6%,71.3%,76.4%和57.3%,阳离子交换量平均增加了23.1%。植物篱通过增加植物篱系统有机质、改善土壤入渗性能、拦截土壤颗粒的作用和通过根系的固土作用来发挥其改善土壤物理性质、保持水土、增加土壤养分和控制面源污染的生态效益。
     (3)植物篱系统土壤体积分形维数与土壤物理性质、土壤养分含量具有显著的相关性,能够定量表征指物理系统土壤物理理性质和土壤养分元素的变化,可作为评价植物篱系统土壤物性质和养分变化的定量综合指标。
     (4)建立了植物篱系统土壤抗冲性与土壤孔隙度、土壤含水量、土壤饱和导水率、土壤水稳性团聚体、土壤粉粒含量、土壤粘粒含量、土壤根重密度、土壤有机质9个指标的模型为:
     AS=-37.099-0.311SP+1.135SVW+0.568SC-0.300WSA.0.114AE+0.858SILT
     +2.866CLAY+30.004ROOT-0.129SOM
     (5)遵循层次分析法原理,应用熵值法与专家评分法计算指标权重和层次分析法相结合对不同类型和不同种类植物篱的生态效益进行了评价,结果表明:不同类型植物篱综合生态效益:灌木类植物篱>乔木类植物篱>草本类植物篱,不同种类植物篱:黄荆+臭椿植物篱的综合生态效益最大,而毛豆类植物篱具有较高的增加土壤养分的生态效益,紫背天葵+旱菜植物篱的控制面源污染的生态效益最大。
On the basis of investigation of the current hedgerow configuration and growth status in the Three Gorges Reservoir Area, this paper analyzed and contrasted the soil physical properties, soil and water conservation properties and soil nutrients content in hedgerow systems and soil in steep-land with no hedgerows. Besides, soil physical properties variance, soil nutrients distribution, soil particle distribution and variance of soil anti-scouribility and anti-erodibility in hedgerow systems were analyzed in hedgerow systems, and further, the ecological benefits mechanism including soil physical properties improvement, soil and water conservation, soil nutrients augment and non-point pollution controlling were discussed. Then, index of hedgerow ecological benefits evaluation were established and ecological benefits of different hedgerow intercropping were evaluated. On the basis of hedgerow ecological benefits evaluation, the contracture and configuration of hedgerow intercropping were confirmed and hedgerow intercropping afforestation models were typically designed. Expected to provide the theories and techniques for hedgerow species selection and afforestation in the Three Gorges Reservoir Area. The main results and conclusion of the paper were indicated as follows:
     (1)The parameters of soil physical properties presented definite horizontal variation at steep lands within, before, and behind the hedgerows, and between the hedgerows. The coefficient of variation (CV) of soil bulk density, soil porosity, moisture content, saturated conductivity and water stable aggregates content were 11.1%,9.8%,17.9%,51.2% and 16.3%, respectively; Soil nutrients content were became higher from between hedgerow steep-land to under and before hedgerows, and declined to after hedgerows. Soil particle distribution were effected signify by hedgerow intercropping, with soil under hedgerows involving tree, grass and shrub species, clay content became higher (by 18.5%, 26.0% and 16.3%, respectively) than soil between hedgerows, while sand content became higher between the hedgerow by 14.2%,16.3% and 12.0%, respectively. Comparing with soil between hedgerows, soil anti-scouribility under hedgerows with tree, grass and shrub species increased by 121.2%,60.7% and 108.3% respectively, and soil anti-erodibility varied among hedgerow systems.
     (2)Comparing with soil in steep-land with no hedgerows, the soil porosity, moisture content, saturated conductivity and water stable aggregates content were increased by 9.3%,25.6%,68.4% and 11.5% respectively, while soil bulk density were decreased by 8.3%. Soil anti-scouribility and Anti-erodibility were increased 48.3% and 53.0%. The mean value of soil organic matter, total and exchangeable nitrogen, total and exchangeable potassium, total and exchangeable phosphorus of soil in hedgerows with different species were increased by 31.5%,40.3%,31.2%,7.6%,71.3%,76.4% and 57.3% respectively, cation exchangeable capacity by 23.1%. The hedgerow inter cropping ecological benefits including soil physical properties improvement, soil and water conservation, soil nutrients augment and non-point pollution controlling were performed by increasing organic matter, improvement of soil infiltration, interception of soil particles and soil fixation by hedgerow roots in hedgerow systems.
     (3) Soil volumetric fractal dimension was significantly correlated with various soil physical properties and soil nutrients concentration, therefore, Soil volumetric fractal dimension can be considered as a potential and accurate evaluating indicator for soil and nutrients loss and capacity of hedgerow intercropping on soil and nutrients conservation in steep land.
     (4)Soil anti-scouribility was correlated significantly with soil porosity, moisture content, saturated conductivity, water stable aggregates content, soil clay content, soil anti-erodibility, root mass density and soil organic matter. The equation between soil anti-scouribility and above mentioned parameters were established as: AS=-37.099-0.311SP+1.135SVW+0.568SC-0.300WSA-0.114AE+O.858SILT+2.866CLAY+30.004ROOT-0.129SOM
     (5)Applying analytic hierarchical process theory and combined integrating weight entropy method and expert grade to calculated synthesis weights, the ecological benefits of hedgerow intercropping were evaluated and the results indicated that the shrub hedgerows was performed the best ecological benefit, and the tree species was performed the modest ecological benefit and the grass hedgerows was the poorest one. With different species, hedgerows mixed with Vitex negundo and Ailanthus altissima had the highest value of comprehensive ecological benefits while hedgerows with tephrosia vestita Voge performed best on soil nutrients improvement and hedgerows mixed with gynura bicolo and herba rorippae performed best on non-point pollution controlling.
引文
1. 蔡强国,黎四龙.植物篱笆减少侵蚀的原因分析[J].土壤侵蚀与水土保持学报,1998,4(2):54-60.
    2. 蔡强国.坡面细沟发生临界条件研究[J].泥沙研究,1998(1):52-59.
    3. 蔡强国,卜崇峰.植物篱复合农林业技术措施效益分析[J].资源科学,2004,26(S1):7-12.
    4. 查世煜,李秋洪.三峡库区坡耕地的水土流失问题与对策[J].农业环境与发展,1998,15(2):30-33.
    5. 陈吉宁,李广贺王,洪涛.滇池流域面源污染控制技术研究[J].中国水利,2004(9):47-50.
    6. 陈明霞,查轩.生草覆盖和植物篱措施对红壤坡地土壤侵蚀调控效应研究[J].亚热带资源与环境学报,2009,14(1):32-37.
    7. 陈庆平.香根草等高植物篱防治边坡侵蚀[J].福建水土保持,2000,12(3):47-50.
    8. 陈伟烈,江明喜,赵常明,等.三峡库区谷地的植物与植被[M].北京:中国水利水电出版社,2008.
    9. 陈伟烈,张喜群,梁松筠,等.三峡库区的植物与复合农业生态系统[M].北京:科学出版社,1994.
    10.陈雪,蔡强国,王学强.典型黑土区坡耕地水土保持措施适宜性分析[J].中国水土保持科学,2008,6(5):44-49.
    11.陈一兵,林超文,何国亚.经济植物篱对水土流失的影响[J].西南农业学报,2001,14(S1):48-52.
    12.陈一兵,林超文,朱钟麟.经济植物篱种植模式及其生态经济效益分析[J].水土保持学报,2002,16(2):80-83.
    13.陈云明,刘国彬,徐炳成.黄土丘陵区人工沙棘林水土保持作用机理及效益[J].应用生态学报,2005,16(4):595-599.
    14.陈治谏,廖晓勇,刘邵权,等.坡地植物篱农业技术生态经济效益评价[J].水土保持学报,2003,17(4):125-127,160.
    15.陈治谏,廖晓勇,刘邵权,等.三峡库区坡耕地持续性利用技术及效益分析[J].水土保持研究,2004,11(3):85-87.
    16.陈治谏,刘邵权,杨定国,等.长江上游水土流失与防治对策研究[J].水土保持学报,2000,14(4):1-5.
    17.程洪.香根草在我国的应用及研究综述[J].水土保持通报,1998,8(3):77-81.
    18.程金花.长江三峡花岗岩区林地坡面优先刘模型研究[D].北京:北京林业大学,2005.
    19.程圣东,李占斌,李强.干热河谷地区土壤物理特性对土壤侵蚀的影响[J].水资源与水工程学报,2008,19(5):38-41.
    20.慈恩,杨林章,程月琴,等.不同耕作年限水稻土土壤颗粒的体积分形特征研究[J].土壤, 2009,41(3):396-401.
    21.邓智伟,伍世良.三峡库区等高植物篱之成本效益分析[J].资源科学,2004,26(增刊):132-136.
    22.丁军,王兆骞,陈欣,等.红壤丘陵地区林地根系对土壤抗冲增强效应的研究[J].水土保持学报,2002,16(4):9-12.
    23.董有浦,陆华松,张庆国,等.长江三峡库区坡耕地的侵蚀[J].济南大学学报(自然科学版)[J].2009,23(1):90-93
    24.杜榕桓,史德明,袁建模,等.长江三峡库区水土流失对生态与环境的影响[M].北京:科学出版社,1994.
    25.杜佐华,严国安.三峡库区水土保持与生态环境改善[J].长江流域资源与环境,1999,8(3):299-304.
    26.顾峰雪,潘晓玲,潘伯荣,等.塔克拉玛干沙漠腹地人工植被土壤肥力变化[J].生态学报,2002,22(8):1179-1188.
    27.国家环保总局.长江三峡工程生态与环境公报[R].北京:国家环保总局,2005.
    28.国家环保总局.长江三峡工程生态与环境公报[R].北京:国家环保总局,2006.
    29.国家环保总局.长江三峡工程生态与环境公报[R].北京:国家环保总局,2007.
    30.胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854-863.
    31.黄丽,蔡崇法,丁树文,等.几种绿篱梯田中紫色土有机质组分及其性质的研究[J].华中农业大学学报,2000,19(6):559-562.
    32.黄丽,丁树文.三峡库区紫色土养分流失的试验研究.土壤侵蚀与水土保持学报[J].1998,4(1):8-13.
    33.黄丽,张光远,丁树文,等.侵蚀紫色土土壤颗粒流失的研究[J].土壤侵蚀与水土保持学报,1999(5):35-39.
    34.黄义端,田积莹,雍绍萍.土壤内在性质对侵蚀影响的研究[J].水土保持学报,1989,3(3):9-14.
    35.蒋定生,范兴科,李新华,等.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J].水土保持学报,1995,9(2):1-8.
    36.需霆,于钺江,姜华.植物篱营建技术及其效益分析[J].科技长廊,2002(12):29-30.
    37.李豪,张信宝,文安邦.三峡库区紫色土坡耕地土壤侵蚀的137Cs示踪研究[J].水土保持通报,2009,29(5):1-6.
    38.李晓红,韩勇,郑阳华.三峡库区坡耕地土壤侵蚀治理效益分析[J].重庆大学学报(自然科学版)[J].2007,30(1):134-138.
    39.李新平,王兆骞,陈欣,等.红壤坡耕地人工模拟降雨条件下植物篱笆水土保持效应及机理研究[J].水土保持学报,2002,16(2):36-40.
    40.李秀彬,彭业轩,姜臣.等高活篱笆技术提高坡地持续生产力探讨—以三峡库区为例[J].地理研究,1998,17(3):309-315.
    41.李秀彬,施迅.等高活篱笆试验研究的若干问题[J].地理研究1996,15(1):66-72.
    42.李秀彬,彭业轩,姜臣,等.等高活篱笆技术提高坡地持续生产力探讨—以三峡库区为例[J].地理研究,1998,17(3):309-315.
    43.李阳兵,谢德体,杨朝现.坡地开发中的植物篱技术[J].热带地理,2001,21(2):124-132.
    44.李仰斌.山西省水土保持生态环境建设面临的问题与对策[J].中国水土保持,2000,(9):4-6.
    45.李勇,吴钦孝,等.油松人工林根系对土壤抗冲性的增强效应[J].水土保持学报,1990,4(1):1-5.
    46.李勇,吴钦孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性能的研究Ⅰ.油松人工林根系对土壤抗冲性的增强效应[J].水土保持学报,1990,4(1):11-16.
    47.李勇,徐晓琴,朱显谟,等.植物根系与土壤抗冲性[J].水土保持学报,1993,7(3):11-18.
    48.李勇.黄土高原植物根系提高土壤抗冲的有效性[J1.科学通报,1991,36(12):935-938.
    49.李勇.黄土高原植物根系与土壤抗冲性[M].北京:科学出版社,1995.
    50.李勇.沙棘林根系强化土壤抗冲性的研究[J].水土保持学报,1990,4(3):15-20.
    51.廖晓勇,陈治谏,刘邵权,等.陡坡地皇竹草水土保持效益研究[J].水土保持学报,2002,16(4):34-36.
    52.廖晓勇,罗承德,陈治谏,等.三峡库区坡地果园间植草篱的水土保持效应[J].长江流域资源与环境,2008,17(1):152-156.
    53.林超文,庞良玉,陈一兵,等.牧草植物篱对紫色土坡耕地水土流失及土壤肥力空间分布的影响[J].生态环境,2008,17(4):1630-1635.
    54.林超文,涂仕华,黄品品,等.植物篱对紫色土区坡耕地水土流失及土壤肥力的影响[J].生态学报,2007,27(6):2191-2198.
    55.刘智,端木京顺,王强,等.基于熵权多目标决策的方案评估方法研究[J].数学的实践与认识2005,35(10):114-119.
    56.刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    57.刘定辉,赵燮京,曹均城,等.紫色丘陵区蓑草植物篱的减流减沙效应及其机理[J].西南农业学报,2007,20(3):439-442.
    58.刘国彬.黄土高原草地土壤抗冲性及其机理研究[J].土壤侵蚀与水土保持学报,1998,4(1):93-96.
    59.刘友兆,刘兆普.三峡库区坡耕地复合农林业发展研究[J].中国农业资源与区划,2001,22(4):9-13.
    60.卢立霞,曾波.三峡库区嘉陵江岸生优势须根系植物根系对土壤抗冲性的增强效应研究[J].西南师范大学学报(自然科学版),2006,31(3):158-161.
    61.卢喜平,史冬梅,蒋光毅,等.两种果草模式根系提高土壤抗蚀性的研究[J].水土保持学报, 2004,18(5):64-67.
    62.罗细芳.三峡库区坡耕地经济林符合模式生态特征研究[D].北京:中国林业科学研究院,2004.
    63.马德举,梅建新,刘雄.植物篱运用关键技术分析[J].2007(3):36-37.
    64.马德举,王黎明.植物篱在德援项目中的探索与实践[J].湖北林业科技,2006(1):56-58.
    65.马廷,周成虎,蔡强国.不同植物篱坡面的土壤侵蚀过程CA模拟[J].地理研究,2006,25(6):959-966.
    66.倪九派,傅涛.坡耕地开发利用和保护模式研究[J].水土保持科技情报,2001,(5):35-37.
    67.彭熙,李安定,李苇洁,等.不同植物篱模式下土壤物理变化及其减流减沙效应研究[J].土壤,2009,41(1):107-111.
    68.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2176-2183.
    69.钱晓燕.农民创业能力评估研究[D].重庆:西南大学,2009.
    70.邱菀华.管理决策与应用熵学[M].北京:机械工业出版社,2001:193-253.
    71.邵明安,王九全,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    72.中元村.三峡库区植物篱坡地农业技术水土保持效益研究[J].土壤侵蚀与水土保持学报,1998,4(2):61-66.
    73.沈慧,姜凤岐,杜晓军,等.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348.
    74.史东梅,卢喜平,刘立志.三峡库区紫色土坡地桑基植物篱水土保持作用研究[J].2005,19(3):75-79.
    75.水利电力部农村水利水土保持司.水土保持试验规范[s].北京:水利电力出版社,1988.
    76.苏广实.坡地资源持续利用的重要防治措施—等高植物篱[J].南方国土资源,2007(6):31-35.
    77.孙辉,唐亚,赵其国,等.植物篱枝叶有机碳分解研究[J].土壤学报,2002,39(3):361-367.
    78.孙辉,唐亚,何永华,等.等高固氮植物篱模式对坡耕地上壤养分的影响[J].中1国生态农业学报,2002,10(2):79-82.
    79.孙辉,唐亚,陈克明,等.等高固氮植物篱控制坡耕地地表径流的效果[J].水土保持通报,2001,21(2):48-51.
    80.孙辉,唐亚,陈克明,等.固氮植物篱改善退化坡耕地土壤养分状况的效果[J].应用与环境生物学报,1999,5(5):473-477.
    81.孙辉,唐亚,何永华,等.等高固氮植物篱模式对坡耕地土壤养分的影响[J].中国生态农业学报,2002,10(2):79-82.
    82.孙辉,唐亚,黄雪菊.金沙江干早河谷坡地复合经营系统竞争及养分平衡研究[J].干旱地区农业研究,2005,23(1):166-171.
    83.孙辉,唐亚,王春明,等.等高固氮植物篱技术一山区坡耕地保护开发利用的有效途径[J].山 地学报,2001,9(2):125-129.
    84.孙辉,唐亚,谢嘉穗.植物篱种植模式及其在我国的研究和应用[J].水土保持学报,2004,18(2):114-117.
    85.孙辉,唐亚,赵其国,等.植物篱枝叶有机碳分解研究[J].土壤学报.2002,39(3):361-367.
    86.孙辉,谢嘉穗,唐亚,等.农林复合经营模式对干热河谷退化坡地土壤水分参数的影响[J].水土保持研究,2004,11(3):25-27.
    87.孙辉.等高固氮植物篱模式对坡耕地土壤养分的影响[J].中国生态农业学报,2002,10(2):79-82.
    88.孙辉.干旱河谷区坡耕地等高植物篱种植系统土壤水分动态研究[J].水土保持学报,2002,16(1):84-87.
    89.孙辉.固氮植物篱防治坡耕地土壤侵蚀效果研究[J].水土保持通报,1999,19(6):1-5.
    90.唐华彬,尹迪信,罗红军,等.经济植物篱模式在坡耕地上的试验示范研究[J].中国水土保持,2006,1:17-19.
    91.唐亚,陈克明,谢嘉穗,等.论固氮植物在山区农业持续发展中的应用[J].地理研究,1999,18(1):73-78.
    92.唐亚,孙辉,谢嘉穗,等.中国西部山地可持续发展的一些思考[J].山地学报,2003,21(1):1-8.
    93.唐亚,谢嘉穗,陈克明,等.等高固氮植物篱技术在坡耕地可持续耕作中的应用[J].水土保持研究,2001,8(1):104-109.
    94.唐亚.等高绿篱—坡地农业复合经营[M].见:李文华,赖世登主编.中国农林复合经营,北京:科学出版社,1994.
    95.唐政洪,蔡强国,许峰,等.半干旱区植物篱侵蚀及养分控制过程的试验研究[J].地理研究,2001,20(5):593-600.
    96.唐政洪,蔡强国,许峰,等.冀西北半干早区等高植物篱而源污染控制机理[J].环境科学,2001,22(6):86-90.
    97.唐政洪.GIS支持下小流域农林复合经营的侵蚀控制模拟[J].水土保持学报,2001,15(6):70-73.
    98.田积莹,黄义端.子午岭连家砭地区土壤理化性质与土壤抗蚀性能指标的初步研究[J].土壤学报,1960,8(2):110-121.
    99.田茂洁.等高固氮植物篱模式下土壤物理性质变化与水土保持效果研究进展[J].土壤通报,2006,37(2):383-386.
    100.佟金,任露泉,陈秉聪,等.土壤颗粒尺寸分布分维及对粘附行为的影响[J].农业工程学报,1994,10(3):27-33.
    101.涂仕华,陈一兵,朱青,等.经济植物篱在防治长江上游坡耕地水土流失中的作用及效果[J].水土保持学报,2005,19(6):1-5.
    102.汪有科,吴钦孝.草地枯落物层土壤抗冲性研究[J].水土保持学报,1993,7(1):75-80.
    103.王德,傅伯杰,陈利顶,等.不同土地利用类型下土壤粒径分形分析—以黄土丘陵沟壑区为例[J].2007,生态学报,27(07):308 1-3089.
    104.王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):546-550.
    105.王海明,陈治谏,廖晓勇,等.三峡库区坡耕地植物篱技术对土壤特性的影响[J].安徽农业科学,2009,37(2):692-694.
    106.王宏,蔡强国,朱远达.应用EUROSEM模型对三峡库区陡坡地水力侵蚀的模拟研究[J].地理研究,2003,22(5):579-589.
    107.王玲玲,何丙辉,龚清朝,等.三峡库区砾石坡耕地农林复合经营效益研究[J].水土保持学报,2002,16(2):84-90.
    108.王玲玲,何丙辉,李贞霞.等高植物篱技术研究进展[J].中国生态农业学报,2003,11(3):131-133.
    109.王玲玲.三峡库区砾石坡耕地农林复合经营效益研究[J].水土保持学报,2002,16(2):84-86.
    110.王青杵,王彩琴,杨丙益.黄土残塬沟壑区植物篱水土保持效益研究[J].中国水土保持,2001(12):25-29.
    111.王喜龙,蔡强国,王忠科,等.冀西北黄土丘陵沟壑区梯田地埂植物篱的固埂作用与效益分析[J].自然资源学报,2000,15(1):74-79.
    112.王晓燕,田均良,刘普灵,等.137Cs示踪法研究坡度与土壤流失的关系[J].核农学报,2004(18):390-393.
    113.王学强,蔡强国,和继军.红壤丘陵区水保措施在不同坡度坡耕地上优化配置的探讨[J].资源科学,2007,29(6):68-74.
    114.王燕,宋凤斌,刘阳.等高植物篱种植模式及其应用中存在的问题[J].广西农业生物科学,2005,25(4):369-374.
    115.王一峰,张平仓,朱兵兵,等.长江中上游地区土壤抗冲性特征研究[J].长江科学院院报,2007,24(1):12-15.
    116.王振秋.试论等高灌木带在陕北丘陵区生态环境建设中的作用[J].中国水土保持,2000(8):26-28.
    117.王正秋.等高灌木带的规划与设计[J].中国水土保持,1994(1):26-28.
    118.王忠林,李会科,贺秀贤.渭北塬花椒地埂林土壤抗蚀抗冲性研究[J].水土保持研究,2000,7(1):33-37.
    119.魏孝荣,邵明安.黄土高原沟壑区小流域坡地土壤养分分布特征[J].生态学报,2007,27(2):604-612.
    120.夏汉平,束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究[J].生态学报,2001,21(7):1121-1129.
    121.夏锦慧;陈旭晖,王文华.施肥对香根草篱长势及护土保水效果的影响[J].贵州农业科学,2002,30(5):31-32.
    122.夏立忠,杨林章,李运东.生草覆盖与植物篱技术防治紫色土坡地土壤侵蚀与养分流失的初步研究[J].水土保持学报,2007,21(2):28-31.
    123.肖文发,李建文,于长青.长江三峡库区陆生动植物生态[M].重庆:西南师范大学出版社,2000.
    124.谢嘉穗,唐亚,孙辉,等.等高固氮植物篱值得大力推广[J].中国水土保持,2003(3):23-25.
    125.辛东平,梁太文.植物篱建设是水土保持的有效措施[J].山西水利,1997(6):10.
    126.熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2001.
    127.徐琪.三峡库区移民环境容量研究[M].北京:科学出版社,1993.
    128.徐秋芳,姜培坤,俞益武,等.不同林用地土壤抗蚀性能研究[J].浙江林学院学报,2001,18(4):362-365.
    129.徐阳春,沈其荣.长期施用不同有机肥对土壤各粒级复合体中C、N、P含量与分配的影响[J].中国农业科学,2000,33(5):1-7.
    130.许峰,蔡强国,吴淑安.等高植物篱在南方湿润山区坡地的应用—以三峡库区紫色土坡地为例[J].山地学报,1999,17(3):193-199.
    131.许峰.香根草植物篱控制坡地侵蚀与养分流失研究[J].山地农业生物学报,2000,19(2):75-82.
    132.许峰,蔡强国,吴淑安,等.坡地等高植物篱带间距对表土养分流失影响[J].土壤侵蚀与水土保持学报,1999,5(2):23-29.
    133.许峰.三峡库区坡地生态工程控制土壤养分流失研究-以等高植物篱为例[J].地理研究,2000,19(3):303-310.
    134.许峰.坡地农林复合系统土壤养分时间过程初步研究[J].水土保持学报,2000,14(3):46-50.
    135.许峰,蔡强国,吴淑安,等.等高植物篱控制紫色土坡耕地侵蚀的特点[J].土壤学报,2002,39(1):71-80.
    136.许峰,蔡强国,吴淑安,等.三峡库区坡地生态工程控制土壤养分流失研究—以等高植物篱为例[J].地理研究,2000,19(3):303-310.
    137.许峰,蔡强国,吴淑安.等高植物篱控制紫色土坡耕地侵蚀的特点[J].土壤学报,2002,39(1):71-80.
    138.许峰,蔡强国,吴淑安.坡地等高植物篱带间距对表土养分流失影响[J].土壤侵蚀与水土保持学报,1999,5(2):23-29.
    139.杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    140.杨玉颖,解庆红,赵红,等.LS230激光粒度仪及其应用[J].现代科学仪器,2002(3):41-43.
    141.姚小华,罗细芳.坡耕地植被恢复中生态经济型植物篱应用及其展望[J].江西农业大学学报,2005,27(2):294-298.
    142.伊迪信.植物篱逐步梯化技术研究[J].水土保持学报,2001,15(2):84-89.
    143.尹迪信,唐华彬,罗红军.参与式植物篱坡地治理技术发展的实践和体会[J].贵州农业科学,1996(5):1-5.
    144.尹迪信,唐华彬,罗红军.参与式植物篱坡地治理技术发展的实践和体会[J].贵州农业科学,2006,34(5):107-111.
    145.尹迪信,唐华彬,朱青,等.植物篱逐步梯化技术研究[J].水土保持学报,2001,15(2):84-87.
    146.袁远亮,孙辉,唐亚.等高固氮植物篱脐橙园综合效益分析[J].中国生态农业学报,2001,9(4):76-78.
    147.袁远亮,孙辉,唐亚.固氮植物篱梯埂套种桑树效益研究[J].生态农业研究,2000,8(2):69-71.
    148.袁远亮,孙辉,唐亚.等高同氮植物篱脐橙园生态效益研究[J].中国农业生态学报,2001,9(4):76-78.
    149.詹万林.盱眙县水土保持生态建设模式及其成效分析[J].江苏水利,2007(10):33-34.
    150.张华,李锋瑞,张铜会,等.科尔沁沙地人工杨树林生态服务效能评价[J].应用生态学报,2003,14(10):1591-1596.
    151.张建锋,单奇华,钱洪涛,等.坡地固氮植物篱在农业面源污染控制方面的作用与营建技术[J].水土保持通报,2008,28(5):180-185.
    152.张金池,陈三雄,刘道平,等.浙江安吉主要植被类型土壤抗蚀性指标筛选及评价模型构建[J].亚热带水土保持,2006,18(2):1-5.
    153.张鹏.植物篱技术在山西南部的应用及其推广[J].中国水土保持,2001(9):30.
    154.张炎周,唐亚,陈克明,等.等高固氮植物篱中套种桑树的桑叶产量及生物产量[J].应用与环境生物学报,2001,7(4):303-307.
    155.张炎周,袁运亮,唐亚.等高固氮植物篱刈割枝叶养猪试验研究[J].农业系统科学与综合研究,2001,17(2):166-168.
    156.张炎周.等高固氮植物篱的物种选抒[D].成都:中国科学院成都生物研究所,2001.
    157.张彦周,袁远亮,唐亚.等高固氮植物篱刈割枝叶养猪试验研究[J].农业系统科学与综合研究[J].2001,17(2):156-158.
    158.赵爱军,许克翠,彭业轩.紫色土坡耕地栽种植物篱笆防治水土流失的试验初报[J].中国水土保持,2004(11):23-25.
    159.赵松山,白雪梅.用德尔菲法确定权数的改进方法[J].统计研究,1994(3):46-49.
    160.赵燮京,刘红,刘定辉.紫色丘陵高垦殖生态脆弱区生态建设与水土流失防止技术[J].四川农业科技,2004(8):36-37.
    161.郑度,(?)元村.坡地过程及退化坡地恢复整治研究—以三峡库区紫色土坡地为例[J].地理学报,1998,53(2):116-122.
    162.郑世清,周佩华,周保林.黄土高原沟壑区土壤抗冲性研究—以黄委会西峰水土保持试验站为例[J].水土保持通报,1994,14(1):12-16.
    163.郑涛,穆环珍,黄衍初.非点源污染控制研究进展[J].环境保护,2005,2:31-34.
    164.中国科学院南京土壤研究所土壤物理研究所.土壤物理性质测定法[M].北京:科学出版社,1978.
    165.中国农学会.土壤农业化学分析方法[M].北京:中国农业出版社,2000.
    166.周利军,齐实,王云琦.三峡库区典型林分林地土壤抗蚀抗冲性研究[J].水土保持研究,2006,13(1):186-216.
    167.周万村.三峡库区土地自然坡度和高程对经济发展的影响[J].长江流域资源育环境,2001,10(1):15-21.
    168.周维博,李佩成.干旱半干旱地域灌区水资源综合效益评价体系研究[J].自然资源学报,2003,18(3):287-293
    169.朱青,王兆骞,尹迪信.贵州坡耕地水土保持措施效益研究[J].自然资源学报,2008,23(2):219-229.
    170.朱显漠,田积莹.强化黄上高原土壤渗透性及抗冲性的研究[J].水土保持学报,1993,7(3):1-10.
    171.朱益玲,刘洪斌,江希流.江津市紫色土中N、P养分元素区域空间变异性研究[J].环境科学,2004,25(1):138-143.
    172.朱远达,蔡强国,张光远,等.植物篱对土壤养分流失的控制机理研究[J].长江流域资源与环境,2003,12(4):345-351.
    173.朱远达,张光远,蔡强国,等.侵蚀影响下土壤碳和养分空间变化及其过程模拟[J].水土保持研究,2001,8(4):126-132.
    174.朱钟麟,陈一兵.经济植物篱主要模式及其生态经济效益研究[J].西南农业学报,2005,18(6):715-718.
    175.朱钟麟,陈一兵.经济植物篱主要模式及其生态经济效益研究[J].西南农业学报,2006,18(6):715-718.
    176.祝其丽,孙辉,何道文,等.植物篱种植模式综合效益研究[J].四川环境,2007,26(3):41-45,54.
    177.邹翔,崔鹏,陈杰.小江流域土壤抗冲性实验研究[J].水土保持学报,2004,18(2):71-73.
    178. Agus F, Cassel D K, Garrity D P. Soil-water and soil physical properties under contour hedgerow systems on sloping Oxisols[J]. Soil and Tillage Research.1997,40:185-199.
    179. Ahn P M. Soil Chemistry and the Supply of Plant Nutrients in:West Africa soil[M],1970, Chapter6:148-186.
    180. Albiach R, Canet R, Pomares F, et al. Organic matter components and aggregate stability after application of different amendments to a horticulture soil[J]. Bioresource Technology.2001,76: 125-129.
    181. Alegre J C, Rao M R. Soil and water conservation by contour hedging in the humid tropics of Peru. Agriculture, Ecosystems and Environment.1996,57:17-25.
    182. Balasubramania V. Alley cropping:can it be an alternative to chemical fertilizers in Ghana[C] An invited paper presented at 3rd National Maize Workshop, Agriculture College Kumasi, Ghana. 1983.
    183. Basic F, Kisic I, Mesic M, et al. Tillage and crop management effects on soil erosion in central Croatia[J]. Soil andTillage Research.2004,78:197-206.
    184. Bevan K, German P. Macropores and water flow in soils[J]. Water Resour Research.1982,18: 1311-1325.
    185. Bingham S C, Westerman P W, Overcash M R. Effect of grass buffer zone length in reducing the pollution from land application areas[J]. Transaction of the ASAE.1980,23:330-335,342.
    186. Bittelli M, Gaylon S, Campbell Markus F. Characterization of particle-size distribution in soils with a fragmentation model[J]. Soil Science Society of America Journal.1999,63:782-788.
    187. Charles K. Perspective on hedgerow intercropping[J]. Agroforestry Systems.1985,3:339-356.
    188. Comia R A, Paningbatan E P, Hakansson I H. Erosion and crop yield response to soil conditions under alley cropping systems in the Philippines[J]. Soil and Tillage Research.1994,31:249-261.
    189. Dabney S M. Depositional patterns of sediment trapped by grass hedges[J]. Transaction of the ASAE.1995,38(6):1719-1729.
    190. Drees L R, Wilding L P, Owens P R, et al. Steep land resources:characteristics, stability and micromorphology[J]. Catena.2003,54:619-636.
    191. Dur J C, Elsass F, Chaplain V. The relationship between particle-size distribution by laser granulometry and image analysis by transmission electron microscopy in a soil clay fraction[J]. European Journal of Soil Science.2004,55:265-270.
    192. Edwards D R. Vegetated filter strip removal of metals in runoff from poultry litter-amended fescue grass plots [J]. Transactions of the ASAE.1997,40:121-127.
    193.Ericp W. Impact of vegetative filter strips on herbicide loss in runoff from soybean[J]. Weed Science.1996,44:662-671.
    194. Eshel G, Levy G J, Mingelgrin U, et al. Critical evaluation of the use of laser diffraction for particle-size distribution analysis[J]. Soil Science Society of America Journal.2004,68:736-743.
    195. Gee G W, Bauder J W. Particle-size analysis by hydrometer:A simplified method for routine textural analysis and a sensitivity test of measurement parameters[J]. Soil Science Society of America Journal.1979,43:1004-1007.
    196. Gimenez D, Perfect E, Rawls W J, et al. Fractal models for predicting soil hydraulic properties:a review[J]. Engineering Geology.1997,48:161-183.
    197. Greenfield J C. Vetiver grass (Vetiveria spp.):The ideal plant for vegetative soil and moisture conservation[C]. World Bank Technical Paper, Washington, D C:The World Bank,1989,273: 3-38.
    198. Haggar J P, Warren G P, Beer J W, et al. Phosphorus availability under alley cropping and mulched sole cropping systems in Costa Rica[J]. Plant and Soil.1991,137(2):275-283.
    199. Hayes J C, Bafield B J, Barnhisel R I. Performance of grass filters under laboratory and field conditions[J]. Transaction of the ASAE,1984,27:1321-1331.
    200. He Y H, Sun H, Chen K M. Annual report of AFSCTS projects[1997]. ICIMOD, Katmandu, Nepal, 1997.
    201. He Y H, Sun H, Chen K M. Options for improving productivity of sloping agricultural land in China:experiences of project on appropriate technologies for soil conserving farming systems[R]. ICIMOD, Katmandu, Nepal,2000.
    202. Huang G H, Zhang R D. Evaluation of soil water retention curve with the pore-solid fractal model[J]. Geoderma.2005,127:52-61.
    203. ICIMOD. Annual report[R]. Kathmandu, Nepal,1995.
    204. Imo M, Timmer V R. Vector competition analysis of a Leucaena-maize alley cropping system in western Kenya[J]. Forest Ecology and Management,2000.126:255-268.
    205. Isaac L, Wood C W, Shannon D A. Pruning management effects on soil carbon and nitrogen in contour hedgerow cropping with Leucaena leucocephala(Lam) De Wit on sloping land in Haiti [J]. Nutrient Cycling in Agroecosystem.2003,65:253-263.
    206. Janssen P H M, Heuberger P S C. Calibration of process-oriented model[J]. Ecological Modelling. 1995,83:55-66.
    207. Kang B T, Reynolds L, Atta-Krah A N. Allay farming[J]. Advances in Agronomy.1990,43: 315-359.
    208. Kang B T, Wilson G F, Sipkens L. Alley cropping maize (Zea mays) and Leucaena leucocephala(Lam.) in south Nigeria[J]. Plant and Soil.1981,63:165-179.
    209. Kang B T. Allay cropping:Past achievement and future directions[J]. Agroforestry Systems.1993, 23:141-145.
    210. Kang B T, Reynolds L and Atta-Krah AN Allay farming[J]. Advances in Agronomy.1990,43: 315-359.
    211.Kemper D, Dabney S, Kramer L et al. Hedging against erosion[J]. Journal of Soil and Water Conservation.1992,47:284-288.
    212. Kiepe P. Effect of cassia siamea hedgerow barriers on soil physical properties[J]. Geoderma.1995, 66:113-120.
    213. Kiepe P. No runoff no soil loss:soil and water conservation in hedgerow barrier system[D]. Netherlands, Wageningen:Wageningen Agricultural University,1995.
    214. Kusumandari A. Soil erosion and sediment yield in forest and agroforestry area in west Java, Indonesia[J]. Journal of Soil and Water Conservation.1997,52(5):376-380.
    215. Lal R Conservation tillage for sustainable agriculture:tropics vs. temperate environments[J]. Advanced in Agronomy.1989,42:85-197.
    216. Lal R. Potential of agroforestry as a sustainable alternative to shift cultivation:concluding remarks[J]. Agroforestry Systems.1989,8:239-242.
    217. Lal R. Agroforestry systems and soil surface management of a tropical Alfisol II:Water runoff, soil erosion, and nutrient loss[J]. Agroforestry Systems.1989,8:97-111.
    218. Lal R. Conservation tillage for sustainable agriculture:tropics vs. temperate environments[J]. Advances in Agronomy.1989,42:85-197.
    219. Lal R. Potential of agroforestry as a sustainable alternative to shift cultivation:Concluding remarks[J]. Agroforestry systems.1989,8:239-242.
    220. Li Y, XU X Q, ZHU X M. Preliminary study on mechanism of plant root to increase the soil anti-scouribility on the Loess Plateau[J], Science in China.1992,35:1085-1092.
    221. Liu X, Zhang G C, Heathman G C, et al. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China[J]. Geoderma. 2009,154:23-130.
    222. Lupwayi N Z, Haque I. Mineralization of N, P, K, Ca and Mg from sesbania and leucaena leaves varying in chemical composition. Soil Biology and Biochemistry.1998,30:337-343.
    223. Mafongoya P L, Nair P K R, Dzowela B H. Multipurposes tree prunings as a source of nitrogen to maize under semiarid conditions in Zimbabwe.2. Nitrogen recovery rates and crop growth as influenced by mixtures and prunings[J]. Agroforestry Systems.1997,35:47-56.
    224. Magette W L, Brinsfield R B, Palmer RE, et al. Nutrient and sediment removal by vegetated filter strips[J]. American Society of Agricultural Engineering.1989,32:663-667.
    225. Mandelbrot B B. The fractal geometry of nature[J]. W.H. Freeman and Company, San Francisco, 1983.
    226. Martin M A, Montero E. Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions[J]. Soil Tillage Research.2002,64:113-123.
    227. Martin M A, Rey J M, Taguas F J. An entropy-based parameterization of soil texture via fractal modeling of particle-size distribution[J]. Proceedings of the Royal Society.2001,457:937-947.
    228. MBRLC. Undated. Test-SALT Results[R]. Mindanao Baptist Rural Life Center, Kinuskusan, Mindanao, the Philippines,1992.
    229. McDonald M A, Healey J R, Stevens P A. The effect of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica[J]. Agriculture, Ecosystems and Environment.2002,92:1-19.
    230. McDonald, M A, Healey J R, Stevens P A. The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica[J]. Agriculture Ecosystems and Environment.2002,92:1-19.
    231. Mutegi J K, Mugendi D N, Verchot L V, et al. Combining napier grass with leguminous shrubs in contour hedgerows controls soil erosion without competing with crops[J]. Agroforestry Systems. 2008,74:37-49.
    232. Narain P, Singh R K, Sindhwal N S. Agroforestry for soil and water conservation in western Himalayan valley region of India:I Runoff, soil and nutrient loss[J]. Agroforestry Systems. 1998.39(2):175-189
    233. Nelson R A, Cramb R A, Menz K M, et al. Cost-benefit analysis of alternative forms of hedgerow intercropping in the Philippine uplands[J]. Agroforestry Systems.1998,39:241-262.
    234. Paningbatan E P, CiesiolkaC A, Coughlan K J. Alley cropping for managing soil erosion of hilly lands in the Philippines[J]. Soil Technology.1995,8:193-204.
    235. Parton W J, Stewart J, Cole V C. Dynamics of C, N, P and S in grassland soils:a model[J]. Biogeochemistry.1988,5:109-131.
    236. Pelleck R. Contour hedgerows and other soil conservation interventions for hilly terrain[J]. Agroforestry Systems.1992,17:135-152.
    237. Pieri L, Bittelli M, Pisa P R. Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils[J]. Geoderma. 2006,135:118-132.
    238. Rosecrance R C, Rogers S, Tofinga M. Effect of alley cropping Calliandra Calothyrsus and Gliricidia Sepium hedges on weed growth, soil properties and taro yield in western Samoa[J]. Agroforestry Systems.1992,19:57-66.
    239. Sanchez P A. Science in agroforestry [J]. Agroforestry Systems.1995,30:5-55
    240. Sanginga N, Danso S K A, Zapata F, et al. Influence of pruning management on P and N distribution and use efficiency by N2 fixing and non-N2 fixing trees used in alley cropping systems[J]. Plant and Soil.1994,167(3):219-226.
    241. Schellinger G R, Clausen J C. Vegetative filter treatment of dairy barnyard runoff in cold regions[J]. Journal of Environmental Quality.1992,21:40-45.
    242. Shi Z H, Chen L D, Cai C F, et al. Effects of long-term fertilization and mulch on soil fertility in contour hedgerow systems:A case study on steep lands from the Three Gorges Area[J], China. Nutrient Cycling in Agroecosystems.2008,84:39-48.
    243. Shively G E. Impact of hedgerow on upland maize yield in the Philippines[J]. Agroforestry Systems.1998,39:59-71.
    244. Ssekabembe C K. Perspective on hedgerow intercropping[J]. Agroforestry Systems.1985,3: 339-356.
    245. Stocking M, Murnaghan N. Land degradation-guidelines for field assessment[D]. University of East Anglia, Norwich, UK,2000.
    246. Stone R J. Improve statistical procedure for the evaluation solar radiation estimation modles[J]. Solar Energy.1993,51:289-291.
    247. Sun H, Tang Y, Xie J S. Contour hedgerow intercropping in the mountains of China:A review[J]. Agroforestry Systems.2008,73:65-76.
    248. Tang Y. Manual on contour hedgerow intercropping technology[D]. ICIMOD, Katmandu, Nepal, 2000.
    249. Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions:Analysis and limitations[J]. Soil Science Society of America Journal.1992,56:362-369.
    250. Wang X D, Li M H, Liu S Z, et al. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China[J]. Geoderma.2006,134:56-61.
    251. William L M, Russell B B, Robert E P, et al. Nutrient and sediment removal by vegetated strips[J]. American Society of Agricultural Engineers.1987,32:663-667.
    252. Wilson G F, Kang B T, Mulongoy K. Alley cropping:trees as sources of green-manure and mulch in the tropics[J]. Biological Agriculture and Horticulture.1986,3:251-267.
    253. Wu Q, Borkovec M, Sticher H. On particle-size distributions in soils[J]. Soil Science Society of America Journal.1993,57:883-890.
    254. Young A. Agroforestry for soil management[M],2ed edn. CBA International, Wallingford, UK, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700