用户名: 密码: 验证码:
毛白杨TIR-NBS类抗病相关PtDrl02基因启动子的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(Populus tomentosa Carr., Chinese white poplar)是我国特有的白杨派(Section Leuce)乡土树种,具有分布广、速生、材质优良及抗逆性强等特点。然而,有关毛白杨抗逆性分子机理研究,尤其在抗病性方面,基础十分薄弱。对毛白杨抗病免疫反应系统中重要基因启动子的结构、功能及作用机制进行深入研究是分析毛白杨抗病免疫性的一个有效切入点,迄今未见任何报道。TIR-NBS类抗病相关基因是调控植物抗病免疫反应的一类重要遗传因子,但对调控该类基因表达的启动子结构、功能及作用机制至今仍不清楚。为此,本文以毛白杨一个典型的TIR-NBS类抗病相关基因(PtDrl02)为切入点,首先对其组织与诱导表达模式进行分析,进而采用Touch-DownPCR技术分离获得PtDrl02基因上游启动子区,在运用生物信息学手段对启动子中包含的顺式调控元件进行功能性预测的基础上,构建了启动子全长及5′缺失序列植物表达载体,开展了烟草与杨树的遗传转化研究,对启动子的组织与诱导表达特性进行了分析。同时,鉴定了启动子关键调控域及重要顺式作用元件。通过构建PtDrl02启动子双向表达植物载体对启动子上游调控元件的方向性进行了初步鉴定。利用瞬时共转化与表达技术,研究了毛白杨PtWRKY1转录因子对PtDrl02启动子转录活性的调控作用。此外,对PtDrl02基因5′UTR序列调控PtDrl02启动子活性的分子机制进行了深入分析。基于上述研究,得到如下主要结果:
     1.以三倍体毛白杨[(P. tomentosa×P. bolleana)×P. tomentosa]杂种抗病无性系‘L9’为试材,证明了PtDrl02基因在叶片、叶柄及幼茎组织处特异表达,但与内参ACTIN基因相比,表达水平明显较低。通过对杂种毛白杨苗木顶端第2-4叶片间的区域(包括叶片与茎段)进行病原相关诱导处理,进而对PtDrl02基因的表达作qRT-PCR分析发现,机械创伤、MeJA以及SA等病原相关诱导因子均能显著诱导PtDrl02基因的表达;但对不同因子,PtDrl02基因表现出的转录模式不尽相同,如PtDrl02转录子含量在创伤处理6 h后迅速增加,在12 h时达到峰值,表达量是处理前的9.70倍;而用MeJA或SA处理后6 h时,PtDrl02表达量就达到了顶峰,随着处理时间的延长,基因表达量逐渐下降;在SA诱导下,PtDrl02基因表达在12 h和24h时呈相似水平,这与MeJA诱导有所不同。
     2.首次分离出PtDrl02基因上游启动子区,长度为986-bp。采用PlantCARE、PLACE、NSITE-PL及ScanWM-P等四种生物信息学分析软件分别对启动子区潜在的顺式调控元件进行了预测,发现PtDrl02启动子中不仅存在TATA-box、CAAT-box及GC富集序列等高等植物基本调控元件,同时还包含了多种逆境响应顺式调控元件,如病原(或病原相关)诱导响应元件W-box和GT-1 motif等。
     3.以GUS基因为报告基因,构建了PtDrl02启动子全长序列植物表达载体并开展转化烟草研究。GUS组织化学染色分析显示,PtDrl02启动子主要在转化植株地上部位器官表达,且集中在叶脉、叶柄和茎的皮层组织以及茎的髓部,具有明显的组织特异性。此外,5′序列缺失分析结果表明,PtDrl02启动子-985/-669和-669/-467序列为决定PtDrl02启动子基本活性的正调控区。
     4.系统比较了PtDrl02启动子全长与5′缺失序列转化烟草(茎部组织)在病原相关诱导、ABA与NaCl诱导下的GUS报告蛋白活性。结果发现,包含W-box元件的-669/-467与-244/0启动子片段均有效介导了启动子的机械创伤诱导响应过程,其中-669/-467序列同时也是启动子响应MeJA信号诱导的重要区域;具有GT-1 motif的-467/-244启动子片段则是PtDrl02启动子应答SA与NaCl诱导的关键区域,而包含ABRE motif的-985/-669启动子区对PtDrl02启动子ABA诱导反应的产生起决定性作用。另外,通过构建PtDrl02启动子双向表达植物载体,并对它们的表达活性进行分析,首次证明了PtDrl02启动子上游调控元件在调控下游基因表达时,包括在MeJA诱导条件下,不具方向性。研究还发现,毛白杨PtWRKY1转录因子参与了PtDrl02启动子的活性调控过程。PtWRKY1基因的表达抑制了PtDrl02启动子全长序列的活性,而启动子5′缺失序列(-669/0、-467/0和-244/0)活性却能够被PtWRKY1激活,表明PtWRKY1转录因子在调控PtDrl02启动子活性时具有双重功能。
     5.PtDrl02启动子下游具有一个5′UTR序列,该序列能够对PtDrl02启动子调控下的基因表达起抑制作用,这种抑制作用主要发生在基因转录与蛋白翻译两个水平上。此外,在机械创伤、MeJA、SA、ABA以及NaCl诱导条件下,PtDrl02 5'UTR序列同样对PtDrl02启动子驱动下的基因表达起重要的调控作用。
     6.采用农杆菌介导的遗传转化法成功获得PtDrl02启动子-GUS (P-985/GUS)转基因毛白杨无性系。在此基础上,对PtDrl02启动子驱动下的GUS基因表达进行分析,结果显示,PtDrl02启动子在转基因毛白杨中表现出原有的组织特性即在地上组织处特异表达,其活性明显受机械创伤、MeJA、SA、ABA以及NaCl诱导。进一步研究还发现,由PtDrl02启动子驱动下的基因(GUS)转录与病程相关蛋白基因(PR-1、PR-5与PR-10)表达在时间模式上呈一定程度的同步性。由此可以推断,PtDrl02启动子能够调控下游抗病基因在转化毛白杨中协同病程相关蛋白基因,进而共同参与植株抗病免疫反应过程。
     本研究对毛白杨PtDrl02启动子的分子结构与功能进行了分析,初步阐明了该启动子调控基因表达的分子机制,结果为毛白杨抗病免疫调控机理研究提供了一个有效的突破点,同时为植物TIR-NBS类抗病相关基因表达调控机制分析,以及PtDrl02启动子应用于植物尤其是杨树抗病基因工程研究奠定了重要基础。
Populus tomentosa Carr. (Chinese white poplar) is a wildspread indigenous tree species of Section Leuce in north China. It has several beneficial traits including rapid growth, qualified wood and strong resistance to multiple biotic and/or abiotic stresses. However, regarding the molecular basis of the stress responses of this species, our current knowledge is rather limited, typically for that on the innate immune system. Thus, further studies are highly required. Because the fine-turn of the innate immunity, to a large extent, was determined by the expression of a set of key R (disease resistance)/R-like genes, the structural and functional dissection of these gene promoters can therefore provide a pioneer cue for the immunity studies of Chinese white poplar. While considering that the molecular mechanism underlying the expression regulation of plant TIR-NBS-encoding disease resistant like genes is still unkonw, in this study, we first conducted an investigation on the functional role of a novel TIR-NBS-encoding disease resistance like gene (PtDrl02) promoter from triploid white poplar [(P. tomentosa×P. bolleana)×P. tomentosa] (in Chinese white poplar). The tissue specific expression pattern of PtDrl02 gene and its defense-related stimulated expression profiles were shown. Following that, the promoter sequence of PtDrl02 gene was obtained using a Touch-Down PCR assay. Potential cis-acting regulatory elements within the PtDrl02 promoter region were then predicted with bioinformatic methods. Based on the construction of the chimeric expression vectors respectively bearing the full-length and 5'progressive deletions of the PtDrl02 promoter, and their genetic transformation on tobacco or poplar plants, as well as following reporter detection assay, the tissue-specific and inducible properties of the PtDrl02 promoter were revealed. Moreover, the functional regulatory segments have also been identified. Additionally, the orientation of the upstream regulatory element of PtDrl02 promoter in directing gene expression unpon the treatment of MeJA or not was verified with two artificial PtDrl02 bidirectional promoter vectors. Our study also suggested that the PtDrl02 gene 5'untranslated region (5'UTR), as well as a Populus WRKY transcription factor, PtWRKY1, was involved in the regulation of PtDrl02 promoter activities. The main results obtained in this study are shown as follows:
     1. RT-PCR results indicated that the PtDrl02 gene was active in the leaves, petioles and green, young stems of triploid white poplar, while there was no evidence of expression found in bark and roots, suggestive a tissue-specific expression patten of PtDrl02 gene. Notably, transcript abundance of PtDrl02 gene in these tissues was significantly lower than that of the reference ACTIN gene. qRT-PCR was carried out using total RNA extracted from the poplar aerial parts between the second and fourth leaves at different time points after the treatments of wounding, methyl jasmonate (MeJA) or salicylic acid (SA). The PtDrl02 transcript level could be substantially induced by wounding with a maximal level at 12 h. Treatment with MeJA or SA also significantly increased the transcription of PtDrl02 gene, especially at six hours.
     2. A 986-bp promoter fragment of PtDrl02 gene was obtained by Touch-Down PCR with triploid white poplar genomic DNA as a template. Computer-assisted analysis revealed that the present promoter sequence contained several basal regulatory elements including TATA-box, CAAT-box and GC-rich module, and a cluster of stress-responsive elements such as W-box, GT-1 motif and ABRE motif.
     3. The full-length PtDrl02 promoter (986-bp) was fused to the GUS reporter gene in a plant expression vector (MfpBI121) and transferred into tobacco plants. The transgenic tobacco lines, designated as P-985, were then subjected to histochemical GUS staining, which clearly revealed the tissue specificity of PtDrl02 promoter. GUS gene expression occurred mainly in the aerial parts of the plants, but was strictly confined to the cortex tissues of leaf veins, petioles, stems, and the stem piths. GUS was not expressed in the mesophyll cells, trichomes, epidermis, and vascular bundles. These data suggested that the PtDrl02 promoter displayed a tissue-specific expression pattern, which differed from that of the cauliflower mosaic virus 35S (CaMV 35S) promoter that served as a positive control, directing constitutive GUS reporter expression in the transgenic tobacco. Additionally, it was found that the PtDrl02 promoter had two positive regulatory regions (-985 to-669, and-669 to-467; the transcription start site taken as+1) that were responsible for its basal activity, as revealed by 5'deletion analysis assay.
     4. The PtDrl02 promoter activity can be induced by treatment of wounding, MeJA, SA, ABA (abscisic acid) or NaCl in transgenic tobacco stems. Impresively, deletion analysis further revealed that the promoter segments from-669 to-467 and-244 to 0 contained novel cis-elements in response to wounding/MeJA, and wounding alone respectively, while the-467 to-244 fragment was required for SA-and NaCl-inducible expression of the promoter, and additionally it was found that the-985 to-669 sequence was the promoter region essentially for ABA-induced expression. These regulatory regions exhbited a strong correlation with the predicted stress-responsive motif (W-box, GT-1 motif and ABRE motif) locations in promoter, implying that the PtDrl02 promoter functioned by multiple cis-regulatory elements in distinct and complex patterns to regulate PtDrl02 gene expression. Using the Agrobacterium-mediated transient expression approach, we were able to demonstrate that the PtWRKY1 transcription factor was involved in the regulation of the PtDrl02 promoter activity. Full-length promoter expression was suppressed by the PtWRKYl factor, while expression of PtWRKYl gene significantly upregulated the activity of the truncated promoter regions (-669 to 0,-467 to 0, and-244 to 0) of PtDrl02. This result suggested that the PtWRKY1 factor had dual functional activity in regulating the PtDrl02 promoter expression. In the present study, we also found that the upstream regulatory elements of the PtDrl02 promoter could behave in a bidirectional manner in directing gene expression with or without the treatment of MeJA.
     5. We have demonstrated that the PtDrl025'UTR sequence conferred a negative effect on the PtDrl02 promoter-directed GUS gene expression at both the transcription level and the translation level in unchallenged transgenic tobacco. Moreover, a complex regulatory effect from the 5'UTR sequence on the PtDrl02 promoter activity under different stimulus-inducible conditions (treated with wounding, MeJA, SA, ABA, or NaCl) was also found.
     6. To determine the transcriptional activity of the PtDrl02 promoter in transgenic poplar, a total of six PtDrl02 promoter-GUS (P-985/GUS) transgenic P. tomentosa were obtained via an Agrobacterium-mediated transformation method. Histochemical staining, RT-PCR and qRT-PCR results consistently revealed an aerial-specific expression pattern of the PtDrl02 promoter in transgenic P. tomentosa. Furthermore, it was found that the transcriptional activity of the PtDrl02 promoter could be significantly induced by the treatment of wounding, MeJA, SA, ABA, or NaCl but apparently with a time course manner in transgenic P. tomentosa. Our study also suggested that the PtDrl02 promoter directed GUS transcription, to a certain extent, paralleled to that of the endogenous pathogenesis-related genes (PR-1, PR-5 and PR-10) in time, implying a biotechnolgy potential of the PtDrl02 promoter in use for genetic engineering P. tomentosa with disease resistance, assuming that the foreign R gene (s) could be temporally controled by PtDrl02 promoter and co-functioned with PR genes.
     The aforementioned findings increased our understanding of the molecular structure and function of the PtDrl02 promoter, as well as its regulated role in directing gene expression, which therefore provided new insights into the regulation of the innate immunity of Chinese white poplar. Additionally, these findings also paved a way for further investigation of the regulation of plant TIR-NBS-encoding disease resistance like genes, as well as the biotechnology application of the TIR-NBS-encoding gene promoters, including PtDrl02 promoter, in transgenic plants, typically for that of the Populus spp..
引文
1.郝林,曹军.2000. CaMV 35S双启动子显著提高转基因在拟南芥中表达水平的研究.植物生理学通讯,36(6):517-519.
    2.李一琨,王金发.1998.高等植物启动子研究进展.植物学通报,15(增刊):1-6.
    3.林元震.2006.甜杨葡萄糖-6-磷酸脱氢酶的基因克隆、结构分析和功能鉴定.博士学位论文,北京林业大学,p22.
    4.刘根齐,李秀丽,杨春玲,陈钟,赵世民.2005.不同调控序列控制下的GUS基因在水稻和毛白杨愈伤组织中的瞬时表达.植物生理与分子生物学学报,31(3):327-330.
    5.刘兆明,刘宗旨,白庆武,方荣祥.2002. Agroinfiltration在植物分子生物学研究中的应用.生物工程学报,18(4):411-414.
    6.刘利华,林奇英,谢华安,谢联辉.1999.病程相关蛋白与植物抗病性研究.福建农业学报,14(3):53-58.
    7.卢圣栋主编.1999.现代分子生物学实验技术.北京:中国协和医科大学出版社(第二版)p534-550.
    8.谢纯政,刘海燕,李玲,梁炫强.2008.植物病程相关蛋白PR10研究进展.分子植物育种,6(5):949-953.
    9.谢迎秋,朱祯,刘玉乐,吴茜.2000.一种新型双向启动子-棉花曲叶病毒启动子的分离、序列分析与功能初探.高技术通讯,4:13-17.
    10.王关林,方宏筠主编.2002.植物基因工程(第二版).北京:科学出版社,p666.
    11.张春晓,王文棋,蒋湘宁,陈雪梅.2004.植物基因启动子研究进展.遗传学报,31(12):1455-1464.
    12.张谦.2007.毛白杨抗锈病基因筛选与NBS型抗病基因分析.博士学位论文,北京林业大学,p19-20.
    13.张志毅,李凤兰,朱之悌.1992.白杨染色体加倍技术研究及三倍体育种.北京林业大学学报,14(Suppl.):52-58.
    14. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K.1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell,9(10):1859-1868.
    15. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,15(1):63-67.
    16. Achard P, Lagrange T, El-Zanaty AF, Mache R.2003. Architecture and transcriptional activity of the initiator element of the TATA-less RPL21 gene. Plant J,35(6):743-752.
    17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.1990. Basic local alignment search tool. J MolBiol,215:403.
    18. Ameline-Torregrosa C, Wang BB, O'Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB.2008. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol,146(1):5-21.
    19. Asao H, Yoshida K, Nishi Y, Shinmyo A.2003. Wound-responsive cis-element in the 5'-upstream region of cucumber ascorbate oxidase gene. Biosci Biotechnol Biochem,67(2):271-277.
    20. Baker SS, Wilhelm KS, Thomashow MF. 1994. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol, 24:701-713.
    21. Ballas N, Wong LM, Theologis A.1993. Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). J Mol Biol,233: 580-596.
    22. Bassett CL, Nickerson ML, Farrell RE, Harrison M.2004. Multiple transcripts of a gene for a leucine-rich repeat receptor kinase from morning glory (Ipomoea nil) originate from different TATA boxes in a tissue-specific manner. Mol Genet Genomics,271(6):752-760.
    23. Bate N, Twell D.1998. Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol,37:859-869.
    24. Baumlein H, Nagy I, Villarroel R, Inze D, Wobus U.1992. Cis-analysis of a seed protein gene promoter:the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J,2:233-239.
    25. Beaudoin N, Rothstein SJ.1997. Developmental regulation of two tomato lipoxygenase promoters in transgenic tobacco and tomato. Plant Mol Biol,33:835-846.
    26. Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN.2007. Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep, 26(8):1275-1282.
    27. Benfey PN, Ren L, Chua NH.1989. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J,8(8): 2195-2202.
    28. Benfey PN, Chua NH.1990. The cauliflower mosaic virus 35S promoter:combinatorial regulation of transcription in plants. Science,250:959-966.
    29. Bentley DL, Groudine M.1986. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature,321(6071):702-706.
    30. Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, Scharf KD.2000. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant J,22:355-365.
    31. Bhullar S, Datta S, Advani S, Chakravarthy S, Gautam T, Pental D, Burma PK.2007. Functional analysis of cauliflower mosaic virus 35S promoter:re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity. Plant Biotechnol J,5(6):696-708.
    32. Bolle C, Sopory S, Lubberstedt T, Herrmann RG, Oelmuller R.1994. Segments encoding 5'-untranslated leaders of genes for thylakoid proteins contain cis-elements essential for transcription. Plant J,6(4):513-523.
    33. Boter M, Ruiz-Rivero O, Abdeen A, Prat S.2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev,18:1577-1591.
    34. Bousquet-Antonelli C, Presutti C, Tollervey D.2000. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell,102(6):765-775.
    35. Bradford MM.1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,72:248-254.
    36. Brenet F, Dussault N, Delfino C, Boudouresque F, Chinot O, Martin PM, Ouafik LH.2006. Identification of secondary structure in the 5'-untranslated region of the human adrenomedullin mRNA with implications for the regulation of mRNA translation. Oncogene,25(49):6510-6519.
    37. Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM.2003. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol,132(2):1020-032.
    38. BunimovN, Smith JE, Gosselin D, Laneuville O.2007. Translational regulation of PGHS-1 mRNA: 5'untranslated region and first two exons conferring negative regulation. Biochim Biophys Acta, 1769(2):92-105.
    39. Burch-Smith TM, Dinesh-Kumar SP.2007. The functions of plant TIR domains. Sci STKE,401: pe46.
    40. Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP.2007. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol,5(3):e68.
    41. Bulow L, Steffens NO, Galuschka C, Schindler M, Hehl R.2006. AthaMap:from in silico data to real transcription factor binding sites. In Silico Biol,6(3):243-252.
    42. Callis J, Raasch JA, Vierstra RD.1990. Ubiquitin extension proteins of Arabidopsis thaliana. J Biol Chem,265:12486-12493.
    43. Cannons AC, Cannon J.2002. The stability of the Chlorella nitrate reductase mRNA is determined by the secondary structure of the 5'-UTR:implications for posttranscriptional regulation of nitrate reductase. Planta,214(3):488-491.
    44. Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR.1988. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J,7:1929-1936.
    45. Cercos M, Gomez-Cadenas A, Ho THD.1999. Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers:cis-and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J,19:107-118.
    46. Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N.1998. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell,10:673-683.
    47. Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R.2006. Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol,123(1):1-12.
    48. Chekanova JA, Dutko JA, Mian IS, Belostotsky DA.2002. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3'→5'exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res,30(3):695-700.
    49. Chen C, Chen Z.2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol,129(2):706-716.
    50. Chisholm ST, Coaker G, Day B, Staskawicz BJ.2006. Host-microbe interactions:shaping the evolution of the plant immune response. Cell,124(4):803-814.
    51. Christensen AH, Sharrock RA, Quail PH.1992. Maize polyubiquitin genes:structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol,18(4):675-689.
    52. Chung HJ, Fu HY, Thomas TL.2005. Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene. Planta,220(3):424-433.
    53. Chung BYW, Simons C, Firth AE, Brown CM, Hellens RP.2006. Effect of 5'UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics,7:120.
    54. Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE.2008. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68(1-2):81-92.
    55. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE.1993. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol,23(3):567-581.
    56. Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G 2004. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol,136:3660-3669.
    57. Curi GC, Chan RL, Gonzalez DH.2005. The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. J Exp Bot,56(419):2563-2571.
    58. Curie C, Axelos M, Bardet C, Atanassova R, Chaubet N, Lescure B.1993. Modular organization and development activity of an Arabidopsis thaliana EF-1 alpha gene promoter. Mol Gen Genet, 238(3):428-436.
    59. Curie C, McCormick S.1997. A strong inhibitor of gene expression in the 5' untranslated region of the pollen-specific LAT59 gene of tomato. Plant Cell,9(11):2025-2036.
    60. Dai S, Zhang Z, Bick J, Beachy RN.2006. Essential role of the Box II cis element and cognate host factors in regulating the promoter of Rice tungro bacilliform virus. J Gen Virol,87(Pt 3):715-722.
    61. Datta N, Cashmore AR.1989. Binding of a pea nuclear protein to promoters of certain photoregulated genes is modulated by phosphorylation. Plant Cell,1:1069-1077.
    62. Dennis C, Surridge C.2000. Arabidopsis thaliana genome. Introduction. Nature,408(6814):791.
    63. Despres C, DeLong C, Glaze S, Liu E, Fobert PR.2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell,12:279-290.
    64. Dhadi SR, Krom N, Ramakrishna W.2009. Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene,429(1-2):65-73.
    65. Donald RG, Cashmore AR.1990. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J,9(6):1717-1726.
    66. Doyle MC, Han IS.2001. The roles of two TATA boxes and 3'-flanking region of soybean beta-tubulin gene (tubB1) in light-sensitive expression. Mol Cells,12(2):197-203.
    67. Du L, Chen Z.2000. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen-and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J,24(6):837-847.
    68. Ellerstrom M, Stalberg K, Ezcurra I, Rask L.1996. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol,32:1019-1027.
    69. Elliott KA, Shirsat AH.1998. Promoter regions of the extA extensin gene from Brassica napus control activation in response to wounding and tensile stress. Plant Mol Biol,37:675-687.
    70. Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WJ.1993. Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J,4:433-443.
    71. Elmayan T, Tepfer M.1995. Evaluation in tobacco of the organ specificity and strength of the rol D promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res,4:388-396.
    72. Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE.1999. Early nuclear events in plant defence signalling:rapid gene activation by WRKY transcription factors. EMBO J,18(17): 4689-4699.
    73. Ezcurra I, Ellerstrom M, Wycliffe P, Stalberg K, Rask L.1999. Interaction between composite elements in the napA promoter:both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol,40:699-709.
    74. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A.2006. Pfam:clans, web tools and services. Nucleic Acids Res,34(Database issue):D247-251.
    75. Fitzgerald HA, Chern MS, Navarre R, Ronald PC.2004. Overexpression of (At)NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact, 17(2):140-151.
    76. Foster E, Hattori J, Labbe H, Ouellet T, Fobert PR, James LE, Iyer VN, Miki BL.1999. A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Mol Biol,41:45-55.
    77. Frey PM, Scharer-Hernandez NG, Fiitterer J, Potrykus I, Puonti-Kaerlas J.2001. Simultaneous analysis of the bidirectional African cassava mosaic virus promoter activity using two different luciferase genes. Virus Genes,22(2):231-242.
    78. Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y.2000. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell,12:901-915.
    79. Gilmartin PM, Sarokin L, Memelink J, Chua NH.1990. Molecular light switches for plant genes. Plant Cell,2:369-378.
    80. Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR.1988. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA,85(19):7089-7093.
    81. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S.2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,296(5565):92-100.
    82. Goldsbrough AP, Albrecht H, Stratford R.1993. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J,3:563-571.
    83. Gomez-Maldonado J, Avila C, Torre F, Canas R, Canovas FM, Campbell MM.2004. Functional interactions between a glutamine synthetase promoter and MYB proteins. Plant J,39:513-526.
    84. Grace ML, Chandrasekharan MB, Hall TC, Crowe AJ.2004. Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. J Biol Chem,279(9): 8102-8110.
    85. Gray-Mitsumune M, Molitor EK, Cukovic D, Carlson JE, Douglas CJ.1999. Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar. Plant Mol Biol,39(4):657-69.
    86. Grierson C, Du JS, Zabala MT, Beggs K, Smith C, Holdsworth M, Bevan M.1994. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J,5:815-826.
    87. Guilfoyle TJ, Ulmasov T, Hagen G.1998. The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci,54(7):619-627.
    88. Gurr SJ, Rushton PJ.2005. Engineering plants with increased disease resistance:how are we going to express it?_Trends Biotechnol,23(6):283-290
    89. Hamilton DA, Schwarz YH, Mascarenhas JP.1998. A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol,38:663-669.
    90. Hartmann U, Valentine WJ, Christie JM, Hays J, Jenkins GI, Weisshaar B.1998. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol,36:741-754.
    91. Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B.2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol,57:155-171.
    92. Hatton D, Sablowski R, Yung MH, Smith C, Schuch W, Bevan M.1995. Tow classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant J, 7:859-876.
    93. Hattori T, Terada T, Hamasuna S.1995. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1:analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J,7(6):913-925.
    94. He LM, Du CG, Covaleda L, Xu ZY, Robinson AF, Yu JZ, Kohel RJ, Zhang HB.2004. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Mol Plant-Microbe Interact,17:1234-1241.
    95. He XF, Fang YY, Feng L, Guo HS.2008. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett,582(16):2445-2452.
    96. He Y, Gan S.2001. Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Mol Biol,47:595-605.
    97. Hess MA, Duncan RF.1996. Sequence and structure determinants of Drosophila Hsp70 mRNA translation:5'UTR secondary structure specifically inhibits heat shock protein mRNA translation. Nucleic Acids Res,24(12):2441-2449.
    98. Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y.2008. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics,279(3):303-312.
    99. Higo K, Ugawa Y, Iwamoto M, Korenaga T.1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res,27(1):297-300.
    100. Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF.1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development,125:1711-1721.
    101. Hill A, Nantel A, Rock CD, Quatrano RS.1996. A conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors. J Biol Chem,271(7):3366-3374.
    102. Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Muller D, Hensel G, Heise A, Schutzendubel A, Kumlehn J, Schweizer P.2010. Promoters of the Barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell, DOI: 10.1105/tpc.109.067934.
    103. Hiroyuki K, Terauchi R.2008. Regulation of expression of rice thaumatin-like protein:inducibility by elicitor requires promoter W-box elements. Plant Cell Rep,27(9):1521-1528.
    104. Hobo T, Kowyama Y, Hattori T.1999. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA,96(26):15348-15353.
    105. Hollick JB, Gordon MP.1993. A poplar tree proteinase inhibitor-like gene promoter is responsive to wounding in transgenic tobacco. Plant Mol Biol,22(4):561-572.
    106. Hong JK, Hwang BK.2006. Promoter activation of pepper class Ⅱ basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta,223(3):433-448.
    107. Hong JK, Lee SC, Hwang BK.2005. Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene,356:169-180.
    108. Hollick JB, Gordon MP.1993. A poplar tree proteinase inhibitor-like gene promoter is responsive to wounding in transgenic tobacco. Plant Mol Biol,22(4):561-572.
    109. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT.1985. A simple and general method for transferring genes into plants. Science,227:1229-1231.
    110. Hua XJ, Van de Cotte B, Van Montagu M, Verbruggen N.2001. The 5'untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant J,26(2): 157-169.
    111. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S.2009. The genome of the cucumber, Cucumis sativus L. Nat Genet,41(12):1275-1281.
    112. Huang Y, Xiao B, Xiong L.2007. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta,226(1):73-85.
    113. Hulbert SH, Webb CA, Smith SM, Sun Q.2001. Resistance gene complexes:Evolution and utilization. Annu Rev Phytopathol,39:285-312.
    114. Hultmark D, Klemenz R, Gehring WJ.1986. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell,44(3):429-438.
    115. Hwang SH, Lee IA, Yie SW, Hwang DJ.2008. Identification of an OsPR10α promoter region responsive to salicylic acid. Planta,227(5):1141-1150.
    116. Itzhaki H, Maxson JM, Woodson WR.1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GSTI) gene. Proc Natl Acad Sci USA,91:8925-8929.
    117. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P; French-Italian Public Consortium for Grapevine Genome Characterization.2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature,449(7161):463-467.
    118. Jansson S, Douglas CJ.2007. Populus:a model system for plant biology. Annu Rev Plant Biol,58: 435-458.
    119. Jefferson RA, Kavanagh TA, Bevan MW.1987. GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J,6(13):3901-3907.
    120. Johnson C, Boden E, Arias J.2003. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell,15(8): 1846-1858.
    121. Joshi CP.1987. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res,15(16):6643-6653.
    122. Kawagoe Y, Murai N.1992. Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein beta-phaseolin gene conferring spatial and temporal control. Plant J,2(6):927-936.
    123. Kawaoka A, Kawamoto T, Sekine M, Yoshida K, Takano M, Shinmyo A.1994. A cis-acting element and a trans-acting factor involved in the wound-induced expression of a horseradish peroxidase gene. Plant J,6(1):87-97.
    124.Keddie JS, Tsiantis M, Piffanelli P, Cella R, Hatzopoulos P, Murphy DJ.1994. A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Mol Biol,24(2):327-340.
    125. Keller B, Heierli D.1994. Vascular expression of the grpl.8 promoter is controlled by three specific regulatory elements and one unspecific activating sequence. Plant Mol Biol,26(2): 747-756.
    126. Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho HT.2006. Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell,18:2958-2970.
    127. Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC.2006. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron. Mol Genet Genomics,276(4):351-368.
    128. Kim SY, Chung HJ, Thomas TL.1997. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J,11(6):1237-1251.
    129. Kim Y, Buckley K, Costa MA, An G. 1994. A 20 nucleotide upstream element is essential for the nopaline synthase (nos) promoter activity. Plant Mol Biol,24:105-117.
    130. Kiran K, Ansari SA, Srivastava R, Lodhi N, Chaturvedi CP, Sawant SV, Tuli R.2006. The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. Plant Physiol,142(1):364-376.
    131. Kirsch C, Takamiya-Wik M, Schmelzer E, Hahlbrock K, Somssich IE.2000. A novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. Mol.Plant Pathol,1:243-251.
    132. Klevebring D, Street NR, Fahlgren N, Kasschau KD, Carrington JC, Lundeberg J, Jansson S.2009. Genome-wide profiling of Populus small RNAs. BMC Genomics,10(1):620.
    133. Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR.2004. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol,135(3):1710-1717.
    134. Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK.2003. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J,36:780-793.
    135. Kobayashi T, Yoshihara T, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK.2007. Promoter analysis of iron-deficiency-inducible barley IDS3 gene in Arabidopsis and tobacco plants. Plant Physiol Biochem,45(5):262-269.
    136. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F.2008. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant MolBiol,66(6):619-636.
    137. Kozak M.1989. Circumstances and mechanisms of inhibition of translation by secondary structure in eukaryotic mRNAs. Mol Cell Biol,9(11):5134-5142.
    138. Kozak M.1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem,266(30):19867-19870.
    139.Kwak MS, Oh MJ, Lee SW, Shin JS, Paek KH, Bae JM.2007. A strong constitutive gene expression system derived from ibAGPl promoter and its transit peptide. Plant Cell Rep,26(8): 1253-1262.
    140. Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP.2004. The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol,134(3):1006-1016.
    141. Lam E, Chua NH.1990. GT-1 binding site confers light responsive expression in transgenic tobacco. Science,248:471-474.
    142. Lawrence SD, Dervinis C, Novak N, Davis JM.2006. Wound and insect herbivory responsive genes in poplar. Biotechnol Lett,28(18):1493-1501.
    143. Le Hir H, Nott A, Moore MJ.2003. How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci,28(4):215-220.
    144. Lee SC, Hwang BK.2006. Identification and deletion analysis of the promoter of the pepper SAR8.2 gene activated by bacterial infection and abiotic stresses. Planta,224(2):255-267.
    145. Lee SW, Heinz R, Robb J, Nazar RN.1994. Differential utilization of alternate initiation sites in a plant defense gene responding to environmental stimuli. Eur J Biochem,226(1):109-114.
    146. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S.2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res,30(1):325-327.
    147. Lescot M, Rombauts S, Zhang J, Aubourg S, MatheC, Jansson S, Rouze P, Boerjan W.2004. Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theor Appl Genet,109:10-22.
    148. Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ.2002. Manipulating gene expression for the metabolic engineering of plants. Metab Eng,4(1):67-79.
    149. Li Y, Yang S, Yang H, Hua J.2007. The TIR-NB-LRR gene SNC1 is regulated at the transcript level by multiple factors. Mol Plant Microbe Interact,20(11):1449-1456.
    150. Li YF, Zhu R, Xu P.2005. Activation of the gene promoter of barley beta-1,3-glucanase isoenzyme GⅢ is salicylic acid (SA)-dependent in transgenic rice plants. J Plant Res,118(3):215-221.
    151. Liang H, Maynard CA, Allen RD, Powell WA.2001. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol,45(6): 619-629.
    152. Lin CY, Chen YH, Lee HC, Tsai HJ.2004. Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene,334:63-72.
    153. Lindsay WP, McAlister FM, Zhu Q, He XZ, Droge-Laser W, Hedrick S, Doerner P, Lamb C, Dixon RA.2002. KAP-2, a protein that binds to the H-box in a bean chalcone synthase promoter, is a novel plant transcription factor with sequence identity to the large subunit of human Ku autoantigen. Plant Mol Biol,49:503-514.
    154. Liu JJ, Ekramoddoullah AK.2006. The family 10 of plant pathogenesis-related proteins:Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology,68:3-13.
    155. Loake GJ, Faktor O, Lamb CJ, Dixon RA.1992. Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenypropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci USA, 89:9230-9234.
    156. Loon, LC van, Strien EA van.1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol,55 (2):85-97.
    157. Lu CA, Ho THD, Ho SL, Yu SM.2002. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-Amylase gene expression. Plant Cell,14: 1963-1980.
    158. Lu H, Zeng Q, Zhao Y, Wang S, Jiang X.2003. Xylem-specific expression of a GRP1.8 promoter::4CL gene construct in transgenic tobacco. Plant Growth Regulation,41(3):279-286.
    159. Lu H, Zhao YL, Jiang XN.2004. Stable and specific expression of 4-coumarate:coenzyme A ligase gene (4CL1) driven by the xylem-specific Pto4CL1 promoter in the transgenic tobacco. Biotechnol Lett,26(14):1147-1152.
    160. Luo M, Orsi R, Patrucco E, Pancaldi S, Cella R.1997. Multiple transcription start sites of the carrot dihydrofolate reductase-thymidylate synthase gene, and sub-cellular localization of the bifunctional protein. Plant Mol Biol,33(4):709-722.
    161. Lv X, Song X, Rao G, Pan X, Guan L, Jiang X, Lu H.2009. Construction vascular-specific expression bi-directional promoters in plants. J Biotechnol,141(3-4):104-108.
    162. Malik K, Wu K, Li XQ, Martin-Heller T, Hu M, Foster E, Tian L, Wang C, Ward K, Jordan M, Brown D, Gleddie S, Simmonds D, Zheng S, Simmonds J, Miki B.2002. A constitutive gene expression system derived from the tCUP cryptic promoter elements. Theor Appl Genet,105: 505-514.
    163. Mandel T, Fleming AJ, Krahenbuhl R, Kuhlemeier C.1995. Definition of constitutive gene expression in plants:the translation initiation factor 4A gene as a model. Plant Mol Biol,29: 995-1004.
    164. Martinez-Hernandez A, Lopez-Ochoa L, Arguello-Astorga G, Herrera-Estrella L.2002. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Plant Physiol,128(4):1223-1233.
    165. Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H. 2005. Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J,42(3):305-314.
    166. McElroy D, Zhang W, Cao J, Wu R.1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell,2(2):163-171.
    167. McCarthy JE.1998. Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev,62(4):1492-1553.
    168. McHale L, Tan X, Koehl P, Michelmore RW.2006. Plant NBS-LRR proteins:adaptable guards. Genome Biol,7(4):212.
    169. Meijer HA, Thomas AA.2002. Control of eukaryotic protein synthesis by upstream open reading frames in the 5'-untranslated region of an mRNA. Biochem J,367(Ptl):1-11.
    170. Meller Y, Sessa G, Eyal Y, Fluhr R.1993. DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol Biol,23:453-463.
    171. Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P.2002. A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol,130: 111-119.
    172. Menke FL, Champion A, Kijne JW, Memelink J.1999. A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J,18:4455-4463.
    173. Mentag R, Luckevich M, Morency MJ, Seguin A.2003. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol,23(6):405-411.
    174. Meyers BC, Dickerman AW, Michelmore RW.1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317-332.
    175. Meyers BC, Morgante M, Michelmore RW.2002. TIR-X and TIR-NBS proteins:two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J,32(1):77-92.
    176. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW.2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell,15(4):809-834.
    177. Mitra A, Han J, Zhang ZJ, Mitra A.2009. The intergenic region of Arabidopsis thaliana cabl and cab2 divergent genes functions as a bidirectional promoter. Planta,229(5):1015-1022.
    178. Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL.1993. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA,90: 5939-5943.
    179. Morello L, Bardini M, Sala F, Breviario D.2002. A long leader intron of the Ostub16 rice beta-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J,29(1):33-44.
    180. Morikami A, Matsunaga R, Tanaka Y, Suzuki S, Mano S, Nakamura K.2005. Two cis-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco. Mol Genet Genomics,272(6):690-699.
    181. Morishima A.1998. Identification of preferred binding sites of a light-inducible DNA-binding factor (MNF1) within 5'-upstream sequence of C4-type phosphoenolpyruvate carboxylase gene in maize. Plant Mol Biol,38:633-646.
    182. Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J.1998. Functional dissection of a sugar-repressed alpha-amylase gene (RamylA) promoter in rice embryos. FEBS Lett, 423:81-85.
    183. Morris DR, Geballe AP.2000. Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol,20(23):8635-8642.
    184. Muhlrad D, Decker CJ, Parker R.1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol,15(4):2145-2156.
    185. Myers SJ, Huang Y, Genetta T, Dingledine R.2004. Inhibition of glutamate receptor 2 translation by a polymorphic repeat sequence in the 5'-untranslated leaders. J Neurosci,24(14):3489-3499.
    186. Nakamura M, Tsunoda T, Obokata J.2002. Photosynthesis nuclear genes generally lack TATA-boxes:a tobacco photosystem I gene responds to light through an initiator. Plant J,29(1): 1-10.
    187. Nishiuchi T, Shinshi H, Suzuki K.2004. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves:possible involvement of NtWRKYs and autorepression. J Biol Chem,279(53):55355-55361.
    188. Norris SR, Meyer SE, Callis J.1993. The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol, 21(5):895-906.
    189. Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H. 2007. ATTED-Ⅱ:a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res,35(Database issue):D863-869.
    190. O'Connor TR, Dyreson C, Wyrick JJ.2005. Athena:a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics,21(24):4411-4413.
    191. Odell JT, Nagy F, Chua NH.1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature,313:810-812.
    192. Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M,Takahashi M, Mori S, Nishizawa NK.2006. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot,57:2867-2878.
    193. Ohme-Takagi M, Shinshi H.1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell,7:173-182.
    194. Ohme-Takagi M, Suzuki K, Shinshi H.2000. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol,41:1187-1192.
    195. Ono A, Izawa T, Chua NH, Shimamoto K.1996. The rab16B promoter of rice contains two distinct abscisic acid-responsive elements. Plant Physiol,112:483-491.
    196. Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F.2001. A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific through GCN4 motif. J Biol Chem,27: 14139-14152.
    197.O'Shea-Greenfield A, Smale ST.1992. Roles of TATA and initiator elements in determining the start site location and direction of RNA polymerase II transcription. J Biol Chem,267(2): 1391-1402.
    198. Padmanabhan C, Zhang X, Jin H.2009. Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol,12(4):465-72.
    199. Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E.2006. AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol,140(3):818-829.
    200. Palm CJ, Costa MA, An G, Ryan CA.1990. Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato. Proc Natl Acad Sci USA,87: 603-607.
    201. Pan Q, Simpson RU.1999. c-myc intron element-binding proteins are required for 1, 25-dihydroxyvitamin D3 regulation of c-myc during HL-60 cell differentiation and the involvement of HOXB4. J Biol Chem,274(13):8437-8444.
    202. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ.2004. Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol,135(4):2150-2161.
    203. Park HC, Kim ML, Lee SM, Bahk JD, Yun DJ, Lim CO, Hong JC, Lee SY, Cho MJ, Chung WS. 2007. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter. Nucleic Acids Res,35(11):3612-3623.
    204. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS.2009. The Sorghum bicolor genome and the diversification of grasses. Nature,457(7229):551-556.
    205. Patzlaff A, Newman LJ, Dubos C, Whetten RW, Smith C, McInnis S, Bevan MW, Sederoff RR, Campbell MM.2003. Characterisation of Pt MYB1, an R2R3-MYB from pine xylem. Plant Mol Biol, 53:597-608.
    206. Pelham H.1985. Activation of heat-shock genes in eukaryotes. Trends Genet,1:31-35.
    207. Pesole G, Liuni S.1999. Internet resources for the functional analysis of 5'and 3'untranslated regions of eukaryotic mRNA. TIG,15(9):378.
    208. Pontier D, Balague C, Bezombes-Marion I, Tronchet M, Deslandes L, Roby D.2001. Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response. Plant J,26:495-507.
    209. Potenza C, Aleman L, Sengupta-Gopalan C.2004. Targeting transgene expression in research, agricultural, and environmental applications:Promoters used in plant transformation. In Vitro Cellular and Development Biology-Plant,40(1):1-22.
    210. Qian W, Tan G, Liu H, He S, Gao Y, An C.2007. Identification of a bHLH-type G-box binding factor and its regulation activity with G-box and Box I elements of the PsCHS1 promoter. Plant Cell Rep,26(1):85-93.
    211. Rahman M, Hirabayashi Y, Ishii T, Kodera T, Watanabe M, Takasawa N, Sasaki T.2001. A repressor element in the 5'-untranslated region of human Pax5 exon 1A. Gene,263(1-2):59-66.
    212. Rasco-Gaunt S, Liu D, Li CP, Doherty A, Hagemann K, Riley A, Thompson T, Brunkan C, Mitchell M, Lowe K, Wu K, Malik K, Tian L, Hu M, Martin T, Foster E, Brown D, Miki B.2001. Enhancers and core promoter elements are essential for the activity of a cryptic gene activation sequence from tobacco, tCUP. Mol Genet Genomics,265:763-770.
    213. Rawat R, Xu ZF, Yao KM, Chye ML.2005. Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Mol Biol, 57:629-643.
    214. Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewes A, Ezcurra I,Rask L, Baumlein H.2000. Gene regulation during late embryogenesis:the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J,21:401-408.
    215. Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S.2007. Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol,144(1): 347-366.
    216. Ringli C, Keller B.1998. Specific interaction of the tomato bZIP transcription factor VSF-1 with a non-palindromic DNA sequence that controls vascular gene expression. Plant Mol Biol,37: 977-988.
    217. Robatzek S, Somssich IE.2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev,16(9):1139-1149.
    218. Rocher A, Dumas C, Cock JM.2005. A W-box is required for full expression of the SA-responsive gene SFR2. Gene,344:181-192.
    219. Rose AB, Beliakoff JA.2000. Intron-mediated enhancement of gene expression independent of unique intron sequence and splicing. Plant Physiol,122:535-542.
    220. Rose AB.2002. Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA,8(11):1444-1453.
    221. Rose AB.2004. The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J,40(5):744-751.
    222. Rouster J, Leah R, Mundy J, Cameron-Mills V.1997. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J,11(3):513-523
    223. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J.2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellularalgae. Genes Dev,15:2122-2133.
    224. Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE.1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J,15(20):5690-5700.
    225. Rushton PJ, Somssich IE.1998. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol,1(4):311-315.
    226. Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE.2002. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. Plant Cell,14 (4):749-762.
    227. Samadder P, Sivamani E, Lu J, Li X, Qu R.2008. Transcriptional and post-transcriptional enhancement of gene expression by the 5'UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics,279(4):429-439.
    228. Sasaki K, Ito H, Mitsuhara I, Hiraga S, Seo S, Matsui H, Ohashi Y.2006. A novel wound-responsive cis-element, VWRE, of the vascular system-specific expression of a tobacco peroxidase gene, tpoxNl. Plant Mol Biol,62(4-5):753-768.
    229. Sasaki K, Mitsuhara I, Seo S, Ito H, Matsui H, Ohashi Y.2007. Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the tobacco tpoxN1 gene. Plant J,50(6):1079-1092.
    230. Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G.1992. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell,4:689-700.
    231. Schmidt S, Lombardi M, Gardiner DM, Ayliffe M, Anderson PA.2007. The Mflax rust resistance pre-mRNA is alternatively spliced and contains a complex upstream untranslated region. Theor Appl Genet,115(3):373-382.
    232. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, CarpitaNC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK.2009. The B73 maize genome:complexity, diversity, and dynamics. Science,326(5956): 1112-1115.
    233. Schulze-Lefert P, Dangl JL, Becker-Andre M, Hahlbrock K, Schulz W.1989. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcon sythase gene. EMBOJ,8:651-656.
    234. Sebestyen E, Nagy T, Suhai S, Barta E.2009. DoOPSearch:a web-based tool for finding and analysing common conserved motifs in the promoter regions of different chordate and plant genes. BMC Bioinformatics,10(Suppl)6:S6.
    235. Seppanen SK, Syrjala L, von Weissenberg K, Teeri TH, Paajanen L, and Pappinen A.2004. Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep,22(8):584-593.
    236. Shah J, Klessig DF.1996. Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related beta-1,3-glucanase gene, PR-2d. Plant J,10(6):1089-1101.
    237. Shen Q, Ho TH.1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell,7:295-307.
    238. Shen Q, Zhang P, Ho THD.1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell,8:1107-1119.
    239. Shinshi H, Usami S, Ohme-Takagi M.1995. Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol,27(5):923-932.
    240. Singh KB.1998. Transcriptional regulation in plants:the importance of combinatorial comtrol. Plant Pysiol,118:1111-1120.
    241. Skinner JS, Meilan R, Mal C, Strauss SH.2003. The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Molecular Breeding,12:119-132.
    242. Sobajima H, Tani T, Chujo T, Okada K, Suzuki K, Mori S, Minami E, Nishiyama M, Nojiri H, Yamane H.2007. Identification of a jasmonic acid-responsive region in the promoter of the rice 12-oxophytodienoic acid reductase 1 gene OsOPRl. Biosci Biotechnol Biochem,71(12): 3110-3115.
    243. Staal J, Dixelius C.2007. Tracing the ancient origins of plant innate immunity. Trends Plant Sci, 12(8):334-342.
    244. Staal J, KaliffM, Dewaele E, Persson M, Dixelius C.2008. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J,55(2): 188-200.
    245. Stefanovic B, Lindquist J, Brenner DA.2000. The 5'stem-loop regulates expression of collagen alphal(Ⅰ) mRNA in mouse fibroblasts cultured in a three-dimensional matrix. Nucleic Acids Res, 28(2):641-657.
    246. Stockinger EJ, Gilmour SJ, Thomashow MF. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA,94(3):1035-1040.
    247. Sugimoto K, Takeda S, Hirochika H.2003. Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant J,36:550-564.
    248. Sutoh K, Yamauchi D.2003. Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J,34:636-645.
    249. Suzuki M, Kao CY, McCarty DR.1997. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell,9:799-807.
    250. Swiatecka-Hagenbruch M, Liere K, Borner T.2007. High diversity of plastidial promoters in Arabidopsis thaliana. Mol Genet Genomics,277(6):725-734.
    251. Takeda S, Sugimoto K, Otsuki H, Hirochika H.1999. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Ttol is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J,18:383-393.
    252. Takken FL, Albrecht M, Tameling WI.2006. Resistance proteins:molecular switches of plant defence. Curr Opin Plant Biol,9(4):383-390.
    253. Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW. 2007. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol,7:56.
    254. Taylor A, Zhang L, Herrmann J, Wu B, Kedes L, Wells D.1997. Cell-cycle-specific transcription termination within the human histone H3.3 gene is correlated with specific protein-DNA interactions. Genet Res,69(2):101-111.
    255. Terzaghi WB, Cashmore AR.1995. Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol,46:445-474.
    256. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG.1997. The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,25:4876-4882.
    257. Tilly JJ, Allen DW, Jack T.1998. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development,125:1647-1657.
    258. Timko M P, L. Herdies E. de Alameida, A. R. Cashmore, J. Leemans, E. Krebbers.1988. Genetic engineering of nuclear-encoded components of the photosynthetic apparatus of Arabidopsis. In: Phillips, M., S. P. Shoemaker, R. D. Middlekauff, and R.M. Ottenbrite. eds. The Impact of Chemistry on Biotechnology-A Multidisciplinary Discussion. ACS Books. Washington, DC., 279-295.
    259. Torres-Schumann S, Ringli C, Heierli D, Amrhein N, Keller B.1996. In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression. Plant J,9:283-296.
    260. Toyofuku K, Umemura T, Yamaguchi J.1998. Promoter elements required for sugar-repression of the RAmy3D gene for alpha-amylase in rice. FEBS Lett,428:275-280.
    261. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell,16(9):2481-2498.
    262. Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K.2007. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J,49(1):46-63.
    263. Tremousayque D, Manevski A, Bardet C, Lescure N, Lescure B.1999. Plant interstitial telomere mitifs participate in the control of gene expression in root meristems. Plant J,20:553-561.
    264. Trindade LM, van Berloo R, Fiers M, Visser RG. 2005. PRECISE:software for prediction of cis-acting regulatory elements. J Hered,96(5):618-622.
    265. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D.2006. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray). Science, 313(5793):1596-1604.
    266. Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S.1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev,5:496-507.
    267. Ulmasov T, Hagen G, Guilfoyle T.1994. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol Biol,26: 1055-1064.
    268. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA,97(21): 11632-11637.
    269. Usharani KS, Periasamy M, Malathi VG.2006. Studies on the activity of a bidirectional promoter of Mungbean yellow mosaic India virus by agroinfiltration. Virus Res,119(2):154-162.
    270. Vega Laso MR, Zhu D, Sagliocco F, Brown AJ, Tuite MF, McCarthy JE.1993. Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader. J Biol Chem,268(9):6453-6462.
    271. Venter.2007. Synthetic promoters:genetic control through cis engineering. Trends Plant Sci, 12(3):118-124.
    272. Vickers CE, Xue G, Gresshoff PM.2006. A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol,62(1-2): 195-214.
    273. Wang J, Jiang J, Oard J.2000. Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L). Plant Sci,156:201-211.
    274. Wang J, Oard JH.2003. Rice ubiquitin promoters:deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep,22(2):129-134.
    275. Wang SJ, Lan YC, Chen SF, Chen YM, Yeh KW.2002. Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol Biol,48(3):223-231.
    276. Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F.1999. Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol,40:1-12.
    277. Wilmink A, van de Ven BC, Dons JJ.1995. Activity of constitutive promoters in various species from the Liliaceae. Plant Mol Biol,28(5):949-955.
    278. Wood MW, VanDongen HM, VanDongen AM.1996. The 5'-untranslated region of the N-methyl-D-aspartate receptor NR2A subunit controls efficiency of translation. J Biol Chem, 271(14):8115-8120.
    279. Wu C, Washida H, Onodera Y, Harada K, Takaiwa F.2000. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter:minimal cis-element requirements for endosperm-specific gene expression. Plant J,23:415-421.
    280. Wu CY, Suzuki A, Washida H, Takaiwa F.1998. The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J,14(6):673-683.
    281. Wu K, Malik K, Tian L, Hu M, Martin T, Foster E, Brown D, Miki B.2001. Enhancers and core promoter elements are essential for the activity of a cryptic gene activation sequence from tobacco, tCUP. Mol Genet Genomics,265:763-770.
    282. Xie M, He Y, Gan S.2001. Bidirectionalization of polar promoters in plants. Nat Biotechnol,19(7): 677-679.
    283. Xu B, Timko M.2004. Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol Biol,55(5): 743-746.
    284. Xue GP.2003. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J. 33(2):373-383.
    285. Yadav V, Kundu S, Chattopadhyay D, Negi P, Wei N, Deng XW, Chattopadhyay S.2002. Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis. Plant J,31:741-753.
    286. Yamagata H, Yonesu K, Hirata A, Aizono Y.2002. TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem,277: 11582-11590.
    287. Yamaguchi-Shinozaki K, Shinozaki K.1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,6(2): 251-264.
    288. Yamaguchi-Shinozaki K, Shinozaki K.2005. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci,10(2):88-94.
    289. Yamamoto S, Nakano T, Suzuki K, Shinshi H.2004. Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta,1679(3):279-287.
    290. Yang S, Zhang X, Yue JX, Tian D, Chen JQ.2008. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics,280(3):187-198.
    291. Yang Y, Li R, Qi M.2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J,22(6):543-551.
    292. Yevtushenko DP, Sidorov VA, Romero R, Kay WW, Misra S.2004. Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Science,167:715-724.
    293. Yi H, Richards EJ.2007. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell,19(9):2929-2939.
    294. Yin Y, Beachy RN.1995. The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in rice (Oryza sativa L.). Plant J,7:969-980.
    295. Yin Y, Chen L, Beachy R.1997. Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J,12:1179-1188.
    296. Yoshida K, Shinmyo A.2000. Transgene expression systems in plant, a natural bioreactor. J Biosci Bioeng,90(4):353-362.
    297. Yu D, Chen C, Chen Z.2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell,13(7):1527-1540.
    298. Yu SM, Ko SS, Hong CY, Sun HJ, Hsing YI, Tong CG, Ho TH.2007. Global functional analyses of rice promoters by genomics approaches. Plant Mol Biol,65(4):417-425.
    299. Zarka DG, Vogel JT, Cook D, Thomashow MF.2003. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol,133(2):910-918.
    300. Zenzie-Gregory B, O'Shea-Greenfield A, Smale ST.1992. Similar mechanisms for transcription initiation mediated through a TATA box or an initiator element. J Biol Chem,267(4):2823-2830.
    301. Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R.2004. Ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta,220(2): 262-270.
    302. Zhang Q, Zhang ZY, Lin SZ, Zheng HQ, Lin YZ, An XM, Li Y, Li HX.2008. Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. Plant Biol,10:310-322.
    303. Zhang ZY, Li FL, Zhu ZT.1997. Doubling technology of pollen chromosome of Populus tomentosa and its hybrids. J Beijing For Univ (English edn),6(2):9-20.
    304. Zhao X, Huang XR, Sun CC.2006. A molecular dynamics analysis of the GCC-box binding domain in ethylene-responsive element binding factors. Struct Biol,156(3):537-545.
    305. Zheng HQ, Lin SZ, Zhang Q, Lei Y, Zhang ZY.2009. Functional analysis of 5'untranslated region of a TIR-NBS-encoding gene from triploid white poplar. Mol Genet Genomics,282(4):381-394.
    306. Zheng HQ, Zhang Q, Li HX, Lin SZ, An XM, Zhang ZY.2010. Over-expression of the triploid white poplar PtDrl01 gene in tobacco enhances resistance to tobacco mosaic virus. Plant Biology, DOI:10.1111/j.1438-8677.2010.00327.x.
    307. Zhou DX, LI YF, Rocipon M, Mache R.1992. Sequence specific interaction between S1F, a spinach nuclear factor, and a negative cis-element conserved in plastid-related genes. J Biol Chem, 267:23515-23519.
    308. Zhou P, Yang F, Yu J, Ao G, Zhao Q.2010. Several cis-elements including a palindrome involved in pollen-specific activity of SBgLR promoter. Plant Cell Rep, DOI:10.1007/s00299-010-0839-3.
    309. Zhu JK.2002. Salt and drought stress signal transduction in plants. Annu.Rev.Plant Biol,53: 247-273.
    310. Zhu Q, Dabi T, Lamb C.1995. TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell,7(10):1681-1689.
    311. Zhu Q, Song B, Zhang C, Ou Y, Xie C, Liu J.2008. Construction and functional characteristics of tuber-specific and cold-inducible chimeric promoters in potato. Plant Cell Rep,27(1):47-55.
    312. Zhu ZT, Zhang ZY.1997. The status and advances of genetic improvement of Populus tomentosa Carr. J Beijing For Uni (English Ed.),6(1):1-7.
    313. Zuker M.2000. Calculating nucleic acid secondary structure. Curr Opin Struct Biol,10:303-310.
    314. Zuker M.2003.Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res,31(13):3406-3415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700