用户名: 密码: 验证码:
基于生物模板的光功能复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光功能纳米材料在生命科学、医学、计算机等领域有着广泛的应用前景。为了更好地发挥其优异性能,通常将光功能纳米颗粒与基体材料进行复合,充分发挥各部分的优势,构成智能化、结构-功能一体化的新型材料,如纳米颗粒/修饰组分复合材料和纳米颗粒/基体结构复合材料。然而,这类新型材料在设计、制备和实际应用时存在一些亟需解决的瓶颈问题:合成纳米颗粒的条件苛刻,纳米复合的工艺繁琐,组装结构的样式有限等等。在这一领域,自然界经过上亿年的进化,有许多值得人类借鉴的方面:从成分角度看,许多生物的活性组分能够在极其温和的条件下引导纳米颗粒的合成和组装,并直接与之复合构成性能优异的天然纳米复合材料;从结构角度看,生物创造出了各式各样的集多功能为一体的精巧结构,其中一些微纳米级有序结构迄今为止还难以通过仿生手段实现。在大自然的启迪下,人们提出了以天然生物材料为模板制备新型功能材料的思想,充分利用生物组分和生物结构的优势,简化功能材料的制备工艺以及实现常规手段难以获得的精细结构和独特性能。
     本论文在此基础上,提出将天然生物材料应用于制备光功能纳米材料的设想,期望利用天然生物材料的活性组分和精细结构,解决上述光功能纳米材料在制备和应用中的瓶颈问题。具体思路是:生物的活性组分在制备过程中引导无机光功能纳米颗粒的合成和组装,起到简化工艺和化学模板的作用,并在复合产物中发挥其生物相容性,起到修饰纳米颗粒的作用;生物的精细结构在复合产物中起到提供固态基体和附加光学性能的作用。可见,基于生物模板的光功能复合材料将为功能材料的研究带来新的机遇。本论文开展了以下工作:
     1.以蚕丝丝素纤维为基体原位合成硫化物纳米颗粒的研究
     选用具有化学活性的蚕丝丝素纤维作为生物模板,引导典型光功能材料硫化镉纳米颗粒在其上的原位合成和组装,探索自然的启示对制备光功能纳米材料的借鉴作用。
     设计了一条常温常压的浸渍工艺,成功地在蚕丝丝素纤维上合成和组装了硫化镉纳米颗粒,获得了纳米硫化镉/蚕丝丝素纤维固态产物及分散于氯化钙溶液的纳米硫化镉/蚕丝丝素蛋白液态产物。制备过程中,蚕丝丝素纤维起到提供反应位点、作为固态载体及组装纳米颗粒的作用。得到的硫化镉为六方相,其颗粒直径(粒径)随着硫源前驱体浓度的增大而减小,随着在硫源前驱体中浸渍时间的延长而增加,变化范围是3.8~7.9 nm;其组装形态也受硫源前驱体浓度和在其中浸渍时间的影响,有沿蚕丝丝素纤维表面均匀排列的线形组装体和由蚕丝丝素纤维连结的六方片形组装体两种。通过改变纳米硫化镉的粒径与组装形态,可调控复合材料产物的光学性质:产物的吸收边和荧光带边发射峰随粒径的减小而蓝移;与常规分散态纳米颗粒相比,线形组装体表现出相同的荧光发射性质,六方片形组装体表现出红移和宽化的荧光发射峰。以上研究证实了蚕丝丝素纤维能在温和条件下引导纳米硫化镉的合成和组装,为后续工作的开展提供了实验依据。
     2.纳米氧化物/蚕丝生物相容光功能复合材料的研究在上述纳米硫化镉/蚕丝丝素纤维工作的基础上,先利用蚕丝丝素纤维引导合成对人体无毒、且能发射长波长可见光的氧化锌纳米颗粒,再利用生物相容的蚕丝丝素蛋白直接修饰所得的纳米氧化锌,探索自然的启示对制备生物医用光功能纳米材料的借鉴作用。
     设计了一条常压温和的制备工艺,获得了纳米氧化锌/蚕丝丝素纤维固态产物及纳米氧化锌/蚕丝丝素蛋白液态产物。制备过程中,蚕丝丝素纤维起到提供原位反应位点、作为纳米颗粒固态载体、控制颗粒形状及缺陷状态的作用,而工艺参数会影响纳米颗粒的分布均匀度。得到的氧化锌主要为平均粒径约13 nm的六方相圆形纳米颗粒。固态产物在日光下呈白色,其抗紫外线能力优于原始蚕丝丝素纤维,并且在小于370 nm的紫外光激发下能发射中心位于约600 nm的橙黄色磷光,持续时间大于0.1 ms。液态产物综合了纳米氧化锌的光功能性和蚕丝丝素蛋白的生物相容性,在紫外光照射下呈橙色,无明显细胞毒性,特别适合用作生物标记材料。以上研究成果有望应用于生物医用领域。
     3.纳米半导体/天然光子晶体新型复合光子晶体的研究
     在上述纳米半导体/蚕丝丝素纤维固态复合材料工作的基础上,选用常规手段无法获得的精细天然光子晶体结构作为固态生物模板,引导光功能纳米颗粒的合成和有序组装,构成对可见光有优异调控功能的新型纳米复合光子晶体,探索自然的启示对制备固态纳米光学器件的借鉴作用。
     设计了一条较为温和的制备工艺,获得了纳米氧化锌/孔雀羽毛复合材料。制备过程中利用了孔雀羽毛本身的活性位点,得到的氧化锌为六方相纳米颗粒,分布均匀,粒径随溶剂热反应时间的延长而增加,变化范围是8.5~13.5 nm。受羽毛角蛋白与氧化锌间相互作用的影响,所得氧化锌的荧光发射主要为位于可见光范围的缺陷发光。设计了一条“活化-原位反应-溶剂热”制备工艺,获得了纳米硫化镉/天然光子晶体新型复合光子晶体。制备过程中,天然光子晶体先经活化处理增加活性位点,再引导硫化镉种子的原位合成和纳米颗粒的有序组装,最后作为固态载体使产物无需基片便可自支撑。得到的硫化镉主要为立方相,粒径约6 nm。复合材料的形貌可通过选取不同样式的天然光子晶体和调节工艺参数,分别在光子晶体结构尺度(>100 nm)和纳米硫化镉小团簇尺度(<100 nm)进行调节。所获新型复合光子晶体对可见光有优异的调控功能,其反射性质不仅继承了天然生物结构随光子晶体结构样式、参数和观测角度可控的特性,还表现出随纳米硫化镉负载量而变的特征,即较长波段的相对反射强度随负载量的增加而下降。此外,纳米硫化镉/孔雀羽毛二维复合光子晶体的反射光谱揭示了纳米硫化镉与天然光子晶体之间的光学耦合作用,纳米硫化镉/巴黎翠凤蝶一维复合光子晶体的反射性质遵循典型一维光子晶体的特征,纳米硫化镉/异型紫斑蝶准一维复合光子晶体表现出独特的精细结构和新颖的“显色-失色”反射现象。反射光谱的初步模拟结果与实验吻合较好。以上研究结果为光子晶体研究领域提供了新型复合体系——纳米半导体/天然光子晶体,以及设计灵感。
     综上所述,本论文系统研究了以天然生物材料为基体合成半导体纳米颗粒,构成新型光功能纳米材料的工艺,以及纳米半导体/生物基体复合材料的光学性质。证实了生物组分的活性和生物相容性对制备纳米材料的有利影响,发现了复合材料中半导体纳米颗粒与生物精细结构之间的光学耦合作用,并且实现了常规手段难以获得的微纳米有序结构和可控光学性质。本论文的研究成果为光功能材料的设计和制备提供了新思路和新方法。
Optical nanomaterials are widely used in biology, medical, computer science, and so on. Usually, optical nanoparticles are combined with matrix materials, like modification components and substrate structures, in order to obtain smart and multifunctional nanocomposites. However, there are some problems in dealing with these nanocomposites, for instance, the synthesis of nanoparticles requires harsh conditions, the hybridization process is complicated, and the pattern of nanostructures is limited. In this field, nature has some valuable solutions via millions of years’evolution. One is biocomponents: the active biocomponents in organisms could direct the synthesis and assembly of nanoparticles under mild environment, and form natural nanocomposites with excellent properties. The other is biostructures: nature has created all kinds of multifunctional biostructures, some of which are still hardly achieved artificially. Inspired by nature, people directly take biomasses as the templates to fabricate novel functional materials. Since biocomponents and biostructures have several advantages, the bio-inspired idea is supposed to accomplish simplified fabrication routes as well as novel functional materials with subtle nanostructures and attracting properties.
     Based on these investigations, we suggest that biomasses can serve as the templates to fabricate optical nanomaterials. Owing to the active biocomponents and subtle structures of biomasses, this process might give a solution to the above mentioned problems. In detail, active biocomponents can direct the synthesis and assembly of nanoparticles, which simplify the fabrication process. Then, they may modify the nanoparticles to improve the biocompatibilities. And the subtle biostructures could provide solid substrates and give additional optical properties to the final products. Therefore, the bio-inspired fabrication of optical nanocomposites would bring new opportunities to functional materials. The main contents and results are as follows:
     1. In situ synthesis of chalcogenide nanoparticles on silk fibroin fibers Reactive silk fibroin fibers (SFF) were chosen as the biotemplates to direct the in situ synthesis and assembly of the typical optical materials CdS nanoparticles (nano-CdS), in order to investigate whether the bio-inspired fabrication route is suitable for optical nanomaterials.
     We proposed a room-temperature facile process to synthesize and assemble nano-CdS on SFF, producing solid products nano-CdS/SFF and liquid products nano-CdS/silk fibroin (SF) dispersed in CaCl2 solution. During the process, SFF provided reactive sites, served as solid substrate, as well as assembled nanoparticles. As-prepared CdS were hexagonal phase nanocrystallites with diameters that proportional to the immersing time and inverse proportional to the S-precursor concentration (range: 3.8~7.9 nm). Nano-CdS could be assembled into nanoparticle strings and hexagons by SFF, which was also influenced by the immersing time and S-precursor concentration. The optical properties of the nanocomposites can be controlled by the nanoparticles’size and assembly patterns. The absorption edge and the band-edge fluorescence emission of the products were blue-shifted as nano-CdS became smaller. CdS nanoparticle strings performed fluorescence emission similar to that of separate nano-CdS, while CdS nanoparticle hexagons displayed red-shifted and broadened fluorescence emission compared with that of separate nano-CdS. This investigation demonstrated that it is possible to in situ synthesize and assemble nano-CdS on SFF under mild condition, which was the basis of the flowing works.
     2. Oxide nanoparticles/SFF(SF) biocompatible optical nanocomposites Based on the investigation of chalcogenide nanoparticles/SFF nanocomposites, the bio-inspired process was further introduced to fabricate optical nanocomposites with potential applications in biomedical fields. In this case, we used SFF to direct the fabrication of nano-ZnO, which were chosen for their nontoxicity and long wavelength visible photoluminescence. Then, as prepared nano-ZnO were directly modified by biocompatible SF.
     We proposed a facile route to obtain solid products nano-ZnO/SFF and liquid products nano-ZnO/SF. During the process, SFF provided reactive sites, served as solid substrate, as well as controlled the shape and defects of nanoparticles, while experimental conditions influenced the distribution of nano-ZnO. As-prepared ZnO were mainly hexagonal phase spherical nanoparticles with average diameter around 13 nm. The solid products appeared white under sunlight, and emitted orange-yellow phosphorescence centered around 600 nm with persisting time >0.1 ms under the UV excitation <370 nm. Their UV resistance was better than original SFF’s. The liquid products combined the optical functionalities of nano-ZnO as well as the biocompatibilities of SF. They displayed orange under UV illumination, and didn’t perform distinct cytotoxicity. Thus, nano-ZnO/SF might be used as bioimage labels. The above investigations have potential applications in biomedical fields.
     3. Semiconductor nanoparticles/natural photonic crystals novel nanocomposite photonic crystals
     Based on the experience of using solid biomasses SFF to synthesize semiconductor nanoparticles, the bio-inspired process was further introduced to fabricate novel nanocomposite photonic crystals (PhCs) with potential applications in nanoscaled optical devices. In this case, unobtainable subtle natural PhC structures were taken as the solid biotemplates to direct the synthesis and ordered assembly of optical nanoparticles, which resulted in novel nanocomposite PhCs with superior abilities of controlling visible light.
     We proposed a relatively facile route to obtain nano-ZnO/feathers nanocomposites. During the process, the original active sites of feathers played important role to form homogeneously distributed hexagonal phase nano-ZnO. The particle size was proportional to the solvothermal reaction time (range: 8.5 to 13.5 nm). Due to the interaction between nanoparticle and feather keratin, nano-ZnO performed a visible defect emission. Also, we proposed the“activation-in situ synthesis-solvothermal”fabrication route to obtain nano-CdS/natural PhCs. During the process, natural PhCs gained additional active sites by the activation step, then directed the in situ synthesis of CdS seeds and ordered assembly of nano-CdS, finally provided solid substrate for the self-sustainable products. As-prepared nano-CdS were mainly cubic phase nanocrystallites with diameter around 6 nm. By taking diverse scales and adjusting procedure factors, the assembly patterns of nano-CdS/wings could be controlled at two levels: one was the PhC structures (>100 nm), the other was the nano-CdS small clusters (<100 nm). The obtained novel nanocomposite PhC had superior abilities of controlling visible light. Their reflection properties could be tuned by changing PhC styles and parameters, as well as detecting directions, which were inherited from natural PhCs. In addition, they were also influenced by nano-CdS loading amounts. The reflectance at longer wavelength decreased as nano-CdS loading amounts increased. Moreover, the reflection spectra of nano-CdS/feathers 2D nanocomposite PhCs revealed the optical interaction between nano-CdS and natural PhCs. The reflection properties of nano-CdS/Papilio Paris butterfly matched the features of typical 1D PhCs. Nano-CdS/Euploea mulciber butterfly displayed subtle structures and attractive“shining-dim”phenomenon. In addition, the primary simulations of the reflection spectra agreed with the experimental results. The above investigations provided novel composite systems“semiconductor nanoparticles/ natural PhCs”as well as design inspirations to the PhCs research fields.
     In this thesis, we systematically investigated the bio-inspired synthesis and optical properties of the novel optical nanocomposites constructed by natural biomasses and semiconductor nanoparticles. It is proven that the active and biocompatible components in natural biomasses could facilitate the fabrication of nanomaterials. And it is observed that the optical interaction between nano-CdS and natural PhCs exists in the nanocomposites. Moreover, it is achieved that as-prepared nanocomposites perform ordered nanostructures and specific optical properties that are hardly obtained by usual way. This work provides new ideas and new solutions to the design and fabrication of functional nanocomposites.
引文
[1] (美)张金中等著,曹茂盛,曹传宝译,自组装纳米结构.北京市:化学工业出版社, 2004; p 184-194.
    [2]阎子峰,纳米催化技术.北京市:化学工业出版社, 2003; p 28-30.
    [3] Tomczak, N., Janczewski, D., Han, M., et al., Designer polymer-quantum dot architectures. Prog. Polym. Sci. 2009, 34 (5), 393-430.
    [4] Wang, C. W., Moffitt, M. G., Surface-tunable photoluminescence from block copolymer-stabilized cadmium sulfide quantum dots. Langmuir 2004, 20 (26), 11784-11796.
    [5] Liu, S. Q., Tang, Z. Y., Nanoparticle assemblies for biological and chemical sensing. J. Mater. Chem. 2010, 20 (1), 24-35.
    [6] Goldman, E. R., Balighian, E. D., Mattoussi, H., et al., Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 2002, 124 (22), 6378-6382.
    [7] Smith, A. M., Nie, S., Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43 (2), 190-200.
    [8]谢添华,柳松,核壳型二氧化钛复合纳米材料研究进展.无机盐工业2007, 39 (7), 8-11.
    [9] Kuwabata, S., Ueda-Sarson, K., Torimoto, T., Preparation method allowing self-isolation of CdS nanocrystals emitting intense band-gap luminescence. Chem. Lett. 2004, 33 (10), 1344-1345.
    [10] Steckel, J. S., Zimmer, J. P., Coe-Sullivan, S., et al., Blue luminescence from (CdS)ZnS core–shell nanocrystals. Angew. Chem. Int. Ed. 2004, 43 (16), 2154-2158.
    [11] Green, M., Williamson, P., Samalova, M., et al., Synthesis of type II/type I CdTe/CdS/ZnS quantum dots and their use in cellular imaging. J. Mater. Chem. 2009, 19 (44), 8341-8346.
    [12] D?llefeld, H., Weller, H., Eychmüller, A., Particle?particle interactions in semiconductor nanocrystal assemblies. Nano Lett. 2001, 1 (5), 267-269.
    [13]周馨我,功能材料学.北京市:北京理工大学出版社, 2002; p 339-340.
    [14] Haryono, A., Binder, W., Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2006, 2 (5), 600-611.
    [15] Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58 (20), 2059.
    [16] John, S., Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58 (23), 2486.
    [17] Lo`pez, C., Materials aspects of photonic crystals. Adv. Mater. 2003, 15 (20), 1679-1704.
    [18] Mitragotri, S., Lahann, J., Physical approaches to biomaterial design. Nat. Mater. 2009, 8 (1), 15-23.
    [19] Chen, L. Q., Xiao, S. J., Peng, L., et al., Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J. Phys. Chem. B 2010, 114 (10), 3655-3659.
    [20] Niemeyer, C. M., Functional hybrid devices of proteins and inorganic nanoparticles. Angew. Chem. Int. Ed. 2003, 42 (47), 5796-5800.
    [21] Li, X. Y., Zhou, Y. L., Zheng, Z. Z., et al., Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 2009, 25 (11), 6580-6586.
    [22] Wang, C. X., Roither, J., Kirschschlager, R., et al., Enhanced infrared emission from colloidal HgTe nanocrystal quantum dots on silicon-on-insulator photonic crystals. Appl. Phys. Lett. 2009, 95 (5).
    [23] Zhong, X. H., Liu, S. H., Zhang, Z. H., et al., Synthesis of high-quality CdS, ZnS, and ZnxCd1-xS nanocrystals using metal salts and elemental sulfur. J. Mater. Chem. 2004, 14 (18), 2790-2794.
    [24] Dameron, C. T., Reese, R. N., Mehra, R. K., et al., Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989, 338 (6216), 596-597.
    [25] Reese, R. N., White, C. A., Winge, D. R., Cadmium-sulfide crystallites in Cd-({gamma}EC)nG peptide complexes from tomato. Plant Physiol. 1992, 98 (1), 225-229.
    [26] Sweeney, R. Y., Mao, C., Gao, X., et al., Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 2004, 11 (11), 1553-1559.
    [27] Ahmad, A., Mukherjee, P., Mandal, D., et al., Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124 (41), 12108-12109.
    [28]宋少江,彭缨,王淑君,危险化学试剂中毒与救治.北京市:人民军医出版社, 2008; p 129-130.
    [29] Mukherjee, P., Ahmad, A., Mandal, D., et al., Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001, 1 (10), 515-519.
    [30] Gardea-Torresdey, J. L., Parsons, J. G., Gomez, E., et al., Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2002, 2 (4), 397-401.
    [31] Nune, S. K., Chanda, N., Shukla, R., et al., Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem. 2009, 19 (19), 2912-2920.
    [32] Moulton, M. C., Braydich-Stolle, L. K., Nadagouda, M. N., et al., Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using tea polyphenols. Nanoscale 2010, 2 (5), 763-770.
    [33] Voinescu, A. E., Touraud, D., Lecker, A., et al., Mineralization of CaCO3 in the presence of egg white lysozyme. Langmuir 2007, 23 (24), 12269-12274.
    [34] Sumper, M., Brunner, E., Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv. Funct. Mater. 2006, 16 (1), 17-26.
    [35] Metzler, R. A., Evans, J. S., Killian, C. E., et al., Nacre protein fragment templates lamellar aragonite growth. J. Am. Chem. Soc. 2010, 132 (18), 6329-6334.
    [36] Sumper, M., A phase separation model for the nanopatterning of diatom biosilica. Science 2002, 295 (5564), 2430-2433.
    [37] Aizenberg, J., Sundar, V. C., Yablon, A. D., et al., Biological glass fibers: Correlation between optical and structural properties. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (10), 3358-3363.
    [38] Huang, J. Y., Wang, X. D., Wang, Z. L., Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnology 2008, 19 (2).
    [39] Zheng, Y. M., Gao, X. F., Jiang, L., Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3 (2), 178-182.
    [40] Ortiz, C., Boyce, M. C., Materials science - Bioinspired structural materials. Science 2008, 319 (5866), 1053-1054.
    [41]崔福斋等,生物矿化.北京市:清华大学出版社, 2007; p 13-17.
    [42] Aizenberg, J., Weaver, J. C., Thanawala, M. S., et al., Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 2005, 309 (5732), 275-278.
    [43] Weaver, J. C., Aizenberg, J., Fantner, G. E., et al., Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 2007, 158 (1), 93-106.
    [44] Barthlott, W., Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
    [45] Koch, K., Bhushan, B., Jung, Y. C., et al., Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 2009, 5 (7), 1386-1393.
    [46] Koch, K., Barthlott, W., Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials. Philos. T. R. Soc. A 2009, 367 (1893), 1487-1509.
    [47] Parker, A. R., Lawrence, C. R., Water capture by a desert beetle. Nature 2001, 414 (6859), 33-34.
    [48] Gao, X. F., Jiang, L., Water-repellent legs of water striders. Nature 2004, 432 (7013), 36-36.
    [49] Feng, X. Q., Gao, X. F., Wu, Z. N., et al., Superior water repellency of water strider legs with hierarchical structures: Experiments and analysis. Langmuir 2007, 23 (9), 4892-4896.
    [50] Liu, M., Wang, S., Wei, Z., et al., Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 2009, 21 (6), 665-669.
    [51] Zheng, Y., Bai, H., Huang, Z., et al., Directional water collection on wetted spider silk. Nature 2010, 463 (7281), 640-643.
    [52] Autumn, K., Liang, Y. A., Hsieh, S. T., et al., Adhesive force of a single gecko foot-hair. Nature 2000, 405 (6787), 681-685.
    [53] Autumn, K., Sitti, M., Liang, Y. C. A., et al., Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (19), 12252-12256.
    [54] Arzt, E., Gorb, S., Spolenak, R., From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (19), 10603-10606.
    [55] Vukusic, P., Sambles, J. R., Photonic structures in biology. Nature 2003, 424 (6950), 852-855.
    [56] Gaino, E., Sara, M., Siliceous spicules of Tethya seychellensis (Porifera) support the growth of a green alga: A possible light conducting system. Mar. Ecol.-Prog. Ser. 1994, 108 (1-2), 147-151.
    [57] Cattaneo-Vietti, R., Bavestrello, G., Cerrano, C., et al., Optical fibres in an Antarctic sponge. Nature 1996, 383 (6599), 397-398.
    [58] Sundar, V. C., Yablon, A. D., Grazul, J. L., et al., Fibre-optical features of a glass sponge. Nature 2003, 424 (6951), 899-900.
    [59] Aizenberg, J., Tkachenko, A., Weiner, S., et al., Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001, 412 (6849), 819-822.
    [60] Jeong, K. H., Kim, J., Lee, L. P., Biologically inspired artificial compound eyes. Science 2006, 312 (5773), 557-561.
    [61] Stoddart, P. R., Cadusch, P. J., Boyce, T. M., et al., Optical properties of chitin: Surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings. Nanotechnology 2006, 17 (3), 680-686.
    [62] Vukusic, P., Natural photonics. Phys. World 2004, 17 (2), 35-39.
    [63] Ollivier, F. J., Samuelson, D. A., Brooks, D. E., et al., Comparative morphology of the tapetum lucidum (among selected species). Vet. Ophthalmol. 2004, 7 (1), 11-22.
    [64] Kinoshita, S., Yoshioka, S., Miyazaki, J., Physics of structural colors. Rep. Prog. Phys. 2008, 71 (7).
    [65] Kinoshita, S., Yoshioka, S., Structural colors in nature: The role of regularity and irregularity in the structure. ChemPhysChem 2005, 6 (8), 1442-1459.
    [66] Parker, A. R., Martini, N., Structural colour in animals--simple to complex optics. Opt. Laser Technol. 2006, 38 (4-6), 315-322.
    [67] Srinivasarao, M., Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 1999, 99 (7), 1935-1962.
    [68] Shi, L., Yin, H., Zhang, R., et al., Macroporous oxide structures with short-range order and bright structural coloration: A replication from parrot feather barbs. J. Mater. Chem. 2010, 20 (1), 90-93.
    [69] Vukusic, P., Sambles, J. R., Lawrence, C. R., Structurally assisted blackness in butterfly scales. Proc. R. Soc. Lond. B 2004, 271, S237-S239.
    [70] Vukusic, P., Hallam, B., Noyes, J., Brilliant whiteness in ultrathin beetle scales. Science 2007, 315 (5810), 348-.
    [71]胡玉洁,天然高分子材料改性与应用.北京市:化学工业出版社, 2003; p 92-97.
    [72] Phillips, D. M., Drummy, L. F., Conrady, D. G., et al., Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J. Am. Chem. Soc. 2004, 126 (44), 14350-14351.
    [73] Jin, H.-J., Kaplan, D. L., Mechanism of silk processing in insects and spiders. Nature 2003, 424 (6952), 1057-1061.
    [74] Ha, S.-W., Gracz, H. S., Tonelli, A. E., et al., Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules 2005, 6 (5), 2563-2569.
    [75] Cheng, C., Yang, Y. H., Chen, X., et al., Templating effect of silk fibers in the oriented deposition of aragonite. Chem. Commun. 2008, (43), 5511-5513.
    [76] Li, W., Qiao, X. Y., Sun, K., et al., Mechanical and viscoelastic properties of novel silk fibroin fiber/poly(epsilon-caprolactone) biocomposites. J. Appl. Polym. Sci. 2008, 110 (1), 134-139.
    [77] Altman, G. H., Diaz, F., Jakuba, C., et al., Silk-based biomaterials. Biomaterials 2003, 24 (3), 401-416.
    [78] Yoshioka, S., Kinoshita, S., Effect of macroscopic structure in iridescent color of the peacock feathers. Forma 2002, 17 (2), 169-181.
    [79] Zi, J., Yu, X. D., Li, Y. Z., et al., Coloration strategies in peacock feathers. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (22), 12576-12578.
    [80] Chen, J., Lee, Y., Tang, M.-T., et al., X-ray tomography and chemical imaging within butterfly wing scales. AIP Conference Proceedings. Conference: 9. international conference on synchrotron radiation instrumentation, Daegu (Korea, Republic of), 28 May - 2 Jun 2006; 2007, 879 (1), Medium: X; Size: page(s) 1940-1943.
    [81] Vukusic, P., Advanced photonic systems on the wing-scales of Lepidoptera. In Functional Surfaces in Biology, Gorb, S. N., Ed. Springer: Netherlands, 2009; pp 237-258.
    [82] Vukusic, P., Sambles, R., Lawrence, C., et al., Sculpted-multilayer optical effects in two species of Papilio butterfly. Appl. Opt. 2001, 40 (7), 1116-1125.
    [83] Vukusic, P., Sambles, J. R., Lawrence, C. R., et al., Structural colour - Now you see it now you don't. Nature 2001, 410 (6824), 36-36.
    [84] Ding, Y., Xu, S., Wang, Z. L., Structural colors from Morpho peleides butterfly wing scales. J. Appl. Phys. 2009, 106 (7).
    [85] Stavenga, D. G., Stowe, S., Siebke, K., et al., Butterfly wing colours: Scale beads make white pierid wings brighter. Proc. R. Soc. Lond. B 2004, 271 (1548), 1577-1584.
    [86] Nykypanchuk, D., Maye, M. M., van der Lelie, D., et al., DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451 (7178), 549-552.
    [87] Walsh, D., Kulak, A., Aoki, K., et al., Preparation of higher-order zeolite materials by using dextran templating. Angew. Chem. 2004, 116 (48), 6859-6863.
    [88] Patwardhan, S. V., Clarson, S. J., Perry, C. C., On the role(s) of additives in bioinspired silicification. Chem. Commun. 2005, 1113-1121.
    [89] Iwahori, K., Yamashita, I., Fabrication of CdS nanoparticles in the bio-template, apoferritin cavity by a slow chemical reaction system. J. Phys.: Conf. Ser. 2007, 61 (1), 492-6.
    [90] Lee, S.-Y., Gao, X., Matsui, H., Biomimetic and aggregation-driven crystallization route for room-temperature material synthesis: Growth ofβ-Ga2O3 nanoparticles on peptide assemblies as nanoreactors. J. Am. Chem. Soc. 2007, 129 (10), 2954-2958.
    [91] Sewell, S. L., Wright, D. W., Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 2006, 18 (13), 3108-3113.
    [92] Xia, F., Jiang, L., Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 2008, 20 (15), 2842-2858.
    [93] Munch, E., Launey, M. E., Alsem, D. H., et al., Tough, bio-inspired hybrid materials. Science 2008, 322 (5907), 1516-1520.
    [94] Cao, L., Hu, H.-H., Gao, D., Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 2007, 23 (8), 4310-4314.
    [95] Yao, X., Chen, Q. W., Xu, L., et al., Bioinspired ribbed nanoneedles with robust superhydrophobicity. Adv. Funct. Mater. 2010, 20 (4), 656-662.
    [96] Geim, A. K., Dubonos, S. V., Grigorieva, I. V., et al., Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2 (7), 461-463.
    [97] Qu, L. T., Dai, L. M., Stone, M., et al., Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 2008, 322 (5899), 238-242.
    [98] Lee, L. P., Szema, R., Inspirations from biological, optics for advanced phtonic systems. Science 2005, 310 (5751), 1148-1150.
    [99] Yang, S., Ford, J., Ruengruglikit, C., et al., Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft, biomimetic microlens arrays. J. Mater. Chem. 2005, 15 (39), 4200-4202.
    [100] Chuang, S. Y., Chen, H. L., Shieh, J., et al., Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle. Nanoscale 2010, 2, 799-805.
    [101] Fu, X., Wang, Y., Huang, L., et al., Assemblies of metal nanoparticles and self-assembled peptide fibrils-Formation of double helical and single-chain arrays of metal nanoparticles. Adv. Mater. 2003, 15 (11), 902-906.
    [102] Boal, A., Headley, T., Tissot, R., et al., Microtubule-templated biomimetic mineralization of lepidocrocite. Adv. Funct. Mater. 2004, 14 (1), 19-24.
    [103] Behrens, S., Rahn, K., Habicht, W., et al., Nanoscale particle arrays induced by highly ordered protein assemblies. Adv. Mater. 2002, 14 (22), 1621-1625.
    [104] Kumara, M. T., Tripp, B. C., Muralidharan, S., Self-assembly of metal nanoparticles and nanotubes on bioengineered flagella scaffolds. Chem. Mater. 2007, 19 (8), 2056-2064.
    [105] Behrens, S., Wu, J., Habicht, W., et al., Silver nanoparticle and nanowire formation by microtubule templates. Chem. Mater. 2004, 16 (16), 3085-3090.
    [106] Pouget, E., Dujardin, E., Cavalier, A., et al., Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nat. Mater. 2007, 6 (6), 434-439.
    [107] Richter, J., Metallization of DNA. Physica E 2003, 16 (2), 157-173.
    [108] Braun, E., Eichen, Y., Sivan, U., et al., DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391 (6669), 775-778.
    [109] Keren, K., Krueger, M., Gilad, R., et al., Sequence-specific molecular lithography on single DNA molecules. Science 2002, 297 (5578), 72-75.
    [110] Loweth, C. J., Caldwell, W. B., Peng, X., et al., DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 1999, 38 (12), 1808-1812.
    [111] Le, J. D., Pinto, Y., Seeman, N. C., et al., DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 2004, 4 (12), 2343-2347.
    [112] Liang, H., Angelini, T. E., Ho, J., et al., Molecular imprinting of biomineralized CdS nanostructures: Crystallographic control using self-assembled DNA-membrane templates. J. Am. Chem. Soc. 2003, 125 (39), 11786-11787.
    [113] Baral, S., Schoen, P., Silica-deposited phospholipid tubules as a precursor to hollow submicron-diameter silica cylinders. Chem. Mater. 1993, 5 (2), 145-147.
    [114] Lvov, Y. M., Price, R. R., Selinger, J. V., et al., Imaging nanoscale patterns on biologically derived microstructures. Langmuir 2000, 16 (14), 5932-5935.
    [115] Price, R. R., Dressick, W. J., Singh, A., Fabrication of nanoscale metallic spirals using phospholipid microtubule organizational templates. J. Am. Chem. Soc. 2003, 125 (37), 11259-11263.
    [116] Patil, A., Muthusamy, E., Seddon, A., et al., Higher-order synthesis of organoclay pipes using self-assembled lipid templates. Adv. Mater. 2003, 15 (21), 1816-1819.
    [117] Miao, Z., Ding, K., Wu, T., et al., Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Micropor. Mesopor. Mat. 2008, 111 (1-3), 104-109.
    [118] Tampieri, A., Sandri, M., Landi, E., et al., HA/alginate hybrid composites prepared through bio-inspired nucleation. Acta Biomater. 2005, 1 (3), 343-351.
    [119] Fujikawa, S., Kunitake, T., Surface fabrication of hollow nanoarchitectures of ultrathin titania layers from assembled latex particles and tobacco mosaic viruses as templates. Langmuir 2003, 19 (16), 6545-6552.
    [120] Dujardin, E., Peet, C., Stubbs, G., et al., Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 2003, 3 (3), 413-417.
    [121] Shenton, W., Douglas, T., Young, M., et al., Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 1999, 11 (3), 253-256.
    [122] Knez, M., Sumser, M., Bittner, A., et al., Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv. Funct. Mater. 2004, 14 (2), 116-124.
    [123] Knez, M., Bittner, A. M., Boes, F., et al., Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett. 2003, 3 (8), 1079-1082.
    [124] Mao, C., Solis, D. J., Reiss, B. D., et al., Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303 (5655), 213-217.
    [125] Fowler, C. E., Shenton, W., Stubbs, G., et al., Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv. Mater. 2001, 13 (16), 1266-1269.
    [126] Lee, S. W., Lee, S., Belcher, A., Virus-based alignment of inorganic, organic, and biological nanosized materials. Adv. Mater. 2003, 15 (9), 689-692.
    [127] Falkner, J. C., Turner, M. E., Bosworth, J. K., et al., Virus crystals as nanocomposite scaffolds. J. Am. Chem. Soc. 2005, 127 (15), 5274-5275.
    [128] Royston, E., Ghosh, A., Kofinas, P., et al., Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 2007, 24 (3), 906-912.
    [129] Zhou, H., Fan, T., Zhang, D., et al., Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem. Mater. 2007, 19 (9), 2144-2146.
    [130] Zhou, H., Fan, T., Zhang, D., Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates. Micropor. Mesopor. Mat. 2007, 100 (1-3), 322-327.
    [131] Zhang, B. J., Davis, S. A., Mendelson, N. H., et al., Bacterial templating of zeolite fibres with hierarchical structure. Chem. Commun. 2000, (9), 781-782.
    [132] Zhang, D. Y., Qi, L. M., Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem. Commun. 2005, (21), 2735-2737.
    [133] Zhang, T., Wang, W., Zhang, D., et al., Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv. Funct. Mater. 2010, 20 (7), 1152-1160.
    [134] Sun, D. P., Yang, J. Z., Wang, X., Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2010, 2 (2), 287-292.
    [135] Kim, Y., Small structures fabricated using ash-forming biological materials as templates. Biomacromolecules 2003, 4 (4), 908-913.
    [136] Zhang, F., Ma, H., Chen, J., et al., Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. Bioresour. Technol. 2008, 99 (11), 4803-4808.
    [137] Liu, Q. L., Zhang, D., Fan, T. X., Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 2008, 93 (1).
    [138]贾贤等,天然生物材料及其仿生工程材料.北京市:化学工业出版社, 2007; p 90-91.
    [139] Shin, Y., Liu, J., Chang, J. H., et al., Hierarchically ordered ceramics through surfactant-templated sol-gel mineralization of biological cellular structures. Adv. Mater. 2001, 13 (10), 728-732.
    [140] Dong, A., Wang, Y., Tang, Y., et al., Zeolitic tissue through wood cell templating. Adv. Mater. 2002, 14 (12), 926-929.
    [141]师昌绪,李恒德,周廉,材料科学与工程手册下第13篇生态环境材料.北京市:化学工业出版社, 2004; p 40-41.
    [142] Liu, Z. T., Fan, T. X., Zhang, D., et al., Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates. Sensor. Actuat. B-Chem. 2009, 136 (2), 499-509.
    [143] Hall, S. R., Bolger, H., Mann, S., Morphosynthesis of complex inorganic forms using pollen grain templates. Chem. Commun. 2003, (22), 2784-2785.
    [144] Hall, S. R., Swinerd, V. M., Newby, F. N., et al., Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains. Chem. Mater. 2006, 18 (3), 598-600.
    [145] Wang, Y., Liu, Z. M., Han, B. X., et al., Replication of biological organizations through a supercritical fluid route. Chem. Commun. 2005, (23), 2948-2950.
    [146] Wang, Y., Liu, Z., Han, B., et al., Carbon microspheres with supported silver nanoparticles prepared from pollen grains. Langmuir 2005, 21 (23), 10846-10849.
    [147] Losic, D., Mitchell, J. G., Voelcker, N. H., Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 2009, 21 (29), 2947-2958.
    [148] Anderson, M., Holmes, S., Hanif, N., et al., Hierarchical pore structures through diatom zeolitization. Angew. Chem. 2000, 112 (15), 2819-2822.
    [149] Rosi, N. L., Thaxton, C. S., Mirkin, C. A., Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Ed. 2004, 43 (41), 5500-5503.
    [150] Dudley, S., Kalem, T., Akinc, M., Conversion of SiO2 diatom frustules to BaTiO3 and SrTiO3. J. Am. Ceram. Soc. 2006, 89 (8), 2434-2439.
    [151] Weatherspoon, M. R., Allan, S. M., Hunt, E., et al., Sol-gel synthesis on self-replicating single-cell scaffolds: Applying complex chemistries to nature's 3-D nanostructured templates. Chem. Commun. 2005, (5), 651-653.
    [152] Losic, D., Triani, G., Evans, P. J., et al., Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. J. Mater. Chem. 2006, 16, 4029-4034.
    [153] Losic, D., Mitchell, J., Lal, R., et al., Rapid fabrication of micro-and nanoscale patterns by replica molding from diatom biosilica. Adv. Funct. Mater. 2007, 17 (14), 2439-2446.
    [154] Bao, Z. H., Weatherspoon, M. R., Shian, S., et al., Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007, 446, 172-175.
    [155] Bao, Z., Ernst, E. M., Yoo, S., et al., Syntheses of porous self-supporting metal-nanoparticle assemblies with 3D morphologies inherited from biosilica templates (diatom frustules). Adv. Mater. 2009, 21 (4), 474-478.
    [156] Zampieri, A., Mabande, G. T. P., Selvam, T., et al., Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Mater. Sci. Eng.-C 2006, 26 (1), 130-135.
    [157] Huang, J., Kunitake, T., Nano-precision replication of natural cellulosic substances by metal oxides. J. Am. Chem. Soc. 2003, 125 (39), 11834-11835.
    [158] Huang, J., Matsunaga, N., Shimanoe, K., et al., Nanotubular SnO2 templated by cellulose fibers: Synthesis and gas sensing. Chem. Mater. 2005, 17 (13), 3513-3518.
    [159] He, J., Kunitake, T., Nakao, A., Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 2003, 15 (23), 4401-4406.
    [160] Kemell, M., Pore, V., Ritala, M., et al., Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J. Am. Chem. Soc. 2005, 127 (41), 14178-14179.
    [161] Yang, D., Qi, L., Ma, J., Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes. Adv. Mater. 2002, 14 (21), 1543-1546.
    [162] Yang, D., Qi, L. M., Ma, J. M., Hierarchically ordered networks comprising crystalline ZrO2 tubes through sol-gel mineralization of eggshell membranes. J. Mater. Chem. 2003, 13 (5), 1119-1123.
    [163] Dong, Q., Su, H. L., Xu, J. Q., et al., Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films. Sensor. Actuat. B-Chem. 2007, 123 (1), 420-428.
    [164] Zheng, B. Z., Qian, L., Yuan, H. Y., et al., Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 2010, 82 (1), 177-183.
    [165] Miao, Z., Liu, Z., Han, B., et al., Synthesis of TiO2 nanotube networks from the mineralization of swim bladder membrane in supercritical CO2. J. Supercrit. Fluids 2007, 42 (2), 310-315.
    [166] Mayes, E. L., Vollrath, F., Mann, S., Fabrication of magnetic spider silk and other silk-fiber composites using inorganic nanoparticles. Adv. Mater. 1998, 10 (10), 801-805.
    [167] Singh, A., Hede, S., Sastry, M., Spider silk as an active scaffold in the assembly of gold nanoparticles and application of the gold-silk bioconjugate in vapor sensing. Small 2007, 3 (3), 466-473.
    [168] Huang, L. M., Wang, H. T., Hayashi, C. Y., et al., Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. J. Mater. Chem. 2003, 13 (4), 666-668.
    [169] He, J., Kunitake, T., Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia. Chem. Mater. 2004, 16 (13), 2656-2661.
    [170] Ogasawara, W., Shenton, W., Davis, S. A., et al., Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chem. Mater. 2000, 12 (10), 2835-2837.
    [171] Li, G., Singh, R., Li, D., et al., Synthesis of biomorphic zeolite honeycomb monoliths with 16000 cells per square inch. J. Mater. Chem. 2009, 19 (44), 8372-8377.
    [172] Meldrum, F. C., Seshadri, R., Porous gold structures through templating by echinoid skeletal plates. Chem. Commun. 2000, (1), 29-30.
    [173] Lai, M., Kulak, A. N., Law, D., et al., Profiting from nature: Macroporous copper with superior mechanical properties. Chem. Commun. 2007, (34), 3547-3549.
    [174] Martin-Palma, R. J., Pantano, C. G., Lakhtakia, A., Replication of fly eyes by the conformal-evaporated-film-by-rotation technique. Nanotechnology 2008, 19 (35).
    [175] Liu, S., Yang, Y. F., Jin, Y. Z., et al., Multifunctional ZnO interfaces with hierarchical micro- and nanostructures: Bio-inspiration from the compound eyes of butterflies. Appl. Phys. A-Mater. 2010, 100 (1), 57-61.
    [176] Galusha, J. W., Richey, L. R., Jorgensen, M. R., et al., Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route. J. Mater. Chem. 2010, 20 (7), 1277-1284.
    [177] Cook, G., Timms, P. L., Spickermann, C. G., Exact replication of biological structures by chemical vapor deposition of silica. Angew. Chem. Int. Ed. 2003, 42 (5), 557-+.
    [178] Li, B., Zhou, J., Zong, R. L., et al., Ordered ceramic microstructures from butterfly bio-template. J. Am. Ceram. Soc. 2006, 89 (7), 2298-2300.
    [179] Huang, J., Wang, X., Wang, Z. L., Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 2006, 6 (10), 2325-2331.
    [180] Silver, J., Withnall, R., Ireland, T. G., et al., Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas. Nanotechnology 2008, 19 (9).
    [181] Martin-Palma, R. J., Pantano, C. G., Lakhtakia, A., Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics. Appl. Phys. Lett. 2008, 93 (8).
    [182] Zhang, W., Zhang, D., Fan, T. X., et al., Novel photoanode structure templated from butterfly wing scales. Chem. Mater. 2009, 21 (1), 33-40.
    [1] Zimnitsky, D., Jiang, C., Xu, J., et al., Substrate-and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film. Langmuir 2007, 23 (8), 4509-4515.
    [2] Zhou, Y., Ji, Q., Masuda, M., et al., Helical arrays of CdS nanoparticles tracing on a functionalized chiral template of glycolipid nanotubes. Chem. Mater. 2005, 18 (2), 403-406.
    [3] Arachchige, I. U., Brock, S. L., Sol?gel assembly of CdSe nanoparticles to form porous aerogel networks. J. Am. Chem. Soc. 2006, 128 (24), 7964-7971.
    [4] Murray, C. B., Sun, S., Gaschler, W., et al., Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45 (1), 47-56.
    [5] Zhang, Y., Chen, Y., Niu, H., et al., Formation of CdS nanoparticle necklaces with functionalized dendronized polymers. Small 2006, 2 (11), 1314-1319.
    [6] Xue, P., Lu, R., Huang, Y., et al., Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir 2004, 20 (15), 6470-6475.
    [7] Liu, B., Zeng, H. C., Semiconductor rings fabricated by self-assembly of nanocrystals. J. Am. Chem. Soc. 2005, 127 (51), 18262-18268.
    [8] Cavallini, M., Facchini, M., Albonetti, C., et al., Two-dimensional self-organization of CdS ultra thin films by confined electrochemical atomic layer epitaxy growth. J. Phys. Chem. C 2006, 111 (3), 1061-1064.
    [9] Vossmeyer, T., Katsikas, L., Giersig, M., et al., CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98 (31), 7665-7673.
    [10] Murray, C. B., Kagan, C. R., Bawendi, M. G., Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270 (5240), 1335-1338.
    [11] Sone, E. D., Stupp, S. I., Semiconductor-encapsulated peptide?amphiphile nanofibers. J. Am. Chem. Soc. 2004, 126 (40), 12756-12757.
    [12] Li, C., Tang, Y., Yao, K., et al., Decoration of multiwall nanotubes with cadmium sulfide nanoparticles. Carbon 2006, 44 (10), 2021-2026.
    [13] Wang, C. W., Moffitt, M. G., Nonlithographic hierarchical patterning of semiconducting nanoparticles via polymer/polymer phase separation. Chem. Mater. 2005, 17 (15), 3871-3878.
    [14] Dubertret, B., Skourides, P., Norris, D. J., et al., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298 (5599), 1759-1762.
    [15] Jaiswal, J. K., Mattoussi, H., Mauro, J. M., et al., Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21 (1), 47-51.
    [16] Sapra, S., Nanda, J., Sarma, D. D., et al., Blue emission from cysteine ester passivated cadmium sulfide nanoclusters. Chem. Commun. 2001, (21), 2188-2189.
    [17] Kumar, A., Mital, S., Synthesis and photophysics of purine-capped Q-CdS nanocrystallites. Photochem. Photobiol. Sci. 2002, 1 (10), 737-741.
    [18] Ahmad, A., Mukherjee, P., Mandal, D., et al., Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124 (41), 12108-12109.
    [19] Dameron, C. T., Reese, R. N., Mehra, R. K., et al., Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989, 338 (6216), 596-597.
    [20] Niemeyer, C. M., Functional hybrid devices of proteins and inorganic nanoparticles. Angew. Chem. Int. Ed. 2003, 42 (47), 5796-5800.
    [21] Wang, C. W., Moffitt, M. G., Surface-tunable photoluminescence from block copolymer-stabilized cadmium sulfide quantum dots. Langmuir 2004, 20 (26), 11784-11796.
    [22] Du, H., Xu, G. Q., Chin, W. S., et al., Synthesis, characterization, and nonlinear optical properties of hybridized CdS?polystyrene nanocomposites. Chem. Mater. 2002, 14 (10), 4473-4479.
    [23] Ma, Y., Qi, L., Ma, J., et al., Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer. Langmuir 2003, 19 (21), 9079-9085.
    [24] Chen, S., Zhu, J., Shen, Y., et al., Synthesis of nanocrystal?polymer transparent hybrids via polyurethane matrix grafted onto functionalized CdS nanocrystals. Langmuir 2006, 23 (2), 850-854.
    [25] Dong, Q., Su, H., Zhang, D., In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J. Phys. Chem. B 2005, 109 (37), 17429-17434.
    [26] Cheng, C., Yang, Y. H., Chen, X., et al., Templating effect of silk fibers in the oriented deposition of aragonite. Chem. Commun. 2008, (43), 5511-5513.
    [27] Phillips, D. M., Drummy, L. F., Conrady, D. G., et al., Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J. Am. Chem. Soc. 2004, 126 (44), 14350-14351.
    [28]杨鸣波,唐志玉,中国材料工程大典第6卷高分子材料工程上.北京市:化学工业出版社, 2006; p 807-808.
    [29] Mathur, A. B., Tonelli, A., Rathke, T., et al., The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films. Biopolymers 1997, 42 (1), 61-74.
    [30]韦军,朱亚伟,彭桃芝等,丝胶固着蚕丝的红外光谱和拉曼光谱分析.印染助剂2004, 21, 51-53.
    [31] Henglein, A., Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89 (8), 1861-1873.
    [32] Warner, J. H., Djouahra, S., Tilley, R. D., Controlled formation of 3D CdS nanocrystal superlattices in solution. Nanotechnology 2006, 17 (12), 3035-3038.
    [33] Nag, B., Physics of quantum well devices. Dordrecht: Kluwer Academic Publishers, 2000; p 105.
    [34] Brus, L. E., Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80 (9), 4403-4409.
    [35] Bawendi, M. G., Steigerwald, M. L., Brus, L. E., The quantum mechanics of larger semiconductor clusters ("quantum dots"). Annu. Rev. Phys. Chem. 1990, 41 (1), 477-496.
    [36] Jin, H.-J., Kaplan, D. L., Mechanism of silk processing in insects and spiders. Nature 2003, 424 (6952), 1057-1061.
    [37] Ayutsede, J., Gandhi, M., Sukigara, S., et al., Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 2006, 7 (1), 208-214.
    [1] Altman, G. H., Diaz, F., Jakuba, C., et al., Silk-based biomaterials. Biomaterials 2003, 24 (3), 401-416.
    [2] Vepari, C., Kaplan, D. L., Silk as a biomaterial. Prog. Polym. Sci. 2007, 32 (8-9), 991-1007.
    [3] Perelshtein, I., Applerot, G., Perkas, N., et al., Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl. Mater. Inter. 2009, 1 (2), 363-366.
    [4] Kahn, M. L., Cardinal, T., Bousquet, B., et al., Optical properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. ChemPhysChem 2006, 7 (11), 2392-2397.
    [5] Xiong, H.-M., Xu, Y., Ren, Q.-G., et al., Stable aqueous ZnO@polymer core?shell nanoparticles with tunable photoluminescence and their application in cell imaging. J. Am. Chem. Soc. 2008, 130 (24), 7522-7523.
    [6] Green, M., Williamson, P., Samalova, M., et al., Synthesis of type II/type I CdTe/CdS/ZnS quantum dots and their use in cellular imaging. J. Mater. Chem. 2009, 19 (44), 8341-8346.
    [7] Zhao, D., He, Z., Chan, W. H., et al., Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method. J. Phys. Chem. C 2008, 113 (4), 1293-1300.
    [8] Billinton, N., Knight, A. W., Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 2001, 291 (2), 175-197.
    [9] Peng, Y. Y., Hsieh, T. E., Hsu, C. H., White-light emitting ZnO-SiO2 nanocomposite thin films prepared by the target-attached sputtering method. Nanotechnology 2006, 17 (1), 174-180.
    [10] Tang, X., Choo, E. S. G., Li, L., et al., Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications. Chem. Mater. 2010, 22 (11), 3383-3388.
    [11] Vigneshwaran, N., Kumar, S., Kathe, A. A., et al., Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology 2006, 17 (20), 5087-5095.
    [12] Becheri, A., Durr, M., Lo Nostro, P., et al., Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanopart. Res. 2008, 10 (4), 679-689.
    [13] Wang, R., Xin, J. H., Tao, X. M., et al., ZnO nanorods grown on cotton fabrics at low temperature. Chem. Phys. Lett. 2004, 398 (1-3), 250-255.
    [14] Wang, R. H., Xin, J. H., Tao, X. M., UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics. Inorg. Chem. 2005, 44 (11), 3926-3930.
    [15]王雯.纳米颗粒的细胞毒性实验研究.博士学位论文,吉林大学,吉林, 2009.
    [16] Xu, F., Lei, D., Du, X., et al., Modification of MR molecular imaging probes with cysteine-terminated peptides and their potential for in vivo tumour detection. Contrast Media Mol. I. 2010, n/a-n/a.
    [17] Lv, Q., Cao, C., Zhang, Y., et al., The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres. J. Mater. Sci.: Mater. Med. 2004, 15 (11), 1193-1197.
    [18] Sohn, S., Strey, H. H., Gido, S. P., Phase behavior and hydration of silk fibroin. Biomacromolecules 2004, 5 (3), 751-757.
    [19] Cheng, H.-M., Hsu, H.-C., Chen, S.-L., et al., Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol-gel method. J. Cryst. Growth 2005, 277 (1-4), 192-199.
    [20]马正先,姜玉芝,韩跃新等,纳米氧化锌制备原理与技术.北京市:中国轻工业出版社, 2009; p 351-355.
    [21] Mathur, A. B., Tonelli, A., Rathke, T., et al., The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films. Biopolymers 1997, 42 (1), 61-74.
    [22] Chen, X., Shao, Z., Marinkovic, N. S., et al., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys. Chem. 2001, 89 (1), 25-34.
    [23]韦军,朱亚伟,彭桃芝等,丝胶固着蚕丝的红外光谱和拉曼光谱分析.印染助剂2004, 21, 51-53.
    [24]胡泽善,汤敏,丁社光等,纳米氧化锌的化学制备技术及其进展.材料导报2008, 22 (专辑XI), 69-72.
    [25] Djuri?i?, A., Leung, Y. H., Optical properties of ZnO nanostructures. Small 2006, 2 (8-9), 944-961.
    [26]于同隐,邵正中,桑蚕丝素蛋白的结构、形态及其化学改性.高分子通报1990, (3), 154-160.
    [27]丁巧英,张幼珠,稀土/TiO2复配整理真丝绸的防紫外和防黄变功能.天津工业大学学报2008, 27 (5), 66-69.
    [28] Qiu, J. J., Li, X. M., He, W. Z., et al., The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 2009, 20 (15).
    [29] Li, D., Leung, Y. H., Djurisic, A. B., et al., Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 2004, 85 (9), 1601-1603.
    [30] Djurisic, A. B., Ng, A. M. C., Chen, X. Y., ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quant. Electron. 2010, 34 (4), 191-259.
    [31] Yang, Y., Shao, Z., Chen, X., et al., Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. Biomacromolecules 2004, 5 (3), 773-779.
    [1] Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58 (20), 2059.
    [2] John, S., Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58 (23), 2486.
    [3] Lo`pez, C., Materials aspects of photonic crystals. Adv. Mater. 2003, 15 (20), 1679-1704.
    [4] Shkunov, M. N., Vardeny, Z. V., DeLong, M. C., et al., Tunable, gap-state lasing in switchable directions for opal photonic crystals. Adv. Funct. Mater. 2002, 12 (1), 21-26.
    [5] Zhang, Y. Q., Wang, J. X., Ji, Z. Y., et al., Solid-state fluorescence enhancement of organic dyes by photonic crystals. J. Mater. Chem. 2007, 17 (1), 90-94.
    [6] Lodahl, P., Floris van Driel, A., Nikolaev, I. S., et al., Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 2004, 430 (7000), 654-657.
    [7] Nakamura, T., Yamada, Y., Yamada, H., et al., A novel route to luminescent opals for controlling spontaneous emission. J. Mater. Chem. 2009, 19 (37), 6699-6705.
    [8] Ródenas, A., Zhou, G., Jaque, D., et al., Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals. Adv. Mater. 2009, 21 (34), 3526-3530.
    [9] Yu, W. W., Peng, X. G., Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41 (13), 2368-2371.
    [10] Peng, X., Manna, L., Yang, W., et al., Shape control of CdSe nanocrystals. Nature 2000, 404 (6773), 59-61.
    [11] Wang, C. W., Moffitt, M. G., Surface-tunable photoluminescence from block copolymer-stabilized cadmium sulfide quantum dots. Langmuir 2004, 20 (26), 11784-11796.
    [12] Fleischhaker, F., Zentel, R., Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 2005, 17 (6), 1346-1351.
    [13] Zhang, J. G., Coombs, N., Kumacheva, E., A new approach to hybrid nanocomposite materials with periodic structures. J. Am. Chem. Soc. 2002, 124 (49), 14512-14513.
    [14] Yusuf, H., Kim, W.-G., Lee, D. H., et al., A hierarchical self-assembly route to three-dimensional polymer-quantum dot photonic arrays. Langmuir 2007, 23 (10), 5251-5254.
    [15] Blanco, A., Lopez, C., Mayoral, R., et al., CdS photoluminescence inhibition by a photonic structure. Appl. Phys. Lett. 1998, 73 (13), 1781-1783.
    [16] Li, J., Jia, B., Zhou, G., et al., Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications. Adv. Mater. 2007, 19 (20), 3276-3280.
    [17] Sun, Z. B., Dong, X. Z., Nakanishi, S., et al., Log-pile photonic crystal of CdS–polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis. Appl. Phys. A-Mater. 2007, 86 (4), 427-431.
    [18] Vukusic, P., Sambles, J. R., Photonic structures in biology. Nature 2003, 424 (6950), 852-855.
    [19] Parker, A. R., 515 million years of structural colour. J. Opt. A-Pure Appl. Op. 2000, 2 (6), R15-R28.
    [20] Yoshioka, S., Kinoshita, S., Effect of macroscopic structure in iridescent color of the peacock feathers. Forma 2002, 17 (2), 169-181.
    [21] Zi, J., Yu, X. D., Li, Y. Z., et al., Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (22), 12576-12578.
    [22] Li, Y. Z., Lu, Z. H., Yin, H. W., et al., Structural origin of the brown color of barbules in male peacock tail feathers. Phys. Rev. E 2005, 72 (1).
    [23] Kar, S., Dev, A., Chaudhuri, S., Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. J. Phys. Chem. B 2006, 110 (36), 17848-17853.
    [24] Nair, R. V., Vijaya, R., Infiltration of ZnO in polymeric photonic crystal by the sol-gel process. J. Phys. D-Appl. Phys. 2007, 40 (4), 990-997.
    [25]马正先,韩跃新,邓江宁等,直接水解一步法制备纳米氧化锌.矿冶2002, 11 (3), 66-69.
    [26] Iridag, Y., Kazanci, M., Preparation and characterization of Bombyx mori silk fibroin and wool keratin. J. Appl. Polym. Sci. 2006, 100 (5), 4260-4264.
    [27] Edwards, H. G. M., Hunt, D. E., Sibley, M. G., FT-Raman spectroscopic study of keratotic materials: Horn, hoof and tortoiseshell. Spectrochim. Acta A 1998, 54 (5), 745-757.
    [28] Taddei, P., Monti, P., Freddi, G., et al., Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: An IR investigation. J. Mol. Struct. 2003, 650 (1-3), 105-113.
    [29] Church, J. S., Corino, G. L., Woodhead, A. L., The analysis of merino wool cuticle and cortical cells by Fourier transform Raman spectroscopy. Biopolymers 1997, 42 (1), 7-17.
    [30] Barone, J. R., Dangaran, K. L., Schmidt, W. F., Protein-transition metal ion networks. J. Appl. Polym. Sci. 2007, 106 (3), 1518-1525.
    [31] Jin, B. J., Im, S., Lee, S. Y., Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 2000, 366 (1-2), 107-110.
    [32] O'Brien, P., McAleese, J., Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J. Mater. Chem. 1998, 8 (11), 2309-2314.
    [33] Selvakumar, S., Kumar, S. M. R., Joseph, G. P., et al., Growth and characterization of pure and doped bis(thiourea) cadmium acetate single crystals. Mater. Chem. Phys. 2007, 103 (1), 153-157.
    [34] Blanco, A., Miguez, H., Meseguer, F., et al., Photonic band gap properties of CdS-in-opal systems. Appl. Phys. Lett. 2001, 78 (21), 3181-3183.
    [35] Henglein, A., Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89 (8), 1861-1873.
    [36] Buso, D., Nicoletti, E., Li, J., et al., Engineering the refractive index of three-dimensional photonic crystals through multilayer deposition of CdS films. Opt. Express 2010, 18 (2), 1033-1040.
    [37] Grudinkin, S. A., Kaplan, S. F., Kartenko, N. F., et al., Opal-hematite and opal-magnetite films: Lateral infiltration, thermodynamically driven synthesis, photonic crystal properties. J. Phys. Chem. C 2008, 112 (46), 17855-17861.
    [38] Sechrist, Z. A., Schwartz, B. T., Lee, J. H., et al., Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chem. Mater. 2006, 18 (15), 3562-3570.
    [1] Vukusic, P., Advanced photonic systems on the wing-scales of Lepidoptera. In Functional Surfaces in Biology, Gorb, S. N., Ed. Springer: Netherlands, 2009; pp 237-258.
    [2] Vukusic, P., Sambles, R., Lawrence, C., et al., Sculpted-multilayer optical effects in two species of Papilio butterfly. Appl. Opt. 2001, 40 (7), 1116-1125.
    [3] Zheng, Y. M., Gao, X. F., Jiang, L., Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3 (2), 178-182.
    [4] Watanabe, K., Hoshino, T., Kanda, K., et al., Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 2005, 44 (1-7), L48-L50.
    [5] Kustandi, T. S., Low, H. Y., Teng, J. H., et al., Mimicking domino-like photonic nanostructures on butterfly wings. Small 2009, 5 (5), 574-578.
    [6] Cook, G., Timms, P. L., Spickermann, C. G., Exact replication of biological structures by chemical vapor deposition of silica. Angew. Chem. Int. Ed. 2003, 42 (5), 557-+.
    [7] Li, B., Zhou, J., Zong, R. L., et al., Ordered ceramic microstructures from butterfly bio-template. J. Am. Ceram. Soc. 2006, 89 (7), 2298-2300.
    [8] Huang, J., Wang, X., Wang, Z. L., Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 2006, 6 (10), 2325-2331.
    [9] Silver, J., Withnall, R., Ireland, T. G., et al., Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas. Nanotechnology 2008, 19 (9).
    [10] Martin-Palma, R. J., Pantano, C. G., Lakhtakia, A., Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics. Appl. Phys. Lett. 2008, 93 (8).
    [11] Zhang, W., Zhang, D., Fan, T. X., et al., Novel photoanode structure templated from butterfly wing scales. Chem. Mater. 2009, 21 (1), 33-40.
    [12] Chen, J., Lee, Y., Tang, M.-T., et al., X-ray tomography and chemical imaging within butterfly wing scales. AIP Conference Proceedings. Conference: 9. international conference on synchrotron radiation instrumentation, Daegu (Korea, Republic of), 28 May - 2 Jun 2006; 2007, 879 (1), Medium: X; Size: page(s) 1940-1943.
    [13] Lakhtakia, A., Martin-Palma, R. J., Motyka, M. A., et al., Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates. Bioinspir. Biomim. 2009, 4 (3).
    [14]周尧,中国蝶类志.郑州市:河南科学技术出版社, 2000; p 144-146, 288-289.
    [15] Berthier, S., 2-Dimensional Structures: Interference and Diffraction. In Iridescences: The physical colors of insects Springer: New York, 2007; pp 86-111.
    [16] Vukusic, P., Sambles, J. R., Lawrence, C. R., Structurally assisted blackness in butterfly scales. Proc. R. Soc. Lond. B 2004, 271, S237-S239.
    [17] Vukusic, P., Sambles, J. R., Lawrence, C. R., Structural colour: Colour mixing in wing scales of a butterfly. Nature 2000, 404 (6777), 457-457.
    [18] Kinoshita, S., Yoshioka, S., Structural colors in nature: The role of regularity and irregularity in the structure. ChemPhysChem 2005, 6 (8), 1442-1459.
    [19] Church, J. S., Corino, G. L., Woodhead, A. L., The analysis of merino wool cuticle and cortical cells by Fourier transform Raman spectroscopy. Biopolymers 1997, 42 (1), 7-17.
    [20] Taddei, P., Monti, P., Freddi, G., et al., Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: An IR investigation. J. Mol. Struct. 2003, 650 (1-3), 105-113.
    [21] Bhatia, S. C., Ravi, N., A magnetic study of an Fe?chitosan complex and its relevance to other biomolecules. Biomacromolecules 2000, 1 (3), 413-417.
    [22] O'Brien, P., McAleese, J., Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J. Mater. Chem. 1998, 8 (11), 2309-2314.
    [23] Selvakumar, S., Kumar, S. M. R., Joseph, G. P., et al., Growth and characterization of pure and doped bis(thiourea) cadmium acetate single crystals. Mater. Chem. Phys. 2007, 103 (1), 153-157.
    [24] Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., et al., Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonics 2007, 1 (2), 123-128.
    [25] Vukusic, P., Sambles, J. R., Lawrence, C. R., et al., Structural colour - Now you see it now you don't. Nature 2001, 410 (6824), 36-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700